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Resumo 

 

A miosina-IIA (NMIIA) pertence a uma família de proteínas-motoras que estão 

associadas a processos que requerem força e motilidade. Esta proteína é capaz de se 

ligar à actina. Por intermédio desta interação a NMIIA media o movimento dependente 

da actina e intervém em vários processos celulares como a divisão, migração, 

polaridade e a estabilidade do citoesqueleto. 

A NMIIA também está envolvida em transporte de vesiculas no interior da célula, 

nomeadamente no transporte retrógrado de proteínas do Golgi para o Retículo 

Endoplasmático para sofrerem degradação pelo proteosoma.  

 

No nosso laboratório a miosina é estudada num contexto de infeção bacteriana e em 

condições fisiológicas normais. Resultados obtidos anteriormente pelo nosso 

laboratório demonstram que a depleção da NMIIA, usando small interference RNA 

(siRNA), favorece a invasão das células hospedeiras por Listeria monocytogenes. 

 

Um yeast two-hybrid foi realizado como ponto de partida para aprofundar o nosso 

conhecimento acerca desta proteína, começando pela análise dos seus possíveis 

parceiros de interação. Dos 97 resultados obtidos no yeast two-hybrid selecionamos 5 

para testar a sua interação com a NMIIA por métodos bioquímicos. Dos 5, 2 

distinguiram-se, tornando-se relevantes para o projeto em realização. Foram a beta-

adaptina e heat shock protein 56.  

 

Uma possível associação entre a NMIIA e a beta-adaptina e a NMIIA e heat shock 

protein 56 foi observada durante a realização do projeto. Esta possível associação foi 

identificada por imunoprecipitação. A identificação de um mecanismo fisiológico e 

funcional dependente desta interação em condições fisiológicas normais e num 

contexto de infeção bacteriana é o passo seguinte deste projeto.  

 

Com este projeto esperamos aumentar o nosso conhecimento acerca da NMIIA e da 

sua influência na regulação do citoesqueleto, no transporte de vesículas no interior da 

célula e acerca do seu papel em infeções bacterianas. 

 

Palavras-chave: miosina IIA, yeast two-hybrid, parceiros de interação, beta-adaptina e 

heat shock protein 56  



FCUP 
Identification of novel non-muscle myosin IIA (NMIIA) interacting partners 

2 

 

Abstract 

 

Non-muscle myosin-IIA (NMIIA) belongs to an ATP-dependent family of motor-proteins 

mainly involved in processes that require force and motility. This molecule is capable of 

binding to actin. Via this interaction NMIIA mediates contractility and actin-based 

motility. Thus NMIIA is capable of mediating several key cellular functions such as: 

division, migration, polarity and cytoskeletal stability. 

NMIIA is also involved in intracellular vesicular transport, including retrograde transport 

of cargo from the Trans-Golgi Network (TGN) back to the Endoplasmic Reticulum (ER) 

to undergo proteosomal degradation.  

In our laboratory we study NMIIA functions both in infection and regular physiological 

conditions. Previous work from our laboratory demonstrated that depletion of NMIIA by 

siRNA favoured the invasion of host cells by Listeria monocytogenes. 

 

Given the involvement of this protein in cytoskeleton regulation and infection it is in our 

interest to increase our knowledge about it. A yeast two-hybrid (Y2H) screen was 

performed as a starting point to study NMIIA and its interacting partners.  

Out of 97 positive interactions we selected 5 putative interactive partners and used 

biochemical techniques to confirm their association with NMIIA. From the five a total of 

two became increasingly relevant through the realization of this project: beta-adaptin 

and heat-shock protein 56 (Hsp56). 

 

Throughout the work performed in the framework of this project we observed a possible 

association between NMIIA and Hsp56 and also between NMIIA and beta-adaptin. This 

possible association was suggested by the results obtained using immunoprecipitation 

(IP). Discovery of a functional and physiological role for these possible NMIIA 

interacting partners, in a regular physiological context and in an infection context, is the 

next step in this project.  

  

We expect our work will allow a better understanding of NMIIA and therefore increase 

our knowledge about the influence of this protein on cytoskeleton regulation, 

intracellular vesicular transport and ultimately bacterial infection. 

 

Key words: non-muscle myosin IIA, yeast-two hybrid, interacting partners, beta-

adaptin and heat-shock protein 56 
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1. Introduction 

 
1.1 Cell cytoskeleton 

 

To maintain its shape and structure each cell has an organized filament network 

designated cytoskeleton. Three cytoskeletal filament classes can be distinguished: 

microtubules, intermediate filaments and actin filaments. 

Microtubules are tubular polymers formed by dimers of alpha and beta tubulin that can 

reach 25 nm in length. Microtubules are organized in microtubule organizing centers 

(MTOC) and occupy the length of the cell providing mechanical support. Microtubules 

are anchored to the MTOC by their minus end while their plus end continues to grow at 

the cell periphery. These filaments have a hollowed structure and can form tightly 

aligned bundles that act as tracks for the transport of intracellular vesicles. To move 

cargo along microtubules is necessary the binding of motor proteins. Kynesin is the 

most common motor binding microtubules and promotes movement of cargo towards 

the plus end of the filament. Dynein also binds microtubules to move cargo towards 

their minus end. In cell division they are responsible for the formation of the mitotic 

spindle (Alberts et al., Molecular Biology of the Cell, 2008).  

Intermediate filaments are dynamic filaments with an average diameter of 10 nm and 

are organized in a diffuse mesh throughout the whole cytoplasm allowing maintenance 

of cell shape and providing mechanical strength. They are composed of a variety of 

proteins that are organized in 5 groups: types I and II correspond to keratins; type III 

include vimentin and desmin; type IV correspond to three neurofilament proteins and 

type V are components of the nuclear envelope, designated lamins. In epithelia these 

cytoskeletal filaments can interact with proteins at cell-cell junctions promoting 

adhesion and creating a cohesive cell layer (Alberts et al., Molecular Biology of the 

Cell, 2008; Cooper, The Cell: a molecular approach, 2000).    

Actin filaments, also named microfilaments, are the smaller cytoskeletal filaments with 

an average 7 nm diameter. Actin can be present as a monomer designated G-actin or 

as part of a microfilament called F-actin. It is involved in various cellular processes: 

motility, vesicle movement, cell signaling, cell division, cytokenesis and muscle 

contraction. These filaments are flexible structures disperse throughout the cell cortex 

with a higher concentration just beneath the plasma membrane providing strength and 

shape to the lipid bilayer. Actin can produce movement by itself or through association 

with motor protein myosin. Actin is capable of forming dynamic cellular projections, like 
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the lamellipodia, essential to cell motility. These projections occur at the leading edge 

of migrating cells and are comprised of dense actin filaments and accessory proteins 

that undergo cycles of remodeling in order to rapidly respond to outside stimuli and 

surface receptors (Grantham et al., 2012; Alberts et al., Molecular Biology of the Cell, 

2008).  

Actin filaments, microtubules and intermediate filaments are capable of interacting with 

molecular motors: kynesin, dynein and myosin (Alberts et al., Molecular Biology of the 

Cell, 2008; Helfand et al., 2003). Molecular motors can be defined as molecules 

responsible for force transduction, meaning the conversion of chemical energy into 

mechanical energy. 

 

1.2 Myosins 

  

Myosins are a large superfamily of molecular motors present in all eukaryotic cells and 

capable of associating with actin. They are ATP-dependent motor proteins that are 

involved in various cellular processes that require force and motility (Vicente-

Manzanares et al., 2009).   

Myosins are typically constituted by three subdomains: the N-terminal well-conserved 

motor or head domain, the neck domain and the C-terminal class-specific tail domain. 

The tail domain presents the biggest variations between myosin classes, varying in 

length and amino acid composition and is thought to play distinguishable roles in class-

specific functions (Sellers, 

2000; Landsverk and 

Epstein, 2005). 

The variable tail domain is 

thought to determine 

cellular localization, 

filament assembly and 

differential cargo binding. 

There are at least 35 

different classes in the 

myosin superfamily 

determined by analysis of 

their motor domain (Figure 

1). Myosins are encoded 

by 25 genes and distinct 

Figure 1 Phylogenetic tree constructed from analysis of the motor domains of 1984 
myosins. Based on this phylogenetic analysis 35 myosin classes have been identified. 
Branches colored in black correspond to unclassified myosins. Adapted from 
Motorprotein.de 2007 
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isoforms can occur due to alternative splicing of mRNA (Sellers, 2000; Conti and 

Adelstein, 2008). 

 

 

1.3 Myosin II 

 
The myosin II subfamily is also designated as conventional myosins. Members of the 

class II are constituted by 6 

polypeptides: two heavy 

chains (NMHCII) of 230 kDa 

that form the head and tail 

domains. Tail domain 

possesses coiled-coil 

regions that support 

dimerization of the 

molecule creating two 

globular heads. The intermediate region between myosin‟s head and tail is 

denominated neck and binds two regulatory light chains (RLC) of 20 kDa and two 

essential light chains (ELC) of 17 kDa (Figure 2). The RLC allow myosin regulation 

through phosphorylation and the ELC stabilize the structure of the protein (Sellers, 

2000; Landsverk and Epstein, 2005). This subfamily is the largest and encompasses 

skeletal, cardiac and smooth muscle myosins as well as the non-muscle myosin II 

(NMII).  There is one main difference between the members of the myosin II class. 

While skeletal and cardiac muscle myosin II is regulated by troponin and tropomyosin 

(actin-associated proteins), the regulation of non-muscle and smooth muscle myosin is 

achieved primarily through phosphorylation of the RLC (Conti and Adelstein, 2008). 

The actin-binding and subsequent ATP hydrolysis in the myosin II head domain 

generates energy that will allow myosin to propel itself towards the plus end of an actin 

filament and generate movement. In skeletal muscle the myosin-dependent ATP-

induced sliding of actin filaments results in the generation of contraction (Alberts et al., 

Molecular Biology of the Cell, 2008). 

 

1.4 Non-muscle myosin II (NMII) 
  

Non-muscle myosins are the most abundant group of molecular motors in eukaryotic 

cells and are present in both muscle and non-muscle cells.  NMII are essential for cell 

Figure 2 Representation of the myosin II class molecule. Depicted are the 
three main domains (motor, neck and tail comprising the coiled-coil rod and 
the non-helical tail) and the three pairs of chains that constitute the hexamer 
(heavy chains, ELC and RLC). Adapted from Heissler and Manstein, 2013. 
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migration, adhesion, shape changes, cytokinesis, endocytosis and exocytosis. This 

subfamily acts as a regulator of the actin cytoskeleton constituting a network 

designated as actomyosin. This network is capable of responding to extra and 

intracellular stimuli and generates movement according to the demands of the cell. 

Three distinct NMII isorforms were identified on mammalians termed NMIIA, NMIIB and 

NMIIC, encoded by Myh9, Myh10 and Myh14 genes, respectively. Although these 

three isoforms share 60 to 80 % of their amino acid composition they have isoform-

specific functions (Bresnick, 1999; Conti and Adelstein, 2008; Vicente-Manzanares et 

al., 2009; Betapudi, 2010; Wang et al., 2011; Heissler and Mainstein, 2013). The rate 

of ATP hydrolysis and the amount of time the myosin-actin interaction occurs during 

the contractile cycle (duty ratio) are very different between isoforms (Wang et al., 2011; 

Vicente-Manzanares et al., 2009). NMIIB has a higher duty ratio and high affinity to 

ADP when compared to NMIIA. This isoform is capable of exerting tension for longer 

periods of time spending less energy than NMIIA (Vicente-Manzanares et al., 2009). 

The formation of bipolar filaments by the tail domain is a mechanism used to maintain 

tension on actin filaments for prolonged time periods. The maintenance of tension on 

actin filaments by the bipolar filaments is a mechanical and structural function that is 

mainly separate from the enzymatic activity of the motor domain and can be performed 

by the three different NMII isoforms (Figure 3) (Conti and Adelstein, 2008; Wang et al., 

2011).  

 

 

Figure 3 Formation of bipolar filaments by NMII. By interactions of the rod domain NMII molecules assemble into bipolar 
filaments that are capable of exerting tension on actin filaments for prolonged time periods. Adapted from Vicente-
Manzanares et al., 2009.  

 

Furthermore opposite roles for NMIIA and NMIIB in lamellipodia extension during cell 

spreading have been described. Depletion by siRNA of NMIIB reduced the rate of 

lamellipodia extension while NMIIA depletion increased this rate, suggesting that each 

molecule generates tension in opposite directions (Betapudi, 2010). The role of the 

NMIIC isoform in lamellipodia extension or retraction is not yet defined (Heissler and 

Manstein, 2013).  
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1.5 NMIIA 
 

NMIIA acts as an integrator of cellular processes such as cell migration, polarity, 

division, adhesion, tissue architecture and cytoskeletal coherence (Cai et al., 2009), 

through its binding with cytoskeletal actin. Out of the three isoforms of NMII, NMIIA has 

the highest rate of ATP hydrolysis and propels actin faster than NMIIB and NMIIC 

(Vicente-Manzanares et al., 2009). Regulation of NMIIA activity is done by 

phosphorylation of serine 19 and threonine 18 in the RLC. RLC phosphorylation 

regulates assembly of NMIIA by preventing intramolecular interactions (head-head and 

head-tail), which would lead to a closed conformation, and allows the maintenance of 

the elongated myosin filament (Conti and Adelstein, 2008; Vicente-Manzanares et al., 

2009). Various phosphorylation sites are present in the NMIIA heavy chains C-terminal 

non-helical tail but their relevance is still unknown (Bresnick, 1999; Vicente-

Manzanares et al., 2009). 

Depletion of NMIIA from cells using siRNA impaired migration but increased lamellar 

protrusions (Betapudi et al., 2006). NMIIA is also important for apical-basal and front-

to-back polarity. Tight junctions are the barrier between the apical and basal 

compartments in a cell. NMIIA is responsible for the assembly of the tight junction 

components. In a cell depleted of NMIIA the tight junction is not correctly formed and 

therefore the cell does not polarize (Conti and Adelstein, 2008).  Front-to-back polarity 

is defined by the start of an actin-dependent protrusion at the front of the cell and a 

NMIIA-dependent detachment mechanism in the cell rear. If NMIIA is inhibited cells 

elongate because they are not capable of retracting their rear (Conti and Adelstein, 

2008; Vicente-Manzanares et al., 2009). Maintenance of cell-cell adhesions is also 

impaired by the absence of NMIIA which is responsible for controlling the localization of 

the components of the tight and adherens junctions (Conti and Adelstein, 2008; 

Vicente-Manzanares et al., 2009). Genetic ablation of NMIIA in embryonic stem cells 

and mouse embryos leads to loss of cell-cell adhesion due to the absence of the 

proteins responsible for constructing the junction from the junction site (Conti et al., 

2004).  

Besides its well-described role in processes that require force and movement NMII is 

also involved in other intracellular processes. NMII is required to the assembly of 

basolateral transport vesicles carrying vesicular stomatitis virus G protein (VSVG) 

(Musch et al., 1997).  It has also been described as intervening in intracellular sorting 

pathways, including retrograde transport of NR1 and C2GnT-M proteins from the 

Trans-Golgi Network back to the Endoplasmic Reticulum (ER) to undergo proteosomal 
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degradation (Vazhappilly et al., 2010; Petrosyan et al., 2012). NMIIA has also been 

implicated in the secretory pathway. In this pathway NMIIA is involved in approach and 

fusion. It regulates the actin cytoskeleton to allow vesicle recruitment and movement at 

the plasma membrane. Once the vesicle reaches the plasma membrane NMIIA is 

involved in fusion of the vesicular carrier with the plasma membrane (Loubéry and 

Coudrier, 2008; Bond et al., 2011).  

Among other myosin related pathologies, one of the most common conditions is a 

dysfunction of the blood platelets resulting in a pathology designated 

macrothrombocytopenia. This pathology is characterized by a reduction on the number 

of platelets present in the blood, by uncharacteristically large platelets which will lead to 

an increase of the bleeding time before clotting (Canobbio et al., 2005; Zhang et al., 

2011).  

 

1.6 NMIIA and infection 
 

Our group studies the food-borne pathogen Listeria monocytogenes. This bacterium is 

considered an opportunistic pathogen, producing disease mainly in 

immunocompromised individuals, elders and pregnant women. After ingestion of 

contaminated food bacteria are able to overcome the intestinal barrier reaching the 

liver and spleen through the bloodstream. Bacteria are also capable of crossing the 

blood/brain barrier and in pregnant women the placental barrier (Figure 4A). Bacteria 

adhere to the surface of the host cell and are internalized reaching the cytoplasm 

inside a vacuole. Through production of a toxin they are capable of escaping the 

vacuole and subvert the host cytoskeleton in order to promote intracellular motility and 

cell to cell spread (Figure 4B) (Cossart and Toledo-Arana, 2008; Cossart, 2011; 

Camejo et al., 2011). 
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Work performed in our laboratory suggested a restrictive role for NMIIA upon L. 

monocytogenes infection. Depletion of NMIIA from host cells led to an increase of L. 

monocytogenes entry levels. 

Our group uncovered a new NMIIA post-translational modification, a phosphorylation of 

the tyrosine residue at position 158 in response to L. monocytogenes infection. A 

NMIIA mutant, where tyrosine residue 158 was replaced by a phenylalanine and 

therefore incapable of undergoing phosphorylation, was constructed. In host cells 

expressing the mutant NMIIA isoform L. monocytogenes entry was facilitated. This 

result suggested that tyrosine-phosphorylation of NMIIA acts as a defense mechanism 

in response to L. monocytogenes infection (Almeida et al., submitted). 

NMIIA contributes to the invasion of nonphagocytic cells by Salmonella. The bacterial 

protein SopB is capable of activating an invasion mechanism that requires NMIIA to 

generate membrane ruffling thereby favoring internalization of Salmonella (Hänisch et 

al., 2011).  

In addition, NMIIA is involved in viral entry into host cells. Entry of Kaposi‟s Sarcoma-

Associated Herpersvirus (KSHV) is impaired in cells treated with increasing 

concentrations of blebbistatin (a small-molecule inhibitor with high myosin II affinity that 

blocks myosin‟s ATPase activity). Suggesting a NMIIA-dependent entry pathway for 

KSHV (Veettil et al., 2010).   

Herpes simplex virus-1 (HSV-1) entry into host cells requires receptors for glicoproteins 

B and D (gB and gD). In 2010, NMIIA was characterized as an entry receptor for HSV-

1 by interacting with gB. Over-expression of NMIIA increased infection levels by HSV-1 

Figure 4 Listeria monocytogenes infection cycle in vivo and in vitro in cultured epithelial cell lines. (A) Listeria 
monocytogenes disease dissemination. (B) Schematic representation of bacterial intracellular infectious cycle. ROS, 
reactive oxygen species; SOD, superoxide dismutases; ActA and Listeriolysin O, major L. monocytogenes virulence 
factors; Histone H3 and Histone H4 (A) Adapted from Cossart and Toledo-Arana, 2008 and (B) Adapted from Camejo et 
al., 2011 

 

A 
B 
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while the use of a specific antibody against NMIIA impaired entry of the virus into host 

cells (Arii et al., 2010). 

 

Given the relevant role of NMIIA in L. monocytogenes infection it was in the interest of 

our lab to increase our knowledge about this motor protein by uncovering new NMIIA 

binding partners. The selected methodology was a yeast two-hybrid assay (Y2H). 
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2. Aims 

 

 

This project aims to confirm and validate the putative interacting partners of NMIIA 

revealed by a yeast two-hybrid (Y2H) assay. In addition, we will try to investigate the 

physiological relevance of the validated interactions in the context of canonical 

functions of NMIIA. We expect our research to improve our understanding of NMIIA 

functions and increase our knowledge of eukaryotic cytoskeleton regulation and 

intracellular vesicular traffic. 

 

We specifically aim to: 

 

- Optimize a protocol for immunoprecipitation (IP) of endogenous NMIIA in HeLa and 

Jeg-3 cell lines. 

- Optimize a protocol for immunoprecipiatation of ectopically expressed NMIIA in HEK 

293 cells. 

- Evaluate the interactions between NMIIA and the putative interacting partners 

identified during the Y2H assay by IP. 

- Optimize a protocol for immunoprecipitation of the possible interacting partners 

suggested by the IP-NMIIA in HeLa cells. 
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3. Material and methods 
 

3.1    Yeast Two-Hybrid Technique (Y2H) 

 

As bait for the Y2H we selected the C-terminal (Leu837 to Glu1960) domain of NMHCII 

(Figure 5). The tail fragment used as bait was selected for four reasons: the 

head/motor domain‟s function and interacting partners, such as actin, are well-

described; the motor domain shares the most homology between myosin isoforms, 

increasing the possibility of sharing binding partners; the tail fragment is the region that 

presents the most diversity between all myosins and lastly the tail domain possesses 

different domains that interact with different cytoplasmic proteins e.g. tail domain of 

myosin VII interacts with vezatin (Karcher et al., 2002). This NMIIA tail fragment was 

tested against a human placental library. Placentas are developing organs with high 

expression levels and a high diversity of proteins and are relevant for L. 

monocytogenes pathology.  

 

 

 

 

 

 

 

 

 

 

 

Figure 5 Schematic representation and sequence of the heavy chain of NMIIA. Fragment used as bait for the Y2H is 
depicted in pink, from leucine 837 to acid glutamic 1960. Motor domain of NMIIA is represented in blue and tail is 
represented in purple. 

 

The Y2H technique functions as a simple complementation assay. It is based on the 

premise that in eukaryotic systems activation of transcription depends upon the direct 

interaction between a binding and activating domains (Dwane and Kiely, 2011). 

Therefore in regular physiological conditions the transcription mechanism requires both 

the DNA-binding and activation domains of a transcription activator (Figure 6A). On the 

MAQQAADKYLYVDKNFINNPLAQADWAAKKLVWVPSDKSGFEPASLKEEVGEEAIVELVENGKKVKVNKDDIQKMNPPKFSKVEDMAELTCLNEASVLHNLKERYYSGLIYTY

SGLFCVVINPYKNLPIYSEEIVEMYKGKKRHEMPPHIYAITDTAYRSMMQDREDQSILCTGESGAGKTENTKKVIQYLAYVASSHKSKKDQGELERQLLQANPILEAFGNAKT

VKNDNSSRFGKFIRINFDVNGYIVGANIETYLLEKSRAIRQAKEERTFHIFYYLLSGAGEHLKTDLLLEPYNKYRFLSNGHVTIPGQQDKDMFQETMEAMRIMGIPEEEQMGL

LRVISGVLQLGNIVFKKERNTDQASMPDNTAAQKVSHLLGINVTDFTRGILTPRIKVGRDYVQKAQTKEQADFAIEALAKATYERMFRWLVLRINKALDKTKRQGASFIGILD

IAGFEIFDLNSFEQLCINYTNEKLQQLFNHTMFILEQEEYQREGIEWNFIDFGLDLQPCIDLIEKPAGPPGILALLDEECWFPKATDKSFVEKVMQEQGTHPKFQKPKQLKDK

ADFCIIHYAGKVDYKADEWLMKNMDPLNDNIATLLHQSSDKFVSELWKDVDRIIGLDQVAGMSETALPGAFKTRKGMFRTVGQLYKEQLAKLMATLRNTNPNFVRCIIPNHEK

KAGKLDPHLVLDQLRCNGVLEGIRICRQGFPNRVVFQEFRQRYEILTPNSIPKGFMDGKQACVLMIKALELDSNLYRIGQSKVFFRAGVLAHLEEERDLKITDVIIGFQACCR

GYLARKAFAKRQQQLTAMKVLQRNCAAYLKLRNWQWWRLFTKVKPLLQVSRQEEEMMAKEEELVKVREKQLAAENRLTEMETLQSQLMAEKLQLQEQLQAETELCAEAEELRA

RLTAKKQELEEICHDLEARVEEEEERCQHLQAEKKKMQQNIQELEEQLEEEESARQKLQLEKVTTEAKLKKLEEEQIILEDQNCKLAKEKKLLEDRIAEFTTNLTEEEEKSKS

LAKLKNKHEAMITDLEERLRREEKQRQELEKTRRKLEGDSTDLSDQIAELQAQIAELKMQLAKKEEELQAALARVEEEAAQKNMALKKIRELESQISELQEDLESERASRNKA

EKQKRDLGEELEALKTELEDTLDSTAAQQELRSKREQEVNILKKTLEEEAKTHEAQIQEMRQKHSQAVEELAEQLEQTKRVKANLEKAKQTLENERGELANEVKVLLQGKGDS

EHKRKKVEAQLQELQVKFNEGERVRTELADKVTKLQVELDNVTGLLSQSDSKSSKLTKDFSALESQLQDTQELLQEENRQKLSLSTKLKQVEDEKNSFREQLEEEEEAKHNLE

KQIATLHAQVADMKKKMEDSVGCLETAEEVKRKLQKDLEGLSQRHEEKVAAYDKLEKTKTRLQQELDDLLVDLDHQRQSACNLEKKQKKFDQLLAEEKTISAKYAEERDRAEA

EAREKETKALSLARALEEAMEQKAELERLNKQFRTEMEDLMSSKDDVGKSVHELEKSKRALEQQVEEMKTQLEELEDELQATEDAKLRLEVNLQAMKAQFERDLQGRDEQSEE

KKKQLVRQVREMEAELEDERKQRSMAVAARKKLEMDLKDLEAHIDSANKNRDEAIKQLRKLQAQMKDCMRELDDTRASREEILAQAKENEKKLKSMEAEMIQLQEELAAAERA

KRQAQQERDELADEIANSSGKGALALEEKRRLEARIAQLEEELEEEQGNTELINDRLKKANLQIDQINTDLNLERSHAQKNENARQQLERQNKELKVKLQEMEGTVKSKYKAS

ITALEAKIAQLEEQLDNETKERQAACKQVRRTEKKLKDVLLQVDDERRNAEQYKDQADKASTRLKQLKRQLEEAEEEAQRANASRRKLQRELEDATETADAMNREVSSLKNKL

RRGDLPFVVPRRMARKGAGDGSDEEVDGKADGAEAKPAE 
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Y2H system the two domains (DNA-binding and activation domains) are fused to two 

proteins, a bait protein (in our case the C-terminal domain of NMIIA) and a prey protein 

(in our case all proteins expressed in placenta). If the two proteins (bait and prey) 

interact, the DNA-binding and activation domains will bind, form a functional 

transcription activator and initiate transcription of the reporter gene (Figure 6B). 

Positive clones are distinguished because they acquire a different color or produce an 

amino acid that allows their survival in a selective media (Figure 6C) (Dwane and Kiely, 

2011).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The Y2H was performed against a randomly primed cDNA library from human 

placenta. Positive clones were obtained using a selective media. Identification of the 

prey fragments of positive clones was done by PCR followed by sequencing. 

Fragments were analyzed on agarose gel and sequenced at their 5‟ and 3‟ sites to 

ascertain the size and exact positions where the prey fragment interacts with our bait 

fragment. The obtained sequences were used to identify the corresponding gene, using 

BLASTN (NCBI), in the GenBank database (NCBI) (Rain et al., 2001; Formstecher et 

al., 2004).  

 

 

Figure 6 Schematic representation of the Y2H assay. (A) Transcription mechanism in regular physiological conditions. 
(B) Y2H system. If binding and activating domains interact transcription is activated. (C) Bait and Prey plasmids are 
transfected into a yeast cell, if interaction occurs colony grows. Adapted from Giorgini and Muchowski, 2005. 

 

A B 

C 
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3.2    Antibodies and plasmids  

 

All antibodies and stains used are described in Table 1. Primary and secondary 

antibodies as well as molecular probes optimized dilutions for each application are 

indicated in detail in Table 1. All plasmids used during this study are listed in Table 2.  

 

Table 1 List of antibodies used in this work. Name of the primary and secondary antibodies as well as molecular probes 
used is listed in the first column. Optimized dilutions for Western Blot (WB), Immunoprecipitation (IP) and 
Immunofluorescence (IF) are listed for each antibody. Reference and source of each antibody is also described in the 

table. 

Name Species Applications Reference Source 

Myosin IIA Rabbit 
WB (1:5000) 

IP (1:100) 
M8064 Sigma-Aldrich 

Myosin IIA Mouse IF (1:400) ab55456 Abcam 
Myosin IIB Rabbit WB (1:1000) M7939 Sigma-Aldrich 

Actin Mouse WB (1:5000) AC-15, A5441 Sigma-Aldrich 

GFP Mouse WB (1:1000) B-2, sc9996 
Santa Cruz 

Biotechnology 
GFP (Agarose-

conjugated) 
Mouse IP (1:100) B-2, sc-9996 AC 

Santa Cruz 
Biotechnology 

β-adaptin Rabbit 
IP (1:100) 

WB (1:1000) 
IF (1:50) 

H-300, sc-10762 
Santa Cruz 

Biotechnology 

SMPD4 Rabbit WB (1:500) PA5-25797 Thermo Scientific 

Hsp56 Mouse 
IP (1:100) 

WB (1:1000) 
IF (1:100) 

ADI-SRA-1400-D Enzo Life Sciences 

ZNF12 Rabbit WB (1:1000) AV35912-100UG Sigma-Aldrich 
AFF1 Rabbit WB (1:500) SAB2106246-50UG Sigma-Aldrich 

aPKC-δ Rabbit IF (1:500) C-20, sc-216 
Santa Cruz 

Biotechnology 
Anti-rabbit or anti-

mouse HRP 
Goat WB (1:5000) 

BI2413C 
BI2407 

PARIS 

Anti-mouse Alexa 
Fluor 488 

Goat IF (1:500) A11001 Invitrogen 

Alexa Fluor 647-
conjugated-
phalloidin 

- IF (1:50) A22287 Invitrogen 

DAPI - IF  (1:100) - - 

Anti-rabbit Cy3 Goat IF (1:500) 111-165-144 
Jackson 

ImmunoResearch 

 

 

Table 2 List of plasmids used in this work.  

Plasmid Name Description Source 

GFP-MIIA-WT 
pEGFP-C3:CMV-GFP-NMHC 

IIA 
Addgene 

GFP-MIIA-Y158F 
pEGFP-C3:CMV-GFP-NMHC 

IIA (Y158F) 
Almeida, T. et al, 2013 

GFP (C3) pEGFP-C3 ClonTech Laboratories 

GFP-MIIB-WT 
pEGFP-C3:CMV-GFP-NMHC 

IIB 
Addgene 
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3.3    Bacterial strains, cell lines and growth conditions 

 

Escherichia coli (E. coli) DH5α and TOP 10 strains were grown aerobically in Luria 

Bertani (LB) medium (1 % tryptone, 0.5 % yeast extract and 1 % NaCl) (Difco) at 37 ºC 

with aeration. When necessary ampicilin (100 μg/ml) was added to the culture media.  

Human cervical cancer cell line HeLa (ATCC CCL-2), Human embryonic kidney cells 

(HEK 293) (ATCC CRL-1573) and monkey kidney  tissue cells Cos-7 (ATCC CRL-

1651) were grown in Dulbecco's Modified Eagle Medium (DMEM) supplemented with 

10 % fetal calf serum (FCS). Human placental choriocarcinoma cell line JEG-3 was 

grown in Eagle‟s Minimum Essential Medium (EMEM) supplemented with 10 % FCS, 1 

% non-essential amino-acids (NEAA) and 1 % sodium pyruvate (NaPyR). Human 

colorectal adenocarcinoma cell line Caco-2 (ATCC HTB-37) was cultured in EMEM 

supplemented with 20 % FCS, 1 % NEAA and 1 % NaPyR. Cells were maintained at a 

confluence of 70 to 80 % at 37 ºC in a 5 % carbon dioxide (CO2) humidified 

atmosphere. Cell culture media (DMEM and EMEM) and media supplements (NEAA 

and NaPyr) used are from Lonza. 

 

3.4    Immunoprecipitation (IP) 

 

HeLa, HEK 293, JEG-3, Caco-2 and Cos-7 cells were harvested by scraping and lyzed 

for 30 min at 4 ⁰C in 20 mM Tris pH 7.5, 137 mM NaCl, 2 mM EDTA, 1 % NP-40 and 

complete mini-protease inhibitor mixture (Roche). Lysates were cleared by 

centrifugation (10 min, 10 000 g, 4 ⁰C) and the protein concentration was determined 

using Quick StartTM Bradford Protein Assay (Bio-Rad). Standard curve using Bovine 

Serum Albumine (BSA) was determined according to manufacturer‟s instructions as 

shown in Figure 7.    

 

 

Figure 7 Standard curve obtained using Bovine Serum Albumine (BSA).  
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Lysates were pre-cleared for 30 min at 4 ºC with rotation with either Protein G 

sepharose resin (GE Healthcare) or Protein G magnetic beads (Millipore) and 

incubated overnight at 4 ⁰C with the antibody specific for the protein to be 

immunoprecipitated (optimized dilutions for each antibody are shown on Table 1) 

(Figure 8A). Before use Protein G sepharose resin was washed three times with 

phosphate buffered saline (PBS) and used in a 50 % slurry (50 % sepharose resin in 

PBS). Protein G magnetic beads were washed three times in 0.2 % Tween in PBS 

according to manufacturer‟s instructions.  

Either one was then added to the lysates and incubated for 3 h, at 4 ⁰C with rotation 

(Figure 8B). Recovery of the immunocomplexes bound to the Protein G magnetic 

beads was done with the aid of a magnetic rack (Millipore) while recovery of the 

immunocomplexes bound to Protein G sepharose resin was done by centrifugation 

(Figure 8C).  

Magnetic beads or sepharose resin were washed twice with 20 mM Tris pH 7.5, 137 

mM NaCl, 2 mM EDTA, 0.1 % NP-40 and resuspended in Laemmli buffer (0.25 mM 

Tris pH 6.8, 8 % sodium dodecyl sulfate (SDS), 40 % glycerol, 10 % β-mercaptoethanol 

and 0.008 % of bromophenol blue). Samples were denatured at 95 ºC for 10 min and 

resolved using SDS–polyacrylamide gel electrophoresis (SDS–PAGE).  

 

 

 

 

 

Figure 8 Schematic representation of the IP procedure. (A) Incubation of the cell lysates with the antibody specific for 
the protein to be precipitated. (B) Addition of the Protein G sepharose resin or Protein G magnetic beads. (C) Recovery 
of the immunocomplexes. 

 

3.5    Sodium dodecyl sulfate-polyacrilamide gel electrophoresis  

 

SDS-PAGE is a biochemical method that allows the separation of different proteins 

based on their electrophoretic mobility. SDS is an anionic detergent used as a 

denaturant to maintain the proteins in their linear state and to impart negative charge to 

the linear protein. This method allows the fractionation of the proteins by their 

approximate size.   

Polyacrilamide gel is divided in two sections, a stacking and separating gel solutions. 

Stacking is meant to align all proteins so that they can start the electrophoretic run at 

A A B C 
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the same point and the separating solution to allow separation of the different 

molecules based on their size (Moser et al., 2009).  

For all performed SDS-PAGE procedures throughout this work a 0.75 mm thick, 8 % 

(vol/vol) polyacrilamide gel was used. 

Components and volumes used for stacking and 8 % resolving polyacrilamide gel 

solutions are described in Table 3. 

 

Table 3 Components and volumes used to do a stacking and 8% resolving polyacrilamide gel. 

 

 

 

 

 

 

 

 

 

 

The same buffer is used at the anode and cathode, Tris/Glycine/SDS Buffer (TGS 1x). 

An electric field (100V) is applied to the gel allowing the migration of the negatively 

charged molecules towards the positive electrode, the anode. Separation of the 

proteins occurs based on their molecular weight. Bigger sized molecules migrate 

slower in the gel while smaller sized molecules migrate faster (Moser et al., 2009).  

 

3.6    Western Blot  

     

Proteins are transblotted for 70 min at 0.25 mA, using Trans-Blot Turbo (Bio-Rad), from 

the polyaclilamide gel onto nitrocellulose membranes (Bio-Rad) (Figure 9). Efficiency of 

the transfer is ensured by the reversible stain of the membrane with Ponceau S (Sigma 

Aldrich) (Moser et al., 2009). 

 

 

 

 

RESOLVING GEL Volumes 

H2O 2,6 ml 

30 % Acrilamide/ 

Bis Solution 
1 ml 

Tris 1.5 M pH 8.8 1,3 ml 

SDS 10 % 50 μl 

APS 10 % 50 μl 

Temed 4 μl 

Total Volume 5 ml 

STACKING GEL Volumes 

H2O 1,24 ml 

30 % Acrilamide/ 

Bis Solution 
250 μl 

Tris 0.5 M pH 6.8 500 μl 

SDS 10 % 20 μl 

APS 10 % 20 μl 

Temed 2 μl 

Total Volume 2 ml 

Figure 9 Schematic representation of the transfer procedure. Through use of a charged buffer proteins are transferred 
from the polyacrilamide gel onto a nitrocellulose membrane. 
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After transfer, membranes were blocked with 5 % skimmed milk for 2 h at room 

temperature, washed 5 min with 0.2 % Tween in PBS and, probed with an antibody 

against the protein of interest overnight at 4 ºC (optimized dilutions shown in Table 1).  

The following day membranes were washed 3 times (10 min per wash) to eliminate the 

excess of primary antibody, in 0.2 % Tween in PBS and probed with the corresponding 

horseradish peroxidase-conjugated secondary antibody for 45 min at room temperature 

(RT). Three additional 10 min washes were done. Detection of proteins was performed 

by enhanced chemiluminescence (ECL) (Thermo Scientific or Bio-Rad) (Figure 10). 

 

 

 

 

 

 

3.7    Transfection of HEK 293 and Cos-7 cells 

 

The day before the transfection, HEK 293 and Cos-7 cells were seeded at the density 

of 2.5x105 cells per well in a 6-well plate and 2x106 cells per 10 cm plate. 

Transfection of pGFP (C3), pGFPMIIB and pGFPMIIA (Table 2) in these cell lines is 

achieved following JetPRIME‟s (PolyplusTM) recommended transfection protocol.  

For optimization of GFP-tagged NMIIA expression in HEK 293 cells in a 6-well plate: 

0.5, 1, 2 or 3 μg of pGFPMIIA were used for transfection.  

For transfection of HEK 293 and Cos-7 cells seeded in 10 cm plates, 12 μg of pGFP 

(C3), pGFPMIIB or pGFPMIIA were used.  

Briefly, 12 μg of DNA were mixed with 24 μl of JetPRIME Reagent (1:2 ratio).  

Transfection mix was incubated 10 min at RT and then added, drop by drop, to the 

plate. 

Cells were incubated overnight at 37 ºC with appropriate regularly used cell culture 

media. 24 h post-transfection cells were harvested by scraping and the lysates used for 

IP assays. 

 

 

Figure 10 Schematic representation of the Western Blot procedure. Depicted in pink is the molecule corresponding 
to the primary antibody and in black the horseradish peroxidase-conjugated secondary antibody. 
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3.8    Transfection of Caco-2 cells 

 

Caco-2 cells were seeded at a density of 2x106 cells per 10 cm plate the day before the 

transfection. 

Transfection was done using Lipofectamine 2000 (Invitrogen) according to 

manufacturer‟s instructions. Caco-2 cells were transfected with 12 μg of pGFP (C3), 

pGFPMIIA or pGFPMIIA-Y158F (Table 2). Lipofectamine 2000 was diluted in Opti-

MEM medium. DNA was diluted in Opti-MEM medium and added to the tube containing 

the diluted Lipofectamine 2000 in a 1:1 ratio. The transfection mix was incubated 5 min 

at RT and then added, drop by drop, to the plate. Cells were incubated at 37 ºC for 4 h 

and after that time period culture media was replaced.  

The day after transfection cell culture media was changed to a selective media 

containing 1 mg/ml of geneticin (G148) to initiate selection of transfected cells. Cells 

were maintained in culture media with 0.7 mg/ml of G148 for approximately 2 weeks. 

Selective culture media was replaced every two days. Cells were collected and GFP-

positive cells were sorted by flow cytometry and transferred to a 24-well plate and 

incubated with selective culture media. Cells were allowed to expand into a T75 flask 

and some aliquots were frozen for storage at -80 ºC.  

 

3.9    Protocol for Freezing Caco-2 cells transiently expressing GFP, 

GFPMIIA and GFPMIIA-Y158  

 

A confluent T75 flask was used to freeze two cryo-vials. 

Culture media was removed and cells were washed twice with sterile PBS and 1ml of 

0.25 % trypsin/EDTA (1x) (Gibco®) was added. Cells were incubated at 37 ºC for 5 

min, 4 ml of culture media were added and cells were recovered by vigorous pipetting 

and transferred to a 15 ml Falcon tube.  

Cells were centrifuged at 300 g for 5 min and resuspended in 2 ml of freezing media 

(Caco-2 selective culture media plus 10 % DMSO).  
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3.10     Seeding, maintenance and retrieval of cells in TRANSWELL 

filters  

 

3.10.1    Seeding 

 

Caco-2 cells were seeded at a density of 2x105 cells per TRANSWELL filter (Corning) 

(Figure 11).  

Before seeding Caco-2 cells were collected 

from a T75 flask and resuspended to obtain 

a single cell suspension.   

Number of cells in 10 μl of cell suspension 

was determined using a cell counter 

(Invitrogen).  

The required volume of cell suspension containing 2x105 cells per filter was calculated. 

Calculated volume of cell suspension was transferred to a 15 ml falcon tube and 

centrifuged for 5 min at 300 g. Supernatant was discarded and 100 μl, of media, were 

added per filter to the obtained pellet of cells, e.g. for 6 filters add 600 μl of culture 

media. Cells were gently resuspended. 

100 μl of the homogenized cell suspension were added to the upper compartment of 

each TRANSWELL filter already containing 100 μl of culture media. TRANSWELL 

filters must have 1 ml of media in the lower compartment and 200 μl in the upper 

compartment. 

 

3.10.2    Maintenance 

 

To change media on TRANSWELL filters 1 ml of culture media was added to an empty 

well in the plate containing the filters. The filter was picked up with forceps and held at 

a 45º angle to remove the old medium completely with a 200 μl tip. The tip should 

never touch the cell monolayer to avoid disruption. The empty filters were then placed 

in the wells with 1 ml of fresh culture media. The 200 μl of culture media to the upper 

compartment were added gently with the tip against the wall of the filter, to avoid 

disrupting the monolayer. The used medium in the wells was maintained there until the 

next media change as a quality control, to assure that there were no contaminants in 

the filters. Media was replaced twice a week. 

 

Figure 11 TRANSWELL Filter representation (Corning). 
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3.10.3    Retrieval 

 

To perform IF staining on polarized cells grown on TRANSWELL filters the initial steps 

on the staining process including fixation, quenching and blocking were done in the 24-

well plate. All solutions were added at the appropriate volume to the filter (1 ml in the 

lower compartment and 200 μl in the upper compartment).  

After the initial steps the filter was carefully detached from the bracket with the help of a 

scalpel and forceps. The remaining IF staining procedure is described in section 3.11. 

 

3.11    Immunofluorescence (IF) microscopy  

 

Caco-2 cells were seeded at a density of 2x105 cells per TRANSWELL filter and 

allowed to polarize for 10 days. Cells were fixed in 3 % paraformaldehyde (PFA), 200 

μl in the upper compartment of the filter and 1 ml in the lower compartment, for 20 min 

at RT and quenched for 90 min with 50 mM NH4Cl. Permeabilization was achieved with 

0.2 % saponin in PBS for 5 min. Saponin was included throughout all the washing and 

antibody solutions for the rest of the IF process. Blocking was done with 1 % BSA in 

PBS for 30 minutes at room temperature. TRANSWELL filters were incubated 1 h in a 

20 μl solution with primary antibodies and washed three times in 0.2 % saponin in PBS. 

Filters were incubated with secondary antibodies and Phalloidin-647 for 45 min at RT in 

the dark. DNA was counterstained with DAPI (Sigma-Aldrich).  

Filters were washed once in 0.2 % saponin in PBS, once in PBS and a third time in 

distillated H2O before being mounted in glass slides with 5 μl of Aqua-Poly/Mount 

(Polysciences). Images were acquired with an Olympus BX53 microscope using the 

40x or 60x objectives.  
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4. Results 
 

4.1    Results from the yeast two-hybrid screen 

 

This assay allowed the analysis of 232 million interactions of which 97 were positive 

and validated by HYBRIGENICS.  

The detected interactions are also scored according to a global Predicted Biological 

Score (PBS®) that is used to assess the reliability of the interaction. 

The predicted biological score integrates local and global information. Local information 

refers only to our screen, while global information results from the integration of 

information from all screenings by HYBRIGENICS in a placental library. Integration of 

global information permits the identification of proteins that retrieve identical partners in 

different screens (HYBRIGENICS and Rain et al., 2001).  

PBS® ranges from A to F. Ratings A, B, C and D represent very high, high, good and 

moderate confidence interactions, respectively. D rated interactions are usually 

identified through one unique prey fragment (just one hit in the Y2H) or multiple 

identical ones. Interactions labeled with D can also correspond to interactions that are 

weakly detected in the Y2H system. Weak detection can occur because: of low 

representation of mRNA of the prey protein in the selected library; specific folding of 

the prey protein, which will inhibit binding to the bait protein; in the yeast system the 

prey protein cannot be modified post-translationally and doesn‟t acquire the 

conformation required to bind our bait protein or possible toxicity provocked by the prey 

protein in yeast cells. Interactions labeled with D might also mark false-positive 

interactions. Interactions rated with E encompass conserved prey proteins that are 

known to bind unspecific sequences in a variety of target proteins and F corresponds to 

experimentally proven technical artifacts.  

The regions of the prey proteins that interact with our bait protein were characterized 

by several features including: the reading frame; if the coding region of the prey is 

complete; if the fragment is localized at the 5‟ or 3‟ untranslated regions and if it 

contains STOP codons in the reading frame. 

 

4.2    Selection of the Target-Proteins 
 

From the 97 positive and validated interactions in the Y2H screen, five were selected 

for further studies including their molecular characterization and the role of their 
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interaction with NMIIA. Our aim is to increase our knowledge about NMIIA starting with 

its interacting partners. 

In Table 4 are represented the five selected target proteins. They were: ZNF12, 

SMPD4, AFF1, β-adaptin and Hsp56. The domains of the prey proteins identified to 

interact with the tail of NMIIA are indicated in Figure 12.  

 

Table 4 Target proteins selected from the Y2H screening. Five selected targets are described in the table along with 
their obtained PBS®. Localization of the interaction domain with the bait protein is presented for the nucleotide and 
amino acid sequences. All selected targets were in frame (IF). Last column represents the number of hits each target 
had in the Y2H assay. 

Target Protein 

Name 
PBS® 

Interaction 

domain (nt) 

Interaction 

domain (aa) 
Frame 

Number of 

Hits 

ZNF12 A 33-2891 422-597 IF 23 

SMPD4 B 57-745 33-243 IF 4 

AFF1 C 2331-3143 872-1046 IF 2 

β-Adaptin D 711-1430 238-476 IF 1 

Hsp56 D 57-1150 20-383 IF 1 

 

 
Figure 12 Schematic representation of the Selected Interaction Domain (SID) of the selected prey proteins. Amino acid 
sequences of the five selected targets are depicted in blue and domain of the prey protein that interacted with the bait 
fragment in Y2H assay is depicted in green. 

 

4.2.1 Zinc-Finger Protein 12 (ZNF12) 

 

Zinc-finger (ZNF) domains have multiple functions such as DNA-binding (transcriptional 

regulation), protein-protein interactions, RNA-binding and membrane association (Laity 

et al., 2001; Mackay and Crossley, 1998). Zinc-fingers are considered small, functional 
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domains that require coordination of zinc ions to stabilize their structure (Laity et al., 

2001).  

ZNF12 was identified as a NMIIA binding partner in the Y2H with a PBS of A (very high 

confidence in the interaction). It belongs to the Krüppel Cys2His2 zinc-finger (ZNF) 

protein family, designated as the classical ZNF family. ZNF12 contains eight Cys2His2-

type zinc fingers and a Krüppel associated box (KRAB) domain that functions as a 

transcriptional repressor. This protein family is involved in DNA transcription and 

mediating protein-protein interactions with direct influence on gene expression 

(Gamsjaeger et al., 2006).  

ZNFs are poorly studied and commonly reported as mediators of protein-protein 

interactions and are described as “sticky” because of their affinity to bind various 

proteins through interaction of a single ZNF domain (Mackay and Crossley, 1998). 

Translocation of transcription factors to the nucleus is usually aided by motor proteins. 

 

4.2.2 AF4/FMR2 Family Member 1 (AFF1) 

 

The AF4/FMR2 protein family is composed of proteins that act as transcriptional 

activators that are also involved in the RNA elongation process and chromatin 

remodeling. AFF1 is described as being localized in the nucleus, same as the 

remaining members of the AF4/FMR2 family proteins, where it appears with a diffused 

appearance in small clusters (Spector and Lamond, 2011). This protein family has a 

common domain organization with an N and C terminal homology domains, a highly 

conserved serine-rich transactivation domain (TAD) and an AF4/LAF4/FMR2 (ALF) 

homology domain. Functions of the N and the C terminal domains are not known and 

ALF was recently described to be involved in proteosomal degradation pathways 

(Bitoun et al., 2006). AFF1 was rated C and was identified twice in the Y2H. This 

protein is described to be expressed ubiquitously but with increased expression on the 

lymphatic system and the placenta.  

 

4.2.3 Sphingomyelin phosphodiesterase 4 (SMPD4) 

 

SMPD4 catalyzes the hydrolysis of membrane sphingomyelin to form 

phosphorylcholine and ceramide. Inside the cell this protein is usually membrane 

bound, being found in the endoplasmic reticulum membrane and on the Golgi 

apparatus membrane. Ceramide can serve as both a structural and a signaling 

molecule and has been implicated in processes such as: cell cycle arrest, apoptosis, 
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inflammation and eukaryotic stress response (Corcoran et al., 2008). SMPD4 was 

selected based on its PBS® and the 4 obtained hits in the Y2H. 

 

4.2.4 Beta-adaptin (β-adaptin), subunit of the adaptor protein complex 1 

 

Adaptor protein (AP) complexes are constituted by subunits designated adaptins. Each 

complex has four subunits: two large subunits (γ/α/δ/ε and 

β1 to β4, belonging from AP1 to AP4, respectively), one 

medium subunit (μ1 to μ4) and one small subunit (ζ1 to 

ζ4) (Figure 13).  

To date four AP complexes have been described: AP1, 

AP2, AP3 and AP4. Clathrin-coated vesicles (CCV) that 

travel the endocytic and secretory pathways usually have 

a protein coat on their cytoplasmic face that among its 

components contains the AP complexes. Besides forming the protein coat these 

complexes are also responsible for the selection of the cargo the vesicle is going to 

transport (Boehm and Bonifacino, 2001). AP2 acts specifically at the plasma 

membrane in endocytic processes while AP1, AP3 and potencially AP4 are associated 

with the formation of clathrin-coated vesicles from intracellular membranes (McMahon 

and Boucrot, 2011).  

Beta-adaptin (β-adaptin), a subunit of the adaptor protein complex 1 (AP1) is 

commonly found inside the cell on the cytoplasmic face of the CCV located at the Golgi 

complex, where it mediates the recruitment of clathrin and the recognition of sorting 

signals located on the cytosolic tails of transmembrane cargo molecules. Adaptor 

complexes are capable of recognizing and binding both tyrosine-based and dileucine-

based sorting signals through the recognition of different sequences specific to each 

sorting motif (Carvajal-Gonzalez et al., 2012; Rapoport et al., 1998). Tyrosine-based 

sorting signals have the consensus sequence YXXφ, where X is any amino acid and φ 

is a hydrophobic amino acid whereas dileucine-based sorting motifs usually bind to the 

consensus sequence [DE]XXXL[LI] (Rapoport et al., 1997; Rapoport et al., 1998; 

Carvajal-Gonzalez et al., 2012; Ihrke et al., 2004). The AP1 complex is involved in the 

basolateral recycling of Coxsackie-adenovirus receptor (CAR) after its internalization 

(Diaz et al., 2009). CAR possesses a commom tyrosine-sorting motif (YXXφ) that is 

recognized by the medium subunit (μ1) of the AP1 complex. β-adaptin binds dileucine-

sorting motifs (Rapoport et al., 1998). It has yet to be described if the two subunits can 

bind the same molecule at the same time.  

Figure 13 Schematic 
representation of an AP complex. 
Different subunits are depicted in 
different colors. 
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AP1 has been proved important to bacterial and viral infections. AP1 may localize at 

the plasma membrane when large cargoes need to be internalized by the cell. This 

protein is thought to form a flat array at the entry site and act as a signaling molecule to 

begin actin polymerization. AP1 is required for L. monocytogenes entry into host cells 

(McMahon and Boucrot, 2011; Pizarro-Cerdá et al., 2007). Our group has recently 

reported the relocation of NMIIA to the interface of L. monocytogenes with the host cell 

membrane (Almeida et al., submitted). Despite its D rating β-adaptin was selected 

based in its cellular functions and previously documented involvement in L. 

monocytogenes infection. 

 

4.2.5 Heat-shock protein 56 (Hsp56) 

 

The second NMIIA interacting partner rated with D was Hsp56. This protein is 

considered a high molecular weight immunophilin and it was identified for the first time 

associated with steroid hormone receptors. It is involved in immunoregulation and 

basic cellular processes involving protein folding and intracellular trafficking. This 

protein is a known target of the immunosuppressive drug FK506 and this property 

assigned it to a subclass of immunophilins designated FK506-binding proteins (FKBPs) 

It is composed of an N-terminal peptidylprolyl cis-trans isomerase (PPIase) domain and 

a C-terminal tetratricopeptide repeat (TPR) domain which is responsible for mediating 

protein-protein interactions (Scammell et al., 2003 and Davies and Sánchez, 2005).  

This protein is capable of modulating microtubule function (Cioffi et al., 2011; 

Chambraud et al., 2010).  

Hsp56 is known to associate with two heat shock proteins (hsp90 and hsp70) and play 

a role in intracellular trafficking of hetero-oligomeric forms of steroid hormone receptors 

between the cytoplasmic and nuclear compartments. To this purpose Hsp56 binds 

dynein. The binding with dynein allows the translocation of the hormone complex from 

the cytoplasm to the nucleus (Davies and Sánchez, 2005; Sivils et al., 2011). 

Furthermore Hsp90 is a Gp96 paralogue, both originated from the same ancestral gene 

but are now localized at distinct sites in the genome. This protein was identified as a 

surface receptor for a L. monocytogenes virulence factor, Vip. The interaction is 

required for bacterial entry into host cells (Cabanes et al., 2005; Martins et al., 2012). 
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4.3    Expression levels of the five selected targets in HeLa, HEK 

293 and Jeg-3 cell lines 

 

ZNF12 is a nuclear protein that presents similar expression levels in kidney, cervical 

and placental tissues. SMPD4 is preferentially localized at the ER membrane, data 

regarding expression levels of the protein showed high expression levels in the 

lymphatic system and low expression levels in kidney tissue. AFF1 is a transcriptional 

activator highly expressed in the placenta. Hsp56 is mainly cytoplasmic and presents 

very equivalent expression levels throughout all the major tissues. β-adaptin can be 

localized at the Golgi complex or throughout the cytoplasm in the clathrin coat of CCVs. 

This protein is highly expressed in the nervous system as well as in the placenta. 

Expression data described here was acquired from the GeneCards database. 

We first analyze the expression levels of each target protein in HeLa, HEK 293 and 

Jeg-3 cell lines by immunoblot with antibodies specific for each protein. Cells from each 

cell line were harvested, lyzed and the total protein quantified and 20 μg of total protein 

used for western blot (WB) analysis.  

AFF1 has a predicted molecular weight 131 kDa. Immunoblot with an antibody against 

AFF1 revealed a very faint band, in all 3 cell lines, with a molecular weight below 100 

kDa (Figure 14A). Immunoblot against Hsp56 revealed a single band with the predicted 

molecular weight of 59 kDa in HeLa and HEK 293 cells. In Jeg-3 cells two bands were 

detected, the major band corresponding to Hsp56 (Figure 14B). In Figure 14C 

detection of β-adaptin revealed a band over 100 kDa in all cell lines, corresponding to 

predicted molecular weight of 106 kDa. SMPD4 has a predicted molecular weight of 93 

kDa, however we could not detect any signal in the blot (Figure 14D). In Figure 14E, 

the antibody anti-ZNF12 detected several bands with different molecular weights. 

ZNF12 seems to correspond to the most intense band. In summary, the antibody 

against AFF1 faintly detected a band lower than the predicted molecular weight and 

SMPD4 could not be detected by immunoblot in any of the used cell lines. Antibody 

against ZNF12 recognized several bands, but produced a more intense band 

corresponding to the target-protein. Antibodies against Hsp56 and β-adaptin detected 

the proteins with the predicted molecular weight in all three cell lines.      
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4.4    Optimization of the immunoprecipitation of NMIIA  

 
To biochemically confirm the results obtained in the Y2H assay we performed 

immunoprecipitation assays (IPs). This method consists in precipitating a selected 

protein, using a specific antibody, from a whole cell lysate and this way retrieve its 

interacting partners (Dwane and Kiely, 2011). 

Two different IPs were optimized to serve as platforms to be used in the confirmation of 

the interactions: the IP of endogenous NMIIA and the IP of ectopically expressed GFP-

tagged NMIIA, in which the protein is overexpressed in cells. 

The first task was to optimize the IP of endogenous NMIIA from HeLa and Jeg-3 cell 

lysates. 

Figure 14 Expression levels of AFF1 (A), Hsp56 (B), β-Adaptin (C), SMPD4 (D) and ZNF12 (E) in HeLa, HEK 293 and 
Jeg-3 cell lines. For each cell line 20 μg of total protein were used for WB analysis. Detection of actin protein levels was 
used as loading control.  

A B C 

D E 
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HeLa cells were harvested and lysed and protein concentration was determined. To 

ascertain which amount of antibody would immunoprecipitate NMIIA more efficiently 

three antibody to total protein ratios were tested (1:500, 1:100 and 1:50).  

NMIIA was immunoprecipitated from 100 μg of total protein by adding 0.2, 1 or 2 μg of 

anti-NMIIA polyclonal antibody (Sigma Aldrich) and 50 μl of a Protein G sepharose 

resin slurry (50 % sepharose resin in PBS). Immunocomplexes were recovered and 

resolved by SDS-PAGE. Detection of NMIIA was done by immunoblot.  

IP of NMIIA using 0.2 μg of antibody produced no enrichment when compared to the 

INPUT. When 1 or 2 μg of antibody were used to immunoprecipitate NMIIA there was 

an enrichment of NMIIA in the IP fraction when compared to the INPUT. The 1:100 

ratio was thus selected to standard use in the IP of NMIIA. The flow-through (FT) was 

used as a control to check the amount of NMIIA that was not immunoprecipitated 

(Figure 15A).  

NMIIA was immunoprecipitated from 500 μg of total protein by adding 5 μg of anti-

NMIIA polyclonal antibody (1:100 ratio) and 50 μl of a Protein G sepharose resin 50 % 

slurry. Two control conditions were used: cell lysates incubated only with protein G 

sepharose resin (Figure 15B) and lysates incubated with an isotype control antibody 

and Protein G sepharose resin (Figure 15C). Some unspecific binding to the control 

was detected in Figure 15B. No NMIIA was present in the control lane in Figure 15C. 

In this experimental conditions we successfully immunoprecipitated NMIIA (Figure 15B 

and 15C). 

NMIIA was also immunoprecipitated from 300 μg of total protein from Jeg-3 cell 

lysates. As a control cells were incubated with an isotype control antibody and Protein 

G sepharose resin. No NMIIA appeared associated with the isotype control antibody. 

NMIIA was enriched in the IP fraction when compared to the INPUT (Figure 15D). Actin 

was used as a loading control (Figure 15A, 15B, 15C and 15D).  
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Figure 15 IP of endogenous NMIIA in HeLa (A, B and C) and Jeg-3 (D) cells. Optimization experiment was performed 
with 100 μg of protein and 3 antibody to total protein ratios. Scale-up experiments were performed with 500 μg of protein 
in HeLa cells and 300 μg in Jeg-3 cells. A 1 to 100 antibody to total protein ratio was used. Detection of actin protein 
levels was used as loading control. (A) Optimization of the IP of endogenous NMIIA. (B) Scale-up IP of endogenous 
NMIIA. Whole cell lysates were incubated with protein G sepharose resin as a control condition. (C) Scale-up IP of 
endogenous NMIIA. Lysates were incubated with an isotype control antibody and protein G sepharose resin as control. 
(D) Scale-up IP of endogenous NMIIA in Jeg-3 cells.  

 

 

Optimization of the ectopic expression of GFP-tagged NMIIA (GFP-NMIIA) was 

performed in 6-well plates and asserted by flow cytometry and IF.  

HEK 293 cells were transfected with increasing amounts of a plasmid enconding GFP- 

NMIIA (Table 5). Mock transfected cells (incubated with the transfection reagent but no 

DNA) were used as control. Selection of GFP-positive cells was performed by flow 

cytometry. Where a fluorescence threshold is determined and only cells with GFP 

fluorescence above the threshold are sorted as GFP-positive.  

Mock transfected cells had 2.57 % of GFP-positive cells, probably due to self-

fluorescence. Cells transfected with 2 μg of pGFPMIIA, showed 56 % of GFP-positive 

cells. In the remaining conditions percentage of GFP-positive cells was always inferior, 

ranging from 12.2 % to 38.7 % (Figure 16A and Table 5).  

To confirm the results obtained by flow cytometry we performed immunofluorescence. 

HEK 293 cells expressing GFP-NMIIA were stained for DNA (DAPI). HEK 293 cells 

transfected with 2 μg of pGFPMIIA displayed the higher number of GFP-positive cells, 

as shown by flow cytometry (Figure 16B). To test the interactions transfection was 

scaled-up to a 10 cm plate. Amount of DNA used was determined according to the 
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area of the plates. Untrasfected cells were used as control. Transfection with 12 μg of 

DNA showed 44.7 % GFP-positive cells (Figure 16C). 

 

Table 5 Results obtained by flow cytometry analysis of the optimization of the transfection of pGFPMIIA in HEK 293 
cells. Amount of DNA used in each condition is indicated. Total number of sorted cells, number and percentage of GFP-
positive and GFP-negative cells for each condition is shown in the table.  

μg of 

pGFPMIIA 
Total Cells No. GFP(+) No GFP(-) %GFP(+) %GFP(-) 

Mock (0) 19509 502 19007 2.57 97.4 

0.5 19156 2337 16819 12.2 87.8 

1 11823 4319 7504 36.5 63.5 

2 17957 10059 7898 56 44 

3 22402 8662 13740 38.7 61.3 

 

  
A B 

C 

Figure 16 Optimization of the expression levels of GFP-tagged NMIIA in HEK 293. (A) Flow cytometry results from 
transfection on 6-well plates with increasing amounts of DNA (B) IF analysis of the expression of GFP-tagged NMIIA in 
each tested condition. (C) Flow cytometry analysis of transfection efficiency in 10 cm plates. 
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To test the interactions of NMIIA with the Y2H selected targets we transfected HEK 293 

cells. Transfection was performed in 10 cm plates, lysates were recovered and protein 

concentration determined. GFP was immunoprecipitated from 100 μg of total protein by 

adding 20, 25 or 30 μl of agarose-conjugated anti-GFP (500 μg/ml). Immunocomplexes 

were recovered and samples were resolved by SDS-PAGE and immunoblotted with 

anti-GFP. Expression levels of GFP and GFP-tagged NMIIA were similar when 

analyzed by immunoblot (Figure 17A). However, analysis by IF showed a higher 

percentage of GFP-positive cells when cells were expressing only GFP (Figure 17B).  

IP of GFP alone was efficient and produced similar results with each amount of 

agarose-conjugated antibody used. IP of GFP-tagged NMIIA only occured when 20 or 

25 μl of agarose-conjugated anti-GFP were used. However no enrichment was 

detected in the IP fraction in comparison with the INPUT (Figure 17A).  

Given these results we thus performed IP of endogenous NMIIA to start confirming the 

interactions. 

 

 

 

 
Figure 17 IP of ectopically expressed NMIIA in HEK 293 cells. (A) Optimization of the IP-GFP using increasing volumes 

of agarose-conjugated anti-GFP. (B) IF analysis of GFP-tagged NMIIA expression levels in HEK 293 cells transfected 

with pGFP or pGFPMIIA. DNA was counterstained with DAPI.  

 

 

 

4.5  Evaluation of the interaction between NMIIA and ZNF12, 

SMPD4 and AFF1 

 

To validate the interactions of NMIIA with Y2H selected targets HeLa cells were 

harvested, lysed and protein concentration measured. NMIIA was immunoprecipitated 

as described in section 4.4. As control, whole cell lysates were incubated with an 

isotype control antibody and protein G sepharose resin. No NMIIA associated with the 

B 
A 
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isotype control antibody. Detection of the target proteins was done by immunoblot with 

antibodies specific for each protein. 

Anti-AFF1 did not detect any signal on the INPUTs. A very faint band was detected 

when 20 μg of protein were used (Figure 14A), not surprisingly the protein was not 

detected in less than 20 μg present in the INPUT. Thus it was not possible to determine 

if AFF1 associated with NMIIA (Figure 18a). 

ZNF12 was weakly detected in the INPUTs but it was never detected in the IP fraction. 

This biochemical data does not allow the confirmation the interaction between this 

protein and NMIIA in these experimental conditions (Figure18b). 

SMPD4 was faintly detected approximately at 100 kDa in the INPUT. This band was 

never detected in the IP fraction, suggesting that this protein does not co-IP with NMIIA 

(Figure 18c). This result does not allow the confirmation of the positive result obtained 

in the Y2H assay. 

 

Figure 18 Evaluation of the interaction of NMIIA with AFF1 (a), ZNF12 (b) and SMPD4 (c) by IP. (a) The antibody 
against AFF1 does not detect any signal. (b) ZNF12 was detected in INPUTs but not in the IP fraction. (c) A band with a 
different molecular weight from the one predicted for SMPD4 was detected in the INPUTs, but it wasn‟t detected in the 
IP fraction. 

 

4.6    Evaluation of the interactions between NMIIA and β-adaptin 

and NMIIA and Hsp56 

 

The interaction of two targets, Hsp56 and β-adaptin, with NMIIA remained to be 

evaluated. To confirm these interactions we proceeded as described.  

In Figure 19A and 19B NMIIA was immunoprecipitated from 500 μg or 600 μg of 

protein from HeLa cell lysates, respectively, using the anti-NMIIA polyclonal antibody. 

Immunocomplexes were resolved by SDS-PAGE and immunoblotted with anti-β-

adaptin and anti-Hsp56. Presence of β-adaptin associated with NMIIA was a 
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reproducible result. In 6 out of 9 experiments β-adaptin was associated with NMIIA, 

thus validating the Y2H screen data (Figure 19A and 19B). Hsp56 also appeared to co-

IP with NMIIA in the majority of the performed experiments (Figure 19A and 19B). 

Together these results validate the data from Y2H indicating the direct binding between 

NMIIA and Hsp56 and β-adaptin. 

Detection of actin protein levels in Figure 20B suggests different levels of protein 

between the two samples. Nevertheless the both targets appeared in the IP fraction 

associated with NMIIA (Figure 19B). 

In some experiments: NMIIA associated with the isotype control antibody (Figure 20A), 

β-adaptin associated with the isotype control antibody (Figure 20B) and Hsp56 did not 

appear associated with NMIIA (Figure 20C). 

However, considering all the experiments performed we overall consider that NMIIA 

interacts with both proteins and thus we focused the rest of the work performed in this 

project on these two targets.  

 

 

 

 

Figure 19 Evaluation of the interaction between: NMIIA and Hsp56 and NMIIA and β-adaptin. Detection of actin protein 
levels was used as loading control. (A) NMIIA was immunoprecipitated from 500 μg. β-adaptin and Hsp56 associated 
with NMIIA. (B) NMIIA was immunoprecipitated from 600 μg β-adaptin and Hsp56 also seem to co-IP with NMIIA. 
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4.7    Immunoprecipitation of Hsp56 and β-adaptin  

 

To strengthen our results and prove the interactions we performed the reverse IP 

assays. We IP Hsp56 or β-adaptin and test for the presence of MIIA in the IP fractions 

by immunoblot. 

For the optimization IPs of Hsp56 and β-adaptin: HeLa cells were harvested, lysed and 

protein concentration was determined. To determine which amount of antibody would 

be more efficient at immunoprecipitating the two proteins three antibody to total protein 

ratios were tested (1:500, 1:100 and 1:50). 

Both target proteins were immunoprecipitated from 100 μg of total protein by adding 

0.2, 1 or 2 μg of the specific antibody and 50 μl of Protein G magnetic beads. 

Immunocomplexes were recovered through the use of a magnetic rack (Millipore) and 

detection of the protein was done by immunoblot. Using 0.2 μg of antibody IP of Hsp56 

(Figure 21A) and β-adaptin (Figure 21B) was efficient, but with small enrichment of 

these proteins in the IP fraction when compared to the INPUT. The 2 remaining 

conditions produced a significant enrichment of these proteins in the IP fraction in 

comparison with the INPUT and immunoprecipitated similar amounts of Hsp56 and β-

adaptin. Thus the 1:100 ratio was selected as standard for all the next experiments. 

Membrane from the optimization experiments was probed with an antibody against 

Figure 20 IP of endogenous NMIIA where detection of the interactions did not occur. Detection of actin protein levels was  
used as loading control. (A) NMIIA was successfully immunoprecipitated but appeared associated with the isotype control 
antibody. (B) IP of NMIIA was successful but β-adaptin appeared associated with the isotype control antibody. (C) IP of 
NMIIA was efficient but Hsp56 was not detected by immunoblot in the IP fraction.  
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NMIIA. It was possible to observe an association between Hsp56 and NMIIA in the 

1:100 ratio (Figure 21A) but it was difficult to detect the association with β-adaptin 

(Figure 21B). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 21 Optimization of the IP of Hsp56 and β-adaptin. Three antibody to total protein ratios were tested Detection of 
actin protein levels was used as loading control. (A) NMIIA seems to co-IP with Hsp56 in the 1:100 ratio condition. (B) 
Detection of NMIIA is difficult in the 1:50 ratio.  

 

 

Scale-up IPs were performed for Hsp56 and β-adaptin using 300 and 500 μg of total 

protein, respectively, with the optimized 1:100 ratio. As controls: an antibody against 

the c-Myc tag (IP of Hsp56) and an isotype control antibody (IP of β-adaptin) were 

used. IP of Hsp56 (Figure 22A) was less efficient than the IP of β-adaptin (Figure 22B). 

Detection of NMIIA was performed by immunoblot. In Figure 22A very faint band 

corresponding to NMIIA appeared in the lane of the IP fraction. In Figure 22B NMIIA is 

B 

A 
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present in the IP fraction associated with β-adaptin. These results suggest an 

association between Hsp56 and β-adaptin and NMIIA thus confirming the results 

obtained in the Y2H.  

 

 

 

 

 

 

 

 

 

 

Figure 22 Scale-up IP of Hsp56 (A) and β-adaptin (B). Detection of actin protein levels was used as loading control. (A) 
Scale-up IP of Hsp56. A faint band corresponding to NMIIA is present in the IP fraction. (B) Scale-up IP of β-adaptin. 
NMIIA associates with β-adaptin in the IP fraction.   

 

Additionally to the IP of β-adaptin in HeLa cells this protein was also IP in Cos-7 cells 

expressing GFP-NMIIA. Cos-7 cells do not express endogenous NMIIA. Expression 

levels of both our target proteins in Cos-7 cells were determined by western blot 

(Figure 23).  

 

 

 

 

 

Figure 23 Expression levels of Hsp56 and β-adaptin in Cos-7 cells. Detection of the target proteins was done by 
immunoblot using an antibody specific for each protein. Alpha-catenin protein levels was used as loading control.     

A 

B 
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Cos-7 cells expressing GFP-NMIIA, GFP-NMIIB and GFP were used for the IP of β-

adaptin. In all three experiments GFP-NMIIA always co-IP with β-adaptin (Figure 24A, 

24B and 24C). In one of the three experiments a faint band corresponding to GFP can 

be detected associated with β-adaptin (Figure 24B). Biochemical data suggests that 

ectopically expressed GFP-NMIIA co-immunoprecipitates with β-adaptin in Cos-7 cells. 

In summary, biochemical data from this chapter allows us to confirm the interactions 

detected in the Y2H between NMIIA and Hsp56 and NMIIA and β-adaptin. 

 

 

 

 

4.8   Non-muscle myosin IIA heavy chain bioinformatic sequence 

analysis 

 

Sorting of cargo transported in clathrin-coated vesicles (CCVs) is regulated by the 

binding of adaptor protein (AP) complexes to sorting motifs present in the cargo 

proteins (Boehm and Bonifacino, 2001).  

Adaptor protein complex 1 (AP1) is constituted by 4 subunits (Boehm and Bonifacino, 

2001), two of them are described as binding tyrosine and dileucine sorting motifs in 

proteins to be sorted inside the cell (Rapoport et al., 1997, Rapoport et al., 1998; 

Carvajal-Gonzalez et al., 2012; Ihrke et al., 2004). The binding of the AP complexes is 

Figure 24 IP of β-adaptin in Cos-7. IP was performed in cells expressing GFP, GFP-NMIIA (A) or GFP-NMIIB (B 
and C). GFP NMIIA associated with β-adaptin in the three experiments. Detection of actin protein levels was used as 
loading control. 

 

A B C 
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regulated by phosphorylation of both the complex subunits and the cargo proteins 

(Ghosh and Kornfeld, 2003). 

The medium subunit of the AP1 complex (μ subunit) was described to bind tyrosine-

based sorting motifs, YXXφ, where X is any amino acid and φ is an hydrophobic amino 

acid (Rapoport et al., 1997; Carvajal-Gonzalez et al., 2012). 

β-adaptin, one of the large subunits and one of the selected Y2H targets, was 

described as binding proteins with dileucine-based sorting motifs such as [DE]XXXL[LI] 

(Rapoport et al., 1998). In these motifs X represents any amino.  

Given the biochemical evidence of an association between the NMIIA and β-adaptin we 

searched for the presence of these motifs in the amino acid sequence of NMIIA 

(Accession number: CAG30412.1). We found some tyrosine-based sorting motifs and 

interestingly one of these is located at tyrosine residue 158 marked in blue in Figure 

25. Our group recently uncovered the phosphorylation of this residue by Src kinase 

upon infection with bacterial pathogen L. monocytogenes. This phosphorylation acts as 

a protection mechanism against L. monocytogenes invasion of host cells (Almeida et 

al., submitted). 

NMIIA also contains two dileucine sorting motifs: the first at position 1232 and the 

second at position 1312. These two motifs are included in the tail fragment used as bait 

for the Y2H (Leu837 to Glu1960) (Figure 25). NMIIA sequences from different species 

were retrieved from GenBank (NCBI) (Species and Accession numbers are described 

on Table 6) and analyzed using MultAlin to check the conservation of the dileucine 

motifs. The two dileucine motifs were shown to be conserved among the higher 

taxonomic groups (Figure 26) strengthening the possibility that these motifs are 

essential to NMIIA function. The tyrosine motif is also conserved among all the 

analyzed species as was previously demonstrated by our group (Almeida et al., 

submitted).   

The Y2H assay results plus the biochemical evidence suggesting an interaction 

between NMIIA and β-adaptin, the presence of these motifs in the NMIIA sequence 

and their conservation throughout the higher taxonomical groups allows us to speculate 

an interaction between the two proteins at a sequence level.  

It is possible that NMIIA can bind both type of sorting motifs whether simultaneously or 

at different times is yet to be determined.  
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MAQQAADKYLYVDKNFINNPLAQADWAAKKLVWVPSDKSGFEPASLKEEVGEEAIVELVENGKKVKVNKDDIQKMNPPKFSKVEDMAELTCLNEASVLHNL

KERYYSGLIYTYSGLFCVVINPYKNLPIYSEEIVEMYKGKKRHEMPPHIYAITDTAYRSMMQDREDQSILCTGESGAGKTENTKKVIQYLAYVASSH

KSKKDQGELERQLLQANPILEAFGNAKTVKNDNSSRFGKFIRINFDVNGYIVGANIETYLLEKSRAIRQAKEERTFHIFYYLLSGAGEHLKTDLLLEPYNK

YRFLSNGHVTIPGQQDKDMFQETMEAMRIMGIPEEEQMGLLRVISGVLQLGNIVFKKERNTDQASMPDNTAAQKVSHLLGINVTDFTRGILTPRIKVGRDY

VQKAQTKEQADFAIEALAKATYERMFRWLVLRINKALDKTKRQGASFIGILDIAGFEIFDLNSFEQLCINYTNEKLQQLFNHTMFILEQEEYQREGIEWNF

IDFGLDLQPCIDLIEKPAGPPGILALLDEECWFPKATDKSFVEKVMQEQGTHPKFQKPKQLKDKADFCIIHYAGKVDYKADEWLMKNMDPLNDNIATLLHQ

SSDKFVSELWKDVDRIIGLDQVAGMSETALPGAFKTRKGMFRTVGQLYKEQLAKLMATLRNTNPNFVRCIIPNHEKKAGKLDPHLVLDQLRCNGVLEGIRI

CRQGFPNRVVFQEFRQRYEILTPNSIPKGFMDGKQACVLMIKALELDSNLYRIGQSKVFFRAGVLAHLEEERDLKITDVIIGFQACCRGYLARKAFAKRQQ

QLTAMKVLQRNCAAYLKLRNWQWWRLFTKVKPLLQVSRQEEEMMAKEEELVKVREKQLAAENRLTEMETLQSQLMAEKLQLQEQLQAETELCAEAEELRAR

LTAKKQELEEICHDLEARVEEEEERCQHLQAEKKKMQQNIQELEEQLEEEESARQKLQLEKVTTEAKLKKLEEEQIILEDQNCKLAKEKKLLEDRIAEFTT

NLTEEEEKSKSLAKLKNKHEAMITDLEERLRREEKQRQELEKTRRKLEGDSTDLSDQIAELQAQIAELKMQLAKKEEELQAALARVEEEAAQKNMALKKIR

ELESQISELQEDLESERASRNKAEKQKRDLGEELEALKTELEDTLDSTAAQQELRSKREQEVNILKKTLEEEAKTHEAQIQEMRQKHSQAVEELAEQLEQT

KRVKANLEKAKQTLENERGELANEVKVLLQGKGDSEHKRKKVEAQLQELQVKFNEGERVRTELADKVTKLQVELDNVTGLLSQSDSKSSKLTKDFS

ALESQLQDTQELLQEENRQKLSLSTKLKQVEDEKNSFREQLEEEEEAKHNLEKQIATLHAQVADMKKKMEDSVGCLETAEEVKRKLQKDLEGLSQR

HEEKVAAYDKLEKTKTRLQQELDDLLVDLDHQRQSACNLEKKQKKFDQLLAEEKTISAKYAEERDRAEAEAREKETKALSLARALEEAMEQKAELERLNKQ

FRTEMEDLMSSKDDVGKSVHELEKSKRALEQQVEEMKTQLEELEDELQATEDAKLRLEVNLQAMKAQFERDLQGRDEQSEEKKKQLVRQVREMEAELEDER

KQRSMAVAARKKLEMDLKDLEAHIDSANKNRDEAIKQLRKLQAQMKDCMRELDDTRASREEILAQAKENEKKLKSMEAEMIQLQEELAAAERAKRQAQQER

DELADEIANSSGKGALALEEKRRLEARIAQLEEELEEEQGNTELINDRLKKANLQIDQINTDLNLERSHAQKNENARQQLERQNKELKVKLQEMEGTVKSK

YKASITALEAKIAQLEEQLDNETKERQAACKQVRRTEKKLKDVLLQVDDERRNAEQYKDQADKASTRLKQLKRQLEEAEEEAQRANASRRKLQRELEDATE

TADAMNREVSSLKNKLRRGDLPFVVPRRMARKGAGDGSDEEVDGKADGAEAKPAE 

 
Table 6 In silico analysis of dileucine sorting motifs in NMIIA. Comparative analysis of the NMIIA amino acid sequence 
from different species. Conserved dileucine motifs are shown in columns 3 and 4. Accession numbers for the amino 
acid sequences of NMIIA from the different species used are indicated.  

Species 
Accession 

Number 
Dileucine Motif 

No.1 
Dileucine Motif 

No.2 

Homo sapiens CAG30412.1 EVKVLL DTQELL 
Canis lupus familiaris NP_001104237.1 EVKVLQ DTQELL 
Rattus norvegicus NP_037326.1 EVKALL DTQELL 
Mus musculus CAC85955.1 EVKALL DTQELL 
Gallus gallus NP_990808.1 EVKVLL DTQELL 
Danio rerio NP_001091647.2 ELKSLS DAQALL 
Caenorhabditis elegans CAA92197.2 - - 
Drosophila melanogaster AAB09050.1 - EAQQLL 
Dictyostelium discoideum XP_637740.1 - - 
Saccharomyces cerevisiae EDV09075.1 - - 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 25 NMIIA heavy chain bioinformatic analysis. Amino acid sequence of the heavy chain of NMIIA. Tail 
fragment used as bait for the Y2H is highlighted in yellow. Tyrosine sorting motif at position 158, motor domain, is 
marked in blue and dileucine sorting motifs in the tail domain are marked in red.  

 

Homo sapiens 
Canis lupus familiaris 

Rattus  norvegicus 
Mus musculus 

Gallus gallus 
Danio rerio 

Drosophila melanogaster 
Caenorhabditis elegans 

Dictyostelium discoideum 
Saccharomyces cerevisiae 

Consensus 

Consensus 

Saccharomyces cerevisiae 
Dictyostelium discoideum 

Caenorhabditis elegans 
Drosophila melanogaster 

Danio rerio 
Gallus gallus 

Mus musculus 
Rattus  norvegicus 

Canis lupus familiaris 
Homo sapiens 

Figure 26 In silico analysis of dileucine sorting motifs in NMIIA using MultAlin. Amino acid sequences of NMIIA from 
different species were aligned and the presence of conserved dileucine motifs was determined. Conserved dileucine 
motifs between different species are shown in a red box.   
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4.9   Immunoprecipitation of β-Adaptin in Cos-7 cells ectopically 

expressing NMII chimeras 

 

A preliminary experiment, performed only once, was designed in order to elucidate the 

possible binding of NMIIA to both subunits (μ and β) of the AP1 complex.  

For this experiment we used Cos-7 cell expressing different GFP-tagged NMII 

chimeras: a NMII with the motor domain of NMIIB and the tail domain of NMIIA 

(NMIIB/A) and a NMII with the motor domain of NMIIA and tail domain of NMIIB 

(NMIIA/B).  

Several tyrosine sorting motifs are present throughout the entire NMIIB amino acid 

sequence, both in the motor and tail domains. A dileucine motif was also identified at 

position 993 (Figure 27).  

IP of β-adaptin was performed as described in section 4.7. As control we used GFP-

tagged NMIIA that in agreement with our results associated with β-adaptin (Figure 24). 

In the blot only NMIIB/A was found associated with β-adaptin (Figure 28). This 

preliminary result suggests that AP1 only binds the tail of NMIIA. 

 

MAQRTGLEDPERYLFVDRAVIYNPATQADWTAKKLVWIPSERHGFEAASIKEERGDEVMVELAENGKKAMVNKDDIQKMNPPKFSKVEDMAELTCLNEASV

LHNLKDRYYSGLIYTYSGLFCVVINPYKNLPIYSENIIEMYRGKKRHEMPPHIYAISESAYRCMLQDREDQSILCTGESGAGKTENTKKVIQYLAHVASSH

KGRKDHNIPESPKPVKHQGELERQLLQANPILESFGNAKTVKNDNSSRFGKFIRINFDVTGYIVGANIETYLLEKSRAVRQAKDERTFHIFYQLLSGAGEH

LKSDLLLEGFNNYRFLSNGYIPIPGQQDKDNFQETMEAMHIMGFSHEEILSMLKVVSSVLQFGNISFKKERNTDQASMPENTVAQKLCHLLGMNVMEFTRA

ILTPRIKVGRDYVQKAQTKEQADFAVEALAKATYERLFRWLVHRINKALDRTKRQGASFIGILDIAGFEIFELNSFEQLCINYTNEKLQQLFNHTMFILEQ

EEYQREGIEWNFIDFGLDLQPCIDLIERPANPPGVLALLDEECWFPKATDKTFVEKLVQEQGSHSKFQKPRQLKDKADFCIIHYAGKVDYKADEWLMKNMD

PLNDNVATLLHQSSDRFVAELWKDVDRIVGLDQVTGMTETAFGSAYKTKKGMFRTVGQLYKESLTKLMATLRNTNPNFVRCIIPNHEKRAGKLDPHLVLDQ

LRCNGVLEGIRICRQGFPNRIVFQEFRQRYEILTPNAIPKGFMDGKQACERMIRALELDPNLYRIGQSKIFFRAGVLAHLEEERDLKITDIIIFFQAVCRG

YLARKAFAKKQQQLSALKVLQRNCAAYLKLRHWQWWRVFTKVKPLLQVTRQEEELQAKDEELLKVKEKQTKVEGELEEMERKHQQLLEEKNILAEQLQAET

ELFAEAEEMRARLAAKKQELEEILHDLESRVEEEEERNQILQNEKKKMQAHIQDLEEQLDEEEGARQKLQLEKVTAEAKIKKMEEEILLLEDQNSK

FIKEKKLMEDRIAECSSQLAEEEEKAKNLAKIRNKQEVMISDLEERLKKEEKTRQELEKAKRKLDGETTDLQDQIAELQAQIDELKLQLAKKEEELQGALA

RGDDETLHKNNALKVVRELQAQIAELQEDFESEKASRNKAEKQKRDLSEELEALKTELEDTLDTTAAQQELRTKREQEVAELKKALEEETKNHEAQIQDMR

QRHATALEELSEQLEQAKRFKANLEKNKQGLETDNKELACEVKVLQQVKAESEHKRKKLDAQVQELHAKVSEGDRLRVELAEKASKLQNELDNVSTLLEEA

EKKGIKFAKDAASLESQLQDTQELLQEETRQKLNLSSRIRQLEEEKNSLQEQQEEEEEARKNLEKQVLALQSQLADTKKKVDDDLGTIESLEEAKKKLLKD

AEALSQRLEEKALAYDKLEKTKNRLQQELDDLTVDLDHQRQVASNLEKKQKKFDQLLAEEKSISARYAEERDRAEAEAREKETKALSLARALEEALEAKEE

FERQNKQLRADMEDLMSSKDDVGKNVHELEKSKRALEQQVEEMRTQLEELEDELQATEDAKLRLEVNMQAMKAQFERDLQTRDEQNEEKKRLLIKQVRELE

AELEDERKQRALAVASKKKMEIDLKDLEAQIEAANKARDEVIKQLRKLQAQMKDYQRELEEARASRDEIFAQSKESEKKLKSLEAEILQLQEELASSERAR

RHAEQERDELADEITNSASGKSALLDEKRRLEARIAQLEEELEEEQSNMELLNDRFRKTTLQVDTLNAELAAERSAAQKSDNARQQLERQNKELKAKLQEL

EGAVKSKFKATISALEAKIGQLEEQLEQEAKERAAANKLVRRTEKKLKEIFMQVEDERRHADQYKEQMEKANARMKQLKRQLEEAEEEATRANASRRKLQR

ELDDATEANEGLSREVSTLKNRLRRGGPISFSSSRSGRRQLHLEGASLELSDDDTESKTSDVNETQPPQSE 

 

Figure 27 NMIIB heavy chain bioinformatic analysis. Amino acid sequence of the heavy chain of NMIIB. Dileucine 
sorting motif in the tail domain is marked in red. 
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Figure 28 IP of β-adaptin in Cos-7 cells expressing GFP, GFP-NMIIA, GFP-NMIIB/A or GFP-NMIIA/B. Detection of 
actin protein levels was used as loading control. GFPNMII detection was achieved by immunoblot. GFP-NMIIA and 
GFP-NMIIB/A appear associated with β-adaptin in the IP fraction.   

 

4.10    Intracellular localization of GFPMIIA, GFPMIIA-Y158F and β-

adaptin in polarized Caco-2 cells 

 

The medium subunit (μ) of AP1 was reported to sort Coxsackie Adenovirus Receptor 

(CAR) protein to the basolateral membrane of polarized cells through interaction with a 

tyrosine sorting motif (Diaz et al., 2009). 

Phosphorylation of the tyrosine residue at position 158 by Src kinase in response to 

infection with bacterial pathogens was uncovered recently by our group. In the context 

of this study a mutant isoform of NMIIA, incapable of undergoing phosphorylation at 

tyrosine 158 (NMIIA-Y158F) was constructed (Almeida et al., submitted).  

We hypothesized that wild-type NMIIA and the NMIIA-Y158F could have different 

intracellular locations or could affect the intracellular localization of β-adaptin in 

polarized Caco-2 cells. 

To address that we used Caco-2 cells transiently expressing GFP-NMIIA and GFP-

NMIIA-Y158F.   

Caco-2 were allowed to polarize during 2, 6 and 10 days and processed for 

immunofluoresce analysis of Protein kinase C (aPKC, an apical marker) and NMIIA. 

Cells were also stained for actin and DNA. We observed bigger nucleus and a more 

diffuse staining for aPKC in cells that polarized for 2 days when comparing with cells 

allowed to polarize for 6 and 10 days (Figure 29a). Cells polarized for 6 days showed a 

more cohesive epithelium, smaller nucleus, and a more defined staining for both aPKC 
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and phalloidin, that appeared to surround the limit of the cell, suggesting polarization 

(Figure 29b). Caco-2 cells allowed to polarize for 10 days showed an epithelium with 

smaller nucleus, closer together than any of the other two conditions. aPKC and 

phalloidin presented a more distinct staining at the cell border, suggesting total 

polarization (Figure 29c). Considering these results we allowed Caco-2 cells to polarize 

for 10 days. 

 

 

           

We then evaluated the role of NMIIA tyrosine phosphorylation in β-adaptin localization 

in polarized Caco-2 cells. Caco-2 cells were transfected to express GFP-NMIIA and 

GFP-NMIIA-Y158F and maintained under antibiotic selection. Through flow cytometry 

the population was selected (Figure 30). Only 1.2 % of cells expressed GFP-NMIIA and 

1.8 % of cells expressed GFP-NMIIA-Y158F. 

 

 

 

 

 

 

 

Figure 30 Results from the sorting of Caco-2 cells transiently expressing GFP-tagged NMIIA and GFP-tagged NMIIA-
Y158F.  

Figure 29 IF staining of Caco-2 cells allowed to polarize for different time periods, 2 days (a), 6 days (b) and 10 
days (c). Polarized Caco-2 cells were incubated with primary antibodies against NMIIA (green) and aPKC (red) and 
stained for actin (phalloidin, white) and DNA (DAPI, blue).  

(a) 

(c) 

(b) 
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GFP-positive cells were seeded into a 96-well plate and expanded into a T75 flask. 

Cells were then seeded into TRANSWELL filters and maintained for 10 days to allow 

polarization. After 10 days filters were processed for IF analysis. Both aPKC and actin 

were localized at the border of the cell, suggesting that the epithelium is polarized 

(Figure 31A). 

Caco-2 cells ectopically expressing GFP-WT-NMIIA and GFP-NMIIA-Y158F were 

incubated with primary antibodies against NMIIA and β-adaptin and stained for DNA 

(DAPI). NMIIA labeling was used because the levels of GFP-MIIA and GFP-MIIA-

Y158F expression were very low and difficult to detect. 

GFP-NMIIA-Y158F expressing cells seemed to have bigger nucleus with a bigger 

distance between them (Figure 31C) when compared to GFP-NMIIA cells (Figure 31B). 

β-adaptin appeared to have a more perinuclear localization in cells expressing GFP-

NMIIA-Y158F (Figure 31C) when compared to GFP-NMIIA expressing cells. In cells 

expressing GFP-NMIIA the staining for β-adaptin seemed uniformely distributed in the 

cytoplasm (Figure 31B). In summary there seems to be a different epithelial 

organization between the two cell lines and β-adaptin seems to have a different 

localization inside the cell, however this is a preliminary experiment and needs to be 

repeated. In addition some controls are missing, enabling us to properly conclude what 

causes the observed differences in β-adaptin distribution and epithelium organization. 
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Figure 31 IF staining of polarized Caco-2 cells expressing GFP-NMIIA and GFP-NMIIA-Y158F. (A) Caco-2 cells 
expressing GFP-NMIIA and GFP-NMIIA-Y158F incubated with a primary antibody against aPKC, an apical marker, and 
stained for actin (phalloidin, white) and DNA (DAPI, blue). Cells were allowed to polarize for 10 days, after which they 
were processed for IF. (B) Caco-2 cells expressing GFP-NMIIA incubated with primary antibodies against NMIIA (green) 
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and β-adaptin (red) and stained for DNA (DAPI, blue). (C)  Caco-2 cells expressing GFP-NMIIA-Y158F incubated with 
primary antibodies against NMIIA (green) and β-adaptin (red) and stained for DNA (DAPI, blue) 
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5. Discussion 
 

5.1    Selection of the Y2H targets 

 

Our group is focused on the study of cellular infectious process of the food-borne 

pathogen L. monocytogenes. Recently we showed the restrictive role of NMIIA in L. 

monocytogenes infection of host cells (Almeida et al., submitted). 

Given that NMIIA has a relevant role in L. monocytogenes infection as well as in other 

infection processes like invasion of nonphagocytic cells by Salmonella (Hänisch et al., 

2011), and viral entry of KSHV (Veettil et al., 2010) and HSV-1 (Arii et al., 2010), our 

group was interested to further investigating the role of NMIIA in infection and in 

canonical functions. In this context we searched for new NMIIA interacting partners. 

Through the realization of an Y2H screening 97 new NMIIA possible interacting 

partners were uncovered. The five chosen targets had PBS confidence ratings from A 

to D. These were: ZNF12 (A), SMPD4 (B), AFF1(C), β-adaptin and Hsp56 (D).  

Selection of the target-proteins was based: on their PBS® and relevancy to the work 

performed in our laboratory. 

The three highest ranked target-proteins of the screening were selected: ZNF12, 

SMPD4 and AFF1. 

Eight other ZNF proteins were retrieved in the Y2H with ratings ranging from B to D. 

ZNF12 was chosen as representative for the remaining ZNFs. ZNFs are common 

contaminants in these types of screens due to their innate capacity of binding a protein 

through a single ZNF motif, producing unspecific interactions (Laity et al., 2001; 

Mackay and Crossley, 1998). Moreover all these proteins were poorly characterized 

and pre-existing information about them was obtained through bioinformatic sequence 

analysis. 

Hsp56 and β-adaptin were chosen because of their possible links to L. monocytogenes 

pathogenesis.  

Hsp56 was reported to interact with Hsp90 in a complex (Davies and Sánchez, 2005). 

Hsp90 is a Gp96 paralogue, which represents a major line of research in our group. 

Indeed, Gp96 was identified as a receptor for Vip, a L. monocytogenes virulence factor 

(Cabanes et al., 2005) and its subcellular localization is affected during infection 

(Martins et al., 2012). 

The AP1 complex, of which β-adaptin is a subunit, is reported to be involved in the 

transport of CCVs inside the cell (Boehm and Bonifacino, 2001) while AP2 is mostly 

localized at the membrane and is responsible for endocytosis (Boehm and Bonifacino, 
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2001; McMahon and Boucrot, 2011). However, when large cargoes need to be 

internalized AP1 is described to localize at the membrane (McMahon and Boucrot, 

2011). This complex was reported to be required for L. monocytogenes entry into host 

cells (Pizarro-Cerdá et al., 2007). 

Although the Y2H assay is a powerful tool for a high-throughput screening results must 

be analyzed with precaution and a second platform should be used to validate the 

interactions (Dwane and Kiely, 2011).  

 

5.2   Evaluation of the interactions between NMIIA and the five 

selected targets  

 

To confirm the interactions between the selected targets and NMIIA we used a 

biochemical approach, IP. In this technique a protein is immunoprecipitated from a 

whole cell lysate using a specific antibody retrieving with it its interacting partners. 

When a protein is found to be associated with our immunoprecipitated protein we say 

that co-IP occurred (Dwane and Kiely, 2011). 

Biochemical data did not allow the confirmation of the interactions between NMIIA and 

three of the selected target-proteins: ZNF12, SMPD4 and AFF1. 

ZNF12 was detected by immunoblot in whole cell lysates (Figure 14E) but it never co-

IP with NMIIA (Figure 18b). 

SMPD4 has a predicted molecular weight of 93 kDa, a faint band above that molecular 

weight could be detected by the antibody specific against SMPD4 (Figure 18c). Even if 

the detected band corresponded to SMPD4 it never associated with NMIIA, when the 

latter was immunoprecipitated. 

Finally, the antibody against AFF1 detected a very faint band in whole cell lysates from 

HeLa, HEK 293 and Jeg-3 (Figure 14A). In Figure 18a AFF1 is not detected in the 

INPUTs or in association with NMIIA in the IP fraction. We speculate that the 

expression levels of this protein could be very low.  

From the five initially selected targets, these three were discarded either because it 

was difficult or not possible to detect the protein by immunoblot (AFF1) or because the 

protein could be detected in the whole cell lysate (ZNF12 and SMPD4) but it never co-

IP with endogenous NMIIA in HeLa cells. Some other approaches should be tested in 

order to validate the interactions.  

Alternatively to what was performed in the framework of this dissertation, the target 

proteins can be fused to a protein tag, overexpressed in cells and immunoprecipitated, 
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using an antibody specific for the tag. Commonly used tags include GFP, GST 

(Glutathione-S-transferase) and the FLAG-tag.  

Another alternative could be the use of pull-down assays. Our protein of interest would 

be immobilized in a column where a cell lysate would pass through. Proteins with high 

affinity for the protein of interest would remain bound while the others would be washed 

through (Dwane and Kiely, 2011). 

Concerning the remaining two targets (Hsp56 and β-adaptin), our results present 

biochemical evidence of an interaction with NMIIA. 

IP of endogenous NMIIA (Figure 19) and Hsp56 (Figure 21A and 22A) both indicate a 

biochemical association between the two proteins. The role of this interaction will be 

addressed in the future. 

 

Three different experimental designs suggest an association between NMIIA and β-

adaptin. These were: IP of endogenous NMIIA (Figure 19), IP of β-adaptin (Figure 21B 

and 22B) and the IP of β-adaptin in Cos-7 cells expressing GFP-tagged NMIIA (Figure 

24). In all three methods there was a recurrent biochemical association between the 

two proteins.  

Reinforcing these results was the finding of tyrosine and dileucine sorting motifs 

present in the amino acid sequence of the heavy chain of NMIIA (Figure 25).  

AP1 complexes sort proteins between intracellular compartments (Boehm and 

Bonifacino, 2001). This process occurs through binding of the μ subunit to tyrosine 

sorting motifs (Carvajal-Gonzalez et al., 2012 and Diaz et al., 2009) and binding of the 

β subunit to dileucine sorting motifs present in the cargo proteins (Rapoport et al., 

1998). 

Heavy chain of NMIIA possesses several tyrosine motifs. Interestingly, one of these 

motifs was located at position 158 (Figure 25). This tyrosine residue was recently 

uncovered by our group as capable of undergoing phosphorylation and playing a 

restrictive role upon L. monocytogenes infection (Almeida et al., submitted). 

Two dileucine sorting motifs were found at positions 1232 and 1312 (Figure 25). Both 

motifs were located inside the NMIIA fragment used as bait for the Y2H assay (Figure 

25). 

Conservation of the tyrosine motif at position 158 among different species had already 

been reported (Almeida et al., submitted).  

The two identified dileucine sorting motifs were also found to be conserved among the 

higher taxonomic groups (Figure 26). 

http://en.wikipedia.org/wiki/Glutathione-S-transferase
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The presence of these motifs in the sequence of NMIIA allows the speculation of an 

interaction between the two proteins at the sequence level. This coupled with the 

results from the Y2H assay and the data obtained from biochemical experiments 

indicates an association between β-adaptin and NMIIA. 

A single experiment using NMII chimeras was performed, and suggests a possible 

specific binding of AP1 to the tail domain of NMIIA and therefore putatively to dileucine 

sorting motifs (Figure 28).  

A molecular approach of site directed mutagenesis could be used to determine if NMIIA 

can bind both AP1 subunits.  

To apply this technique it would be necessary to construct at least three different 

plasmids expressing different NMIIA isoforms with the different mutated sorting motifs 

to impair binding. Association between each of the NMIIA mutants and β-adaptin could 

be determined by IP.  

Nevertheless the presence of these motifs in the NMIIA sequence, the conservation of 

the motifs among the higher taxonomic groups plus the biochemical results obtained 

strongly indicates an association between NMIIA and the AP1 complex, mainly β-

adaptin. 

 

5.3   Intracellular localization of WT-NMIIA, NMIIA-Y158F and β-

adaptin in polarized Caco-2 cells 

 

The NMIIA-Y158F isorform had its tyrosine 158 residue replaced by a phenylalanine 

and was therefore incapable of being phosphorylated (Almeida et al., submitted). 

Previous reports described that phosphorylation of a sorting motif in the target protein 

could either inhibit or enhance (Ghosh and Kornfeld, 2003) binding of the AP complex.  

As a starting point to uncover a functional link between NMIIA and β-adaptin we 

decided to use polarized Caco-2 cells. Basolateral sorting of CAR in polarized cells 

occurs through the binding of the μ subunit of AP1 to a tyrosine motif in the protein 

(Diaz et al., 2009). 

Caco-2 cells transiently expressing GFP-NMIIA and GFP-NMIIA-Y158F were seeded 

on TRANSWELL filters and allowed to polarize. We were capable of achieving 

polarization of the epithelium. 

Cells expressing GFP-NMIIA present a more cohesive epithelium with smaller nucleus 

(Figure 31B) while cells expressing GFP-NMIIA-Y158F show bigger nucleus and a less 

organized epithelium (Figure 31C). This difference in epithelium organization could be 
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a result of altered NMIIA activity provoked by the inhibition of the phosphorylation of the 

Y158 residue.  

A second difference could be observed in the distribution of β-adaptin. In cells 

expressing GFP-NMIIA the β-adaptin staining is mainly cytoplasmic (Figure 31B) while 

in cells expressing GFP-NMIIA-Y158F β-adaptin seems to be located closer to the 

nucleus, in a perinuclear distribution (Figure 31C). 

In both cases quantifications were not performed so all possible conclusions are 

qualitative and further analysis are required. 

In particular, Caco-2 cells transfected with a plasmid encoding only GFP, and IF 

stainings on untransfected polarized Caco-2 cells and untransfected non-polarized 

Caco-2 cells should be performed to allow interpretation of the obtained results. 

Even though this experiment does not allows definitive conclusions it hints at a possible 

different epithelial organization and a possible difference in β-adaptin intracellular 

distribution between the two conditions. 
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6. Conclusions 

 
Result from the Y2H screening plus biochemical data suggests an association of NMIIA 

and Hsp56. Both proteins appear to co-IP with the other. 

 

Identification of a tyrosine motif at position 158 and two dileucine motifs, conserved 

among several species, in the NMIIA tail fragment used as bait for the Y2H allows the 

speculation of an interaction between NMIIA and and β-adaptin at the sequence level. 

This bioinformatic analysis coupled with the Y2H result and all the biochemical data 

obtained throughout this work strongly indicate an association between NMIIA and β-

adaptin. 

 

From the five target-proteins initially selected from the Y2H assay, we were not able to 

confirm the interaction of NMIIA with three of them (ZNF12, SMPD4 and AFF1) and 

showed that interaction occurs with the remaining two (Hsp56 and β-adaptin). 
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