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Abstract 

Positioning with Global Navigation Satellite Systems (GNSS) can be performed by either one 

of two ways: point positioning or relative positioning. Point positioning, also known as the 

standalone or autonomous positioning, involves only one GNSS receiver. Relative positioning 

employs two or more GNSS receivers tracking the same satellites. Standard point positioning 

with GNSS provides worldwide 10 m accuracy level. This accuracy level is far beyond the 

requirement of many applications such as geodetic control, hydrographic surveying and sea 

level measurement, which require centimetre level accuracy or better.  

Most of precise GNSS positioning, capable of providing centimetre accuracy for a moving 

platform, is based on relative positioning methods. Such methods need to work on the vicinity 

of one or more reference stations, within a few tens of kilometres, and require simultaneous 

observations at reference and rover stations. Precise Point Positioning (PPP) is a new 

method that started in the 1990’s and involves the use of measurements from a single GNSS 

receiver to obtain accurate position without the use of measurements from reference stations. 

Such improvement is accomplished through the use of state space representation of the 

corrections to the observations, such as precise satellite ephemerides and satellite clock 

corrections produced from a network of worldwide monitoring stations. 

In the scope of this study, a PPP methodology was developed, for the purpose of positioning 

static stations and marine platforms used in hydrographic surveying and oceanographic 

works. This methodology is implemented using the GPSTK (abbreviation for GPS Tool Kit) 

open source C++ library. New routines were created to solve specific problems related with 

the models used for modelling the error sources, the adjustment algorithm, the stochastic 

modelling of the observations and use of dedicated satellite clock corrections files. Results 

show uncertainty (standard deviation) at centimetre level accuracy for static and decimetre 

for kinematic positioning. The time required for the solution to converge, in kinematic mode, 

was 300 s.  

Sea Surface Heights derived from PPP processing of data collected onboard one survey ship 

were compared with satellite altimetry SSH. The differences between the two data sets are 

within the accuracy level of satellite altimetry. This approach is a simple and flexible data 

collection system of SSH with respect to an absolute reference frame that can be implemented 

at low costs using vessels of opportunity and used for coastal altimetry calibration or sea 

level monitoring.  
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Sumário 

O posicionamento com Global Navigation Satellite Systems (GNSS) pode ser realizado de 

dois modos: posicionamento absoluto ou posicionamento relativo. O Posicionamento 

absoluto, também conhecido como posicionamento autónomo, apenas utiliza um receptor 

GNSS. O Posicionamento relativo utiliza dois ou mais receptores GNSS e a posição é 

determinada a partir de uma estação de referência. O posicionamento absoluto padrão com 

GNSS tem cobertura mundial com uma exactidão de alguns metros. Este nível de exactidão 

não é suficiente para muitas aplicações, tais como a que exigem um controle geodésico, 

levantamentos hidrográficos e a medição do nível do mar.  

Os métodos normalmente utilizados para posicionamento de precisão com GNSS, com 

capacidade para posicionar um objecto em movimento, são baseados em técnicas de 

posicionamento relativo. Tais métodos exigem a disponibilidade de uma ou mais estações de 

referência nas proximidades da estação móvel, dentro de algumas dezenas de km, e 

requerem que se efectuem observações simultâneas em todas as estações. Precise Point 

Positioning (PPP) é uma metodologia que começou a se desenvolvida nos finais dos anos 90 

e que permite utilizar observações de um receptor GNSS para se obter a posição com 

exactidão centimétrica, sem necessidade de utilizar estações de referência. O PPP baseia-se 

na correcção ou minimização de erros através da utilização de efemérides de satélite 

precisas e de correcções aos relógios dos satélites determinadas a partir de uma rede global 

de estações de monitorização. 

Este trabalho teve por objectivo desenvolver uma metodologia PPP para posicionamento 

estático e cinemático, com aplicação em levantamentos hidrográficos e em trabalhos 

oceanográficos. Esta metodologia foi implementada com recurso à biblioteca de classes 

C++ do GPSTk (abreviatura de GPS Toolkit). Foram criadas novas classes para resolver 

problemas específicos relacionados com os modelos funcionais utilizados para modelar as 

fontes de erro, com o melhoramento do algoritmo de ajustamento, com o modelo estocástico 

das observações e também com a utilização de ficheiros dedicados introdução das correções 

dos relógios dos satélites. Os resultados demonstram que o erro estimado (desvio padrão) do 

posicionamento estático é da ordem centimétrica e para o posicionamento cinemático é da 

ordem decimétrica. O tempo necessário para a solução convergir, em modo cinemático, foi 

avaliado em 300 s. 

Foi efectuada a comparação da altura da superfície do mar, a partir de posicionamento PPP 

com receptores GNSS instalados num navio, com altimetria por satélite. As diferenças entre 
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os dois conjuntos de dados são da mesma grandeza que a exactidão das medições da 

altimetria por satélite. Este resultado indica que a metodologia adoptada com o GNSS-PPP 

constitui um sistema simples, flexível e de baixo custo para efectuar medições da SSH num 

referencial absoluto, que pode ser utilizada para a validação de dados altimétricos ou na 

medição do nível do mar. 

.  
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Chapter 1. Introduction 

With the launch on October 4th 1957 of the first artificial satellite, the Sputnik I, the humanity 

stepped into the space era, an era that changed our lives, since an entire new world of 

opportunities was brought to the development of new technologies. New space-based 

positioning techniques using radio signals from satellites were developed, with increasing 

performance.  

A satellite navigation system with global coverage is termed as Global Navigation Satellite 

System (GNSS).  As of July 2012, only the United States Global Positioning System (GPS) 

and the Russian GLObal NAvigation Satellite System. (GLONASS) were fully globally 

operational GNSS. Other countries are in the process of creating their own GNSS such as the 

China Beidou and the European Union GALILEO.  

Positioning with GNSS can be performed by either one of two ways: point positioning or 

relative positioning. Point positioning, also known as the absolute, standalone or autonomous 

positioning, involves only one GNSS receiver for the direct determination of absolute 

positions. Relative positioning employs two or more GNSS receivers and determines baseline 

vectors, not absolute positions.  

Most currently used GNSS positioning methods that are capable of providing centimetre 

accuracy for a moving platform are based in relative positioning. Such methods need to work 

on the vicinity of one or more reference stations, within a limited range, and require 

simultaneous observations of the same satellites at the reference and rover stations. 

Precise Point Positioning (PPP) involves the use of measurements from a single GNSS 

receiver, in a similar way as provided by standard GNSS services, but with the improvement 

resulting from the application of corrections to the observation errors sources previously 

determined or estimated as additional unknowns. Such improvement was first accomplished 

in static positioning through the use of precise satellite ephemeris and clock corrections 

produced from a network of worldwide monitoring stations [Zumberg et al., 1997]. 

Subsequent developments in PPP demonstrated that it may also be used for kinematic 

positioning [Kouba and Héroux, 2001].  



Chapter 1. Introduction 

2 
 

In traditional GNSS relative positioning, observations from a single or a network of reference 

stations are used to minimize or eliminate spatially dependent errors. This method of 

providing corrections is termed as observation space representation. In contrast to this, PPP 

uses corrections that are associated with individual observation error components, such as the 

satellite position, the clock errors, ionosphere, troposphere and phase-bias. This method of 

providing the corrections to the observations is termed as in the state-space representation, 

requires the determination of the complete state vector and does not require reference 

stations.  

GNSS state-space corrections can be downloaded from a service provider for post-processing 

or may be transmitted directly to the rover for real time applications using data transmission 

protocols such as the RTCM (Radio Technical Commission for Marine Services) standards. 

In this way PPP, while still under development, is becoming a technique that has the potential 

to replace existing range limited GNSS relative positioning methods. 

For the marine positioning, the use of GNSS relative positioning is limited to coastal areas 

where reference stations can be installed. As an advantageous alternative, PPP allows 

worldwide coverage for offshore applications, extending the GNSS precise positioning 

capability to remote areas and has the potential to reduce costs and logistical requirements in 

marine surveying. A wide range of oceanographic applications and studies may arise if 

centimetre level accuracy can be extended to oceanic areas. Examples of such applications 

are the direct georeferencing of shipborne or buoy sensors, sea level and wave height 

determination, ship dynamics determination, motion compensation and atmosphere sensing. 

1.1. Motivation 

The ocean is one of Earth's most valuable natural resources. It provides food in the form of 

fish and shellfish, about 200 billion pounds are caught each year. It is used for transportation, 

both travel and shipping. It provides a treasured source of recreation for humans. It is mined 

for minerals (salt, sand, gravel, and some manganese, copper, nickel, iron, and cobalt can be 

found in the deep sea) and drilled for crude oil.  

The ocean is one part of the Earth system. It mediates atmosphere processes, in the transfers 

of mass, momentum and energy through the sea surface. The human demand for the 

knowledge of the oceanic currents, waves and tides goes back thousands of years. Since then 

oceanographers and mariners use instruments to navigate and measure ocean parameters. The 
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era of satellites allowed a global survey of oceanic processes from space and new positioning 

methods of marine platforms. Almost all observations of the ocean now come from satellites, 

drifters and autonomous instruments [Stewart, 2008].  

Marine geodesy is the part of geodesy which deals with the ocean and has the same practical 

aims as land geodesy: determination of the size and shape of the Earth and its gravity field, 

enable reliable mapping of the seafloor and development of precise measurement technology 

and computation methods needed to satisfy these aims. Marine geodesy does have a unique 

problem: apart the use of remote observations from land, satellites or aircrafts, most work 

must be conducted on a dynamic and complex environment using a floating platform, such as 

a ship or a buoy. Early, at the advent of the space era, it was already recognized that accurate 

ship positioning was a requirement for marine geodesy and will play a major role in the 

exploration of the ocean and its resources [Mourad et al., 1969].  

The concept of relative kinematic positioning using GPS carrier phase observations was 

described by Remondi (1985). After that, several methods were developed to implement 

pseudo-kinematic [Remondi, 1988] and semi-kinematic [Cannon, 1989] GPS surveying, all 

based on static initializations. Purely kinematic GPS method, require the computation of the 

position of an object in permanent motion, without static initialization. This requires the 

determination of the carrier phase ambiguities while the object is in motion, called as 

ambiguity resolution on-the-fly (OTF). For an insight of basic OTF techniques see Hatch 

(1994). With the technological advances in hardware and software, several accurate 

kinematic GNSS precise relative positioning solutions started to be provided by private or 

governmental agencies. Kinematic GNSS positioning with centimetre accuracy is now a 

standard product available for a wide range of applications. However, all these solutions are 

confined to a limited range from a reference station or from a network of stations.  

New applications, that use precise positioning at sea, were developed. These applications are 

related with accurate positioning requirements for anchoring or maneuvering floating 

platforms, control of maritime works, sea level measurement and hydrographic surveying. 

The use of GPS buoys and ships for sea level measurement is a technique used for 

validation/calibration of satellite radar altimetry [IOC, 2006]. The technology of using 

kinematic GNSS precise relative positioning for vertical control in hydrographic surveys is 

now a commonplace after being in a research-to-operations mode for several years [IHO, 

2005]. Other applications use GNSS sea surface measurements for tsunami detection [Kato et 
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al., 2005; Schöne et al., 2011]. However, all these applications are restricted to coastal areas, 

in the vicinity of one or a network of reference stations. 

Either seen as a competition or complementary to relative positioning techniques, PPP is 

going to become an efficient alternative to relative kinematic positioning at sea. The success 

of this method will significantly improve the operational flexibility of precise positioning 

using GNSS and at the same time reduce the field operational costs. Such method will 

increase the number of applications using GNSS technology, and will play a major role in 

marine geodesy, offshore surveys and physical oceanography allowing precise positioning in 

extensive ocean areas where it was not possible before. 

The potential for application of GNSS to precise positioning in the oceans remains to be 

exploited and many attractive possibilities can be developed. In marine surveying, new 

methods for tide reduction may be implemented without the requirement of a land based tide 

gauge. Accurate positioning of ships and buoys will provide valuable information of the Sea 

Surface Height (SSH) to complement with satellite altimetry data or as an additional sensor 

for tsunami early warning systems. 

1.2. Objectives 

The objective of this thesis was to study, develop and implement algorithms for GNSS 

positioning at sea, and access its performance. Within the framework of this general goal, the 

following specific objectives are set: 

 Develop, implement and test precise point positioning algorithms that can be used for  

kinematic positioning; 

 Adopt a software programming strategy as standard and portable between platforms as 

possible, through the use of an existing open source and tested GNSS software 

repository, the GPSTk; 

 Implement the necessary modifications, program new algorithms as required for 

kinematic PPP; 

 Assess the performance of the developed PPP algorithms in terms of their accuracy, 

integrity and required initialization time; 

 Evaluate the use of PPP on a marine platform to get precise estimates of Sea Surface 

Height; 
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 Create a new software suite that can be used for static and kinematic positioning in the 

domain of hydrography and oceanography, reducing the dependency from commercial 

software and open for improvement in the future with new GNSS data processing 

methodologies.  

1.3. Methodology 

This study started with the literature review of the origins and evolution of PPP 

methodologies. This included an investigation of the methods used for error mitigation and 

data adjustment algorithms applied for positioning with GNSS. International GNSS Service 

(IGS) products were used as a source for satellite precise ephemeris and clock parameters.  

The software used in this study is based on already developed and tested source code in order 

to avoid redundant work. The GPS Toolkit (GPSTk) C++ class library was used. Some 

routines were modified and others were created to implement an innovative and efficient 

method for kinematic PPP at sea.  

Data collected at marine platforms (ships and buoys) were used to evaluate the performance 

of PPP by comparing it with carrier phase relative positioning. The results of PPP at sea were 

used for Sea Surface Height determination and compared to satellite altimetry data. 

1.4. Structure 

This thesis has eight chapters. After this general introduction chapter 2 deals with the 

measurement of the sea level, gives an overview of satellite altimetry and describes how 

GNSS can be used for this purpose on board ships and buoys. 

Chapter 3 gives a detailed description of the GNSS observables and its error sources. This is 

a crucial topic for the definition of adequate observation models, the implementation of 

efficient algorithms and mitigation of all potential error sources that may affect the system. 

Chapter 4 introduces the concept of PPP and provides a sequential overview of existing 

methods developed by other authors. It is presented the traditional model based on the 

ionosphere free combination and the adjustment procedure either by a sequential least squares 

or Kalman filter. This chapter also provides a brief description of existing GNSS products 

and PPP software. 
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Chapter 5 and 6 contain the main contribution of this thesis to advances in PPP applied to 

marine platforms. In Chapter 5 the developed PPP methodology is presented. Aspects related 

with data pre-processing, weighting of satellites observations and data combinations as an 

improvement to the traditional model are discussed. The implementation of the adjustment 

procedure using a Kalman filter and feasibility of carrier phase ambiguity resolution are 

analysed in the context of PPP. 

In Chapter 6 the implemented software is described, concerning with the computational flow 

and software components, most of them based on using the GPSTk C++ library. The new 

modules created to allow the exploitation of GPSTk for kinematic applications are described 

with more detail. 

Chapter 7 is devoted to the description of the experiments and presentation of results. The 

experiments were based on data collected on board ships and buoys. Positioning results were 

compared to relative positioning and satellite altimetry data. 

Chapter 8 summarizes the major results obtained in the previous chapters, presents the final 

conclusions and suggests recommendations for future work. 
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Chapter 2. Sea level measurement using GNSS  

Knowledge about the sea level and its spatial and temporal variability is essential to 

understand the Earth system and has a direct impact in human life and all ecosystems 

evolution. Sea level variations must be continuously measured, monitored and predicted in 

harbours to provide tidal information to mariners and many others near shore activities 

depending on that information. The observation of the sea surface height in the deep sea is 

needed for geodetic and ocean dynamic studies with a direct application in Tsunami early 

warning systems. 

The measurement of sea level has many different facets. The data must be carefully 

calibrated, checked and evaluated. The sea surface is in constant motion caused by various 

components, from different physical sources that are usually distinguished by their period 

These components range from surface gravity waves with periods of 0.5 to 20 s; seiches and 

tsunamis with periods of over 1 hour; tides with periods centred around ½ and 1 day; 

meteorological effects, that may range from a few days to one year; inter-annual and decadal 

variability and long term-term trends caused by biological and climatic effects [IOC, 2006].  

The magnitude of these sea level variation components vary enormously. Surface waves can 

have amplitudes up to 30 m. Tsunamis tend to be less than 1 m in the deep ocean but may be 

several metres near the coast. Tides are relatively small in the deep ocean, but may be several 

metres near the coast. Storm surges may be of the order of a few metres in shallow seas. All 

these components mixed together cause the ocean surface to have high temporal and spatial 

variations [IOC, 2006].  

In general, the measurement of sea level variations is not concerned with the small period 

variations due to surface gravity waves, which must be filtered out of the system. For systems 

moored at the seabed, which are based on subsurface pressure observations to derive the sea 

level measurements from the hydrostatic relation, the properties of sea water (salinity, 

temperature and hence density) must also be considered.  

2.1. Sea level measurement at coastal stations 

The traditional instruments used to measure the coastal sea level are based on tide gauges 

installed on land fixed stations near the coast. Common to all tide measuring devices is that 
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its station must be connected to a reference network and have an accurate geodetic 

positioning.  

There are fundamentally four types of measuring technology in common use [IOC, 2006]: 

 A stilling well and float, in which the filtering of the waves is done through the 

mechanical design of the well; 

 Pressure systems, in which the sub-surface bottom pressure is monitored and 

converted to height based on knowledge of the water density and local acceleration 

due to gravity. These systems may be deployed off the coast, but are not used in the 

deep ocean; 

 Acoustic systems, in which the transit time of a sonic pulse used to compute distance 

to the sea surface; 

 Above water fixed radar systems, similar to acoustic systems, but using 

electromagnetic waves at radar frequencies. 

The sea level measurements made by a tide gauge provide the relative movement of the sea 

with respect to land. The station benchmark is not constant over long periods of time, as the 

Earth’s surface moves due to a range of natural processes, such as seismic and plate tectonics 

activity, or human related activity. Sea level measurements must be decoupled from height 

variations due to land movements.  

Tide gauge benchmarks are usually defined in terms of a National Levelling Network, 

(NLN). The altimetric datum used in the NLN is usually defined in terms of a tidal datum. 

For a tidal derived datum, a period of more than 19 years of consecutive observations should 

be used, because of long-term variations tidal in lunar constituents [IHO, 2005]. In Portugal, 

the national altimetric datum is given as the equipotential gravity surface defined by the mean 

sea level measured at Cascais tide gauge between 1882 and 1938 [Casaca et al., 2000]. 

Ideally, for any studies involved with sea level, all tide gauges should be equipped with a 

dual frequency GNSS receiver to continuously monitor any land movement. The GNSS 

antenna position should be accurately determined in three dimensional geodetic coordinates 

and linked to the tide gauge bench mark by regular levelling, at least annual [IOC, 2006].  
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2.2. Buoy based systems 

The development of the GNSS buoy technique was driven largely based on the demanding of 

accurate positioning on the ocean surface for the verification of highly accurate altimeters 

used on satellites for oceanographic missions, such as the ERS-1 and the TOPEX/Poseidon. 

Early researches were primarily proof of concept studies, utilising a range of different design 

configurations [Rocken et al., 1990; Hein et al., 1992; Kelecy et al., 1994]. 

Satellite altimetry has proven to be a powerful tool for the study of the oceans, at present 

reaching centimetric accuracy in the open ocean and being widely used in sea-level and 

various oceanographic related researches.  Owing to unknown post-launch biases and the 

aging of the satellite electronic components, a consistent off-shore height reference is needed. 

In the coastal regions, the altimeter data are degraded due to the following main reasons: the 

altimeter waveforms fail to conform to the Brown model and need to be retracked; the wet 

tropospheric correction computed from the on board microwave radiometer (MWR) 

measurements becomes invalid due to land contamination in the signal coming from the large 

radiometer footprint; and the global ocean tide models do not properly account for local tidal 

effects [Fernandes et al., 2010]. In the recent years much progress has been achieved in the 

development of techniques for processing altimeter data in the coastal zone [Vignudelli et al., 

2011].  These developments allow the computation of improved satellite altimetry in the 

coastal regions and create the need for appropriate methods for validating the new data sets.  

Some altimetric satellites have their orbits passing over static tide gauges and GNSS stations 

installed on offshore oil rigs or on platforms near the coastline and harbors. However these 

locations are rare and limited to a single position. With the increasing accuracy of kinematic 

GPS for offshore applications, research groups have developed GPS-equipped buoys for the 

determination of instantaneous Sea-Surface Heights (iSSH). These buoys were deployed on 

the positions under the orbits of altimetric satellites and used for calibration/validation. 

Between 1999 and 2003, GPS water level measurement was coordinated by a special group 

of the International Association of Geodesy, the SSG 2.194. In its final report, the SSG 2.194 

provides a summary of the main developments on using GPS buoys for water level 

measurements until 2003 [IAG SSG 2.194, 2003]. 

Each buoy design has its pros and cons in addition to suitability for specific applications. All 

these buoys should form a robust and stable floating platform, and follow the vertical motion 
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of the sea with minimum or no dumping.  Regardless of buoy design, the capability for 

measuring the antenna height, the buoy inclination and the heave motion remains a critical 

issue for high accuracy applications.  

Watson (2005) summarizes the development of the GPS buoy technique used for sea level 

measurement. According to its design these buoys can be divided into three types: 

 Non-autonomous light weight wave rider or spar design, with antenna only,  tethered and 

operated from a boat where the receiver is installed (see table 2.1); 

 Light weight autonomous wave rider design capable of short periods of operation (see 

table 2.2). 

 Ruggedized oceanic buoys capable of autonomous operation for extended periods in any 

sea conditions (see table 2.3). 

Table 2.1 – Advantages, disadvantages and applications of the non‐autonomous light weight design 
GNSS buoy. Table layout from Watson (2005) and Marshall and Dennys (2008). 

Description: 
- Light weight buoy usually a 
life preserver as the floating 
source; 
- The buoy can be operated 
from a boat and only houses 
the GNSS antenna;  
- The antenna offset from the 
sea surface is small, typically 
positioned 50-250 mm above 
it. 
- Wave motion compensation 
is not applied. 

Non-autonomous 
light weight buoys

Application examples: 
- Altimeter calibration; 
- Tidal datum transfer;  
- River and lake water level 
monitoring; 
- Sea surface mapping; 
 

from Cheng (2005) 

Advantages: 
- Economical and simple to construct, with 
low cost materials, that are readily 
available; 
- Easily portable with their small size; 
- No need to monitor and correct the tilt due 
to wave motion; 
- Low centre of mass. 

Disadvantages: 
- Logistical support is required throughout 
the entire deployment (personal and boats); 
- Lack of versatility with the tether required; 
- Deployment restricted in rough sea state; 
- Short duration deployments. 
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Table 2.2 – Advantages, disadvantages and applications of the autonomous light weight design GNSS 
buoy. Based on tables from Watson (2005) and Marshall and Dennys (2008). 

Description: 
- A light weight buoy that 
houses all the components: 
GNSS antenna, the receiver 
and the battery; 
- Can operate autonomously, 
either: anchored, drifting or 
tethered. 
- The antenna offset from the 
sea surface is small, typically 
positioned 50-250 mm above 
it. 
- Wave motion compensation 
is not applied. 

Autonomous oceanic 
buoys

Application examples: 
- The same as for the non-
autonomous light weight 
buoy design; 
- Applications requiring 
autonomous operations for a 
few days (up to one week); 
- Calibration of tide gauges. 
 

 
From Parker (2007) 

Advantages: 
- The same as for the non-autonomous 
light weight buoy design; 
- Reduced logistics considerations with 
autonomous operations of up to a few days 
depending on the battery. 

Disadvantages: 
- Deployment restricted in rough sea state; 
- Short duration deployments up to a few 
days, depending on the battery. 

 

Table 2.3 – Advantages, disadvantages and applications of the autonomous large scale design GNSS 
buoy. Based on tables from Watson (2005) and Marshall and Dennys (2008). 

Description: 
- A large scale rugged buoy 
that houses the GNSS system 
and the wave motion 
compensation system in 
addition to power storage and 
generation and data 
communications; 
- Can operate autonomously 
for long periods; 
- The antenna reference point 
is typically a few metres 
above the sea surface. 

Autonomous large scale Application examples: 
- Tsunami monitoring; 
- Tidal datum determination; 
- Absolute altimeter 
calibration; 
- Applications at high seas 
requiring long period 
autonomous operation. 

 
From Shöne et al. (2011) 

Advantages: 
- Can operate for a long periods and in 
rough sea conditions; 
- Additional sensors can be integrated in the 
buoy such as meteorological instruments. 

Disadvantages: 
- High cost; 
- Not easily portable, requires a ship 
equipped with winches and cranes for 
deployment; 
- Requires the correction of buoy inclination 
and heave caused by wave motion. 
- Reliability issues with power generation, 
power storage and communications. 
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To estimate the instantaneous Sea Surface Height (SSH), GNSS measurements are used to 

estimate epoch-by-epoch positions of the antenna. The estimated value is corrected for 

inclination and heave motion of the buoy. For the determination of the height component, the 

accuracy of the GNSS positioning should be at centimetre level, in order to allow accurate 

measurements of SSH. 

The antenna should be carefully installed in order to avoid additional multipath and 

interference from the buoy components; the antenna reference point should be positioned in 

the buoy body frame including the vertical distance to the buoy fluctuation line. The wave 

rider type buoys does not requires monitoring the inclination and heaving. The effect of the 

tether on the buoyancy and dynamics of the buoy may affect its performance as a sea level 

sensor. 

The first applications of GNSS buoys were constrained to the precise relative positioning 

over relatively short distances [Watson, 2005]. With new developments in GNSS data 

processing, precise kinematic absolute positioning is feasible with PPP and this will extend 

the use of GNSS buoys to a potential unrestricted global application [Luo et al., 2010]. The 

output of GNSS instantaneous velocity derived from Doppler measurements can be used to 

obtain wave measurement data on GNSS buoys [Doong et al., 2011]. 

2.3. Ship based systems 

The principle of sea level measurement with GNSS on board ships is essentially the same as 

described for GNSS buoys, since the ship is a floating platform. Anchored or drifting buoys 

may be considered as approximately static stations at the sea, while the vessel moves and is 

capable of measuring the instantaneous SSH along a planned navigation trajectory. In 

addition it is usually easy to install permanent or temporary GNSS receiver stations on board 

ships, without additional costs, and less vulnerable to damage when compared to buoys. On 

board data acquisition may be periodically monitored for any malfunction and the 

communication systems of the ship may be used to download precise corrections for PPP 

processing. GNSS on board ships are equivalent to moving tide gauges that may complement 

observations at fixed positions, being a valuable source for marine geodesy and ocean 

dynamic studies. 

The nomenclature of the ship motions floating at sea is summarized in table 2.4 with a 

translation to Portuguese language, from Paulo (1997). 
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 High frequency Permanent or long period Axis 

Portuguese English Portuguese English 

Translations 

avanço surge - - y 

deriva sway abatimento drift x 

arfagem heave imersão sinkage z 

Rotations 

cabeceio pitch caimento trim/tilt x 

balanço roll adornamento heel/tilt x 

guinada yaw guinada swing z 

 

Table 2.4 – Ship body frame coordinate axes and ship motion nomenclature, from Paulo (1997). 

For the determination of the SSH, the ship’s GPS antenna geodetic heights have to be 

corrected for all the motions of the platform due to the following effects: 

 Motion of the ship caused by wave effects (pitch, roll and heave);  

 Variation of the ship’s sinkage and tilt due to variations of load (such as fuel 

consumption); 

 Hydrodynamic effects as the ship “rises” the bow wave, when moves through the 

water. This may cause a variation of sinkage (lifting) and trim; 

 Squat effects, causing variation in the sinkage and pitch. 

The ship motion caused by the wave action (roll, pitch and heave) is measured by on board 

systems usually based on inertial systems. The correction required to refer the measured 

quantities to the ellipsoid adopted in the GNSS positioning, neglecting the deflection of the 

vertical, is given by the following expression (see figure 2.1):  
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Where ቈ
ݔ
ݕ
ݖ
቉
଴

 is the position of the GNSS antenna in the body frame coordinate system; 

 ቈ
ݔ
ݕ
ݖ
቉
୰୭୲

is the position of the GNSS antenna after correction for pitch and roll (two 

rotation matrices); 

݄௖௢௥௥ is the GPS antenna height after correction for pitch and roll and heave 

GPSh  is the uncorrected GNSS antenna height, from the GNSS positioning solution; 

 .଴  is the GNSS antenna height in the ships body frameݖ     

 ௥௢௧ is the GNSS antenna height in the ships body frame after rotation of pitch andݖ

roll, in accordance with equation 7.1. 

The heave correction is a simple transformation, applied as a vertical translation of the 

antenna.  

 

Figure 2.1 – Ships antenna height variation due rotation in roll. 
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Z0 
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As the ships moves through the water, a system of hydrodynamic forces change its trim and 

increases draft when compared to a neutral position. The algebraic sum of both, sinking and 

trimming is called squat. Recent research indicates that the squat depends on the ship speed-

through-water, size and shape of the ship´s hull and the cross section of the waterway. Squat 

may be estimated by empirical or analytical (based on fluid dynamics computations) methods 

[Briggs, 2006; Jachowski, 2008]. Direct determination of squat, for each ship class, are 

possible from photogrammetric or levelling methods from a fixed survey station onshore. 

Another method for direct determination of squat is based on precise positioning with on 

board GNSS receivers and one GNSS receiver on board an escort vessel. The on board GNSS 

receivers measure the variations in trim and list, while the GNSS on the escort vessel allows 

the determination of unperturbed water level at the measurement position [Reiking and 

Härting, 2007]. 

The variation of the ship’s load during a mission (for example due to fuel consumption) will 

cause a variation in the ship’s draft. A change in the distribution of ship’s load will cause 

variations in the ship´s trim and list. The value of these variations may be inferred from the 

ship´s stability tables.  

2.4. Motion compensation of buoys and ships 

Many applications at sea require the correction of the effect on the GNSS receiver antenna 

caused by the vessel motion (roll, pitch, yaw and heave). This is a key point when measuring 

the Sea Surface Height with GNSS. The most common sensors used for motion compensation 

of floating platforms, either buoys or ships, are based on inertial systems. Inertial systems can 

be found in various forms, but the core is constituted by the sensor assembly, composed by a 

set of three orthogonal accelerometers (linear acceleration sensors) and three gyroscopes 

(angular rate sensors). The sensors are placed in the same frame which sense the same 

motions as the vessel (strapdown system) or in a stabilized platform (gimballed system). The 

sensor assembly can be used separately, as a so-called Inertial Measurement Unit (IMU), or 

can be combined with a navigation computer to form an Inertial Navigation System (INS) 

[Deurloo, 2011].  

The output of the IMU provides an estimation of sum of the accelerations caused by all the 

forces acting on the ship including the gravity vector and the external forces due to the wave 

and wind action on the ship. The data from the accelerometers can be low-pass filtered to 
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remove high frequency variations due to wave-action, quick turns and sudden velocity 

variations and provide a good estimate of the gravity vector; the direction from which the 

angular rate sensors measures the angular displacements (roll, pitch and yaw). The heave is 

determined by double integration of the linear acceleration sensed in the apparent vertical 

direction [IHO, 2005]. 

When the vessel undergoes a systematic acceleration, whose duration exceeds the time 

constant of the low pass filter applied to the accelerometers measurements, such as prolonged 

turns, or velocity variations, the centripetal or tangential acceleration are sensed as a 

horizontal acceleration causing a deflection of the apparent vertical from the true vertical 

with the consequent errors on the measurements. This is particularly critical in hydrographic 

surveying where the ship must follow planned survey lines and prolonged ship turns are made 

after the end of each line to align with the next. An error in the vessel tilt and heave will 

induce an error in the depth measurement.  

The best option for ship motion determination is to use an integrated GNSS/IMU or 

GNSS/INS system.  There are several modes of integrating these two systems [Deurloo, 

2011]. The result allows the achievement of higher accuracies and is less vulnerable to vessel 

turns, when compared using these systems in standalone mode. If a two GNSS antenna 

system is used then additional ship rate of turn information can be used for the correction of 

the apparent vertical motion. Usual system accuracies, at 95% confidence level, are 0.05º for 

roll and pitch, 0.2º for yaw and 10 cm or 10% of heave height whichever is greater [IHO, 

2005]. 

2.5. Satellite altimetry 

Satellite radar altimetry is a modern technology, a result of the space era, used to map the 

ocean surface. The principle of radar altimetry was envisaged in the sixties. A brief historical 

resume is given in Benveniste, J. (2011), starting with the first observation of the Earth 

surface made by the SkyLab mission, launched in 1973. The radar measurement principles 

are described in the literature [Chelton et al., 2001]. 

Radar altimetry measures the distance between the satellite and the surface bellow, 

transmitting radar pulses, the echoes of which are bounced back from the surface, whether 

ocean, ice cap, sea-ice, desert, lake, or river. The altimeter system is made up of a set of 

independent instruments and measurement processes, which combine to allow the 
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determination of the SSH in an absolute coordinate reference frame and other secondary 

quantities of interest related with the sea state.  

 

Figure 2.2 – Schematic  illustration of the principle of satellite altimetry and the corrections applied 
to the altimeter observations of SSH (from Andersen and Scharroo, 2011). 

The conceptual method for range determination is based on a signal, formed by a short pulse 

of micro-wave radiation, transmitted by the satellite towards the Earth. The signal interacts 

with the sea surface and part of it is returned to the satellite where the travel time is 

measured: 

ܴ ൌ
ሺݐ௥ െ ௧ሻݐ · ܿ

2
 (2.2) 

Where ܴ is the range; 

 ;௧ is the time of transmission of the signal by the satelliteݐ        
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 ;௥ is the time of reception of the signal by the satelliteݐ         

 ܿ is the velocity of propagation of electromagnetic waves. 

In practice the range determination is significantly more complicated. Each altimetric 

measurement, provided in Geophysical Data Records (GDR), results from the average of 

thousand of returned pulses. This averaging procedure results in a SSH estimate every 

second, corresponding to a 6-7 km track profile for a Low Earth Orbit (LEO) satellite with an 

orbital altitude of about 1300 km, such as the JASON-1 and JASON-2 (1336 km). The SSH 

determination process can be divided into three basic components: 

 Range determination from the satellite to the surface; 

 Orbit determination in a Terrestrial Reference Frame and with respect to a reference 

ellipsoid; 

 Corrections to the range due to atmospheric refraction, instrumental corrections, sea 

surface corrections and geophysical adjustments.  

The accuracy of SSH determination from satellite altimetry measurements depends on the 

accuracy of the satellite orbit with respect to a Terrestrial Reference Frame and expressed 

relative to  a reference ellipsoid. The determination of the satellite position at centimetre level 

accuracy requires a satellite tracking system that may incorporate different technologies, in a 

method designated as Precise Orbit Determination (POD). Most altimetry satellites support 

tracking by SLR (Satellite Laser Ranging), GPS and DORIS (Doppler Orbitography and 

Radiopositioning Integrated by Satellite). As illustrated in figure 2.2, the SSH is determined 

by: 

ܪܵܵ ൌ ݄௦௔௧ െ ܴ (2.3) 

Where ݄௦௔௧  is the height of satellite above the ellipsoid determined by POD. 

2.5.1 Corrections to the altimeter radar range 

The current accuracy of SSH determined from 1-Hz range measurements and precise orbit 

determination is aimed at the 2-3 cm [Dufau et al., 2011]. To achieve this accuracy the 

satellite is assumed to be calibrated, its orbital position at the same accuracy level and the 

range measurement must be corrected from all possible error sources. The range and 

geophysical corrections fall into four groups [Andersen and Scharroo, 2011]:  
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 Instrumental corrections due to tracker bias, antenna gain pattern, Doppler shift, oscillator 

drift and pointing angle. 

 Atmospheric refraction corrections due to dry gases, water vapour and ionospheric 

electrical charges. 

 Sea-state bias caused by the difference between the distribution of the mean scattered 

surface and the actual sea level. This difference depends on the sea-state. 

 Geophysical adjustments due to ocean tides, ocean tide loading, solid Earth tide, polar 

motion and atmospheric pressure loading.  

To compute the corrected SSH, all the corrections are given in the GDR and must be added to 

the observed satellite raw range (or subtracted from the raw SSH), as represented in the 

following equation: 

ܴ ൌ ܴ௢௕௦ ൅ ݎݎ݋ܿ ൌ
ൌ ܴ௢௕௦ ൅ ൫∆ܴ௜௡௦௧ ൅ ∆ܴௗ௥௬ ൅ ∆ܴ௪௘௧ ൅ ∆ܴ௜௢௡ ൅ ∆ܴௌௌ஻ ൅ ∆ܴ௢௖௘௔௡ ൅ ∆ܴ௘௔௥௧௛ ൅ ∆ܴ௟௢௔ௗ ൅ ∆ܴ௣௢௟௔௥ ൅ ∆ܴ௔௧௠൯ 

(2.4) 

Where ܴ௢௕௦ is the observed uncorrected raw range; 

    ∆ܴ௜௡௦௧  is the instrumental correction; 

    ∆ܴௗ௥௬ is the atmosphere refraction correction due to dry gases; 

    ∆ܴ௪௘௧ is the atmosphere refraction correction due to water vapour; 

    ∆ܴ௜௢௡ is the atmosphere refraction correction due to the ionosphere; 

    ∆ܴௌௌ஻ is the sea state bias correction; 

    ∆ܴ௢௖௘௔௡ is the ocean tide correction; 

    ∆ܴ௘௔௥௧௛ is the solid Earth tide correction; 

     ∆ܴ௟௢௔ௗ is the ocean tide loading correction; 

     ∆ܴ௣௢௟௔௥ is the polar motion correction; 

     ∆ܴ௔௧௠ is the atmospheric pressure loading correction. 
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2.5.2 Calibration of altimetry satellites 

Calibration and validation are important performance requirements of altimeter missions to 

check the SSH measurement accuracy. Calibration and validation embraces a wide variety of 

activities, including the interpretation of information from internal calibration modes and 

validation of fully-corrected SSH estimates by using other independent measurement 

systems. 

Considering the accuracy goal for SSH determination of about 2-3 cm or better, altimeter 

calibration represents and extremely challenging geodetic problem. The calibration and 

validation process starts before the satellite launch with rigorous laboratory calibration of all 

sensors and verification of the results from the altimeter processing system. After launch of 

the satellite, starts a verification phase of a few months, when engineering assessment and 

statistical assessment of the GDR is made with high priority. The results of the verification 

phase will lead to a tuning of the algorithms of the altimeter data processing system. Once the 

performance requirements are accomplished the GDR are released for scientific studies 

[Chelton et al., 2001]. 

After the validation phase, the GDR should be systematically verified to check for integrity 

of the measurements and subtle bias or drift errors that may occur. This verification is based 

on the comparison with validated SSH from Earth’s surface stations. Two main techniques 

have emerged in the global calibration effort of altimetric satellites: installation of absolute 

calibration sites (point calibration) and the utilization of tidal gauges networks (network 

calibration) [Chelton et al., 2001; Watson, 2005]. In most basic form, the altimeter bias is 

defined as:  

landsatsat SSHSSHbias   (2.5) 

Where satSSH  is the SSH derived from the satellite; 

landSSH  is the SSH derived from a Earth’s surface station. 

An absolute calibration site monitors successive passes of the altimeter satellite at a specific 

location. Site essential are the existence of accurate tide gauges and a means of referencing it 

to the same geographic reference system used for the satellite altimetry. Accurate estimates of 

the satellite orbit height as the satellite overflies the site are critical. Although satellite laser 
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ranging systems remain valuable for determining estimates of the orbit heights, over 

experiment sites, the DORIS and GNSS are also important tools for both satellite and tide 

gauge positioning in calibration experiments [Watson, 2005]. The calibration station is 

located along one of the satellite ground tracks, enabling the comparison of SSH for each 

over flight. The over flight frequency is higher if the comparison point is located at a 

crossover location [Watson, 2005]. The following methodologies can be used for satellite 

altimetry calibration: 

 Dedicated calibration fixed platforms such as the Harvest oil platform off the central 

California [Haines et al., 2010];  

 Anchored buoys equipped with GNSS (see section 2.2); 

 Ships equipped with GNSS and motion compensation systems (see section 2.3); 

The tide gauge network technique relies on monitoring the satellite altimeter by a relative 

comparison with a nearby coastal tide gauge network. A time series of satSSH is compiled at a 

position relatively close to the tide gauge network (typically within 50 km). A tide gauge time 

series, landSSH , is compiled for the same position using an ocean coastal dynamics model. 

The two time series are differenced and the resulting difference contains the drift of satellite 

altimeter and land motion at tide gauge. The primary difficulty is to estimate the land motion 

at the tide gauge network stations. In the same way as for the absolute calibration technique, 

space techniques such as DORIS and GNSS can be used for the determination of the vertical 

land motion at tide gauge stations. This calibration method, while sensitive to bias drift, is 

unable to detect time independent offsets. Also, issues of geographically correlated errors, 

from the uncertainty of ocean dynamic model are also present [Watson, 2005].  

Satellite altimetry over the open ocean is a mature discipline. In contrast, the processing of 

altimetry data collected in the vicinity of coastal regions is still a challenge. Improved coastal 

altimetry GDR’s have the potential to be benefit coastal ocean studies and applications and 

the demand is high, however the following additional problems must still be addressed: 

 As the satellite approaches the coast, land effect influences the returned radar echo 

footprint as the leading edge of the footprint deviates from the satellite altimeter 

tracking gate and the waveform fails to conform to the Brown model. This effect 

requires a comprehensive and systematic analysis of the returned waveforms. For this 

analysis, the satellite transmits the waveforms to the ground where the geophysical 
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parameters are retrieved in post processing or retracked. Retracking is required to 

recover the waveforms at distances from the coast less than 5-10 km [Gommenginger 

et al., 2011].   

 In the open ocean the combination of on board satellite altimeter/radiometer is 

satisfactory in terms of accuracy and spatial resolution. This is not the case for coastal 

areas where the sea/land effect influences the radiometer performance and degrades its 

humidity measurements. The wet troposphere correction is complex and shows high 

temporal variations, with rapid variations in both space and time. Therefore also more 

accurate wet troposphere delay correction is required [Obligis et al., 2011]. 

 Most range and geophysical corrections need special attention in the proximity of the 

coast, either because the signal is much larger or the correction is less accurate in 

coastal regions. In the deep ocean, recent investigations showed that ocean tide models 

have an accuracy of around 2-3 cm [Fok et al., 2010]. However, the global ocean tide 

models still have errors exceeding 10-20 cm close to the coast, in comparison with 

coastal tide gauges [Ray, 2008].  Particularly in shallow water regions, the largest 

accuracy gain in altimetric SSH determination is expected to come from improvement 

of tidal models [Andersen and Scharroo, 2011]. 
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Chapter 3. GNSS observations and error sources 

Currently two GNSS are available for public use: the very well-known and widely used USA 

NAVSTAR GPS and the Russian GLONASS. Two other GNSS are being implemented: the 

European GALILEO and the Chinese COMPASS. These systems are briefly described in 

annex A. 

The key point for any positioning methodology is the definition of adequate observation 

models, the implementation of efficient algorithms and mitigation of all potential error 

sources that may affect the observations. As a result of the un-differenced nature of PPP, all 

errors caused at the satellite, propagation, environment, and receiver need to be mitigated. 

The mitigation can be carried out by modelling, estimating, making single station observation 

combinations or using differential techniques.  

3.1. GNSS observables 

There are three types of GNSS observations (observables) that can be used to compute the 

PVT (Position, Velocity and Time) solution: pseudorange, carrier phase and Doppler or phase 

variation with respect to time. Pseudorange and carrier phase observations are related to the 

distance between the satellite and the receiver’s antenna, referring to the emission and 

reception time. The Doppler observation is related to the topocentric range rate of the 

satellite.  

3.1.1. Pseudorange 

As a first approximation, the pseudorange is a measure of the distance between the satellite 

and the receiver’s antenna, referring to the epochs of emission and reception of the signal. 

The transmission time of the signal is measured by correlating identical pseudorandom noise 

(PRN) codes generated by the satellite with those generated internally by the receiver.  

The geometric distance, ߩ௥௦, between the receiver, r, and the satellite, s, is equivalent to the 

time interval of propagation of a signal, τ, needed to travel from the satellite to the receiver, 

times the velocity of propagation, c: 

௥௦ߩ ൌ ܿ · ߬ ൌ ܿ · ሺݐݐ௥ െ  ௦ሻ (3.1)ݐݐ

Where ݐݐ௥ is the signal reception true time;  
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௦ݐݐ  is the signal transmission true time. By true time it is meant a time epoch 

measured by a uniform and perfectly synchronized clock for both satellite and 

receiver.  

The geometric distance depends on the receiver position, ܺ௥ሬሬሬሬԦሺݔ௥, ,௥ݕ  ௥ሻ, at signal receptionݖ

true time, ݐݐ௥, and also on the position of the satellite, ܺ௦ሬሬሬሬԦሺݔ௦, ,௦ݕ  ௦ሻ, at signal transmittingݖ

true time, ݐݐ௦: 

௥ݐݐ௥௦ሺߩ െ ௦ሻݐݐ ൌ หܺ௥ሬሬሬሬԦሺݐݐ௥ሻ െ ܺ௦ሬሬሬሬԦሺݐݐ௥ െ ߬ሻห െ หܺ௥ሬሬሬሬԦሺݐݐ௥ሻ െ ܺ௦ሬሬሬሬԦሺݐݐ௦ሻห ൌ

ൌ ට൫ݔ௥ሺݐݐ௥ሻ െ ௦ሻ൯ݐݐ௦ሺݔ
ଶ
൅ ൫ݕ௥ሺݐݐ௥ሻ െ ௦ሻ൯ݐݐ௦ሺݕ

ଶ
൅ ൫ݖ௥ሺݐݐ௥ሻ െ ௦ሻ൯ݐݐ௦ሺݖ

ଶ
 

(3.2) 

The receiver time is maintained by one clock built in the receiver and the satellite time is 

maintained by another clock built in the satellite. These clocks have errors when compared to 

a uniform time reference and are not synchronized. A uniform time system is kept 

continuously by the GNSS control system, the GNSS time. The GNSS can be either GPS 

time, GLONASS time or any other time system since it can be used as a GNSS true time 

reference.  

The relation between true time and observed satellite clock time, ݐ௦, and observed receiver 

clock time, ݐ௥, is represented by the following equations: 

௥ݐݐ ൌ ௥ݐ െ  ௥ݐߜ

௦ݐݐ ൌ ௦ݐ െ     ௦ݐߜ
(3.3) 

where ݐߜ௥ is the receiver clock bias and ݐߜ௦ is the satellite clock bias.  

Taking both, the satellite and receiver clock errors, into account, the derived distance 

corresponds to the true geometric range plus a set of errors with different physical meanings. 

This new distance is designated as pseudorange, P. It means the geometric distance plus a set 

of error terms. Accounting only for the clock biases the pseudorange observation equation is:  

௥ܲ
௦ሺݐ௥ሻ ൌ ܿ · ሺݐ௥ െ ௦ሻݐ ൌ ܿ · ሺݐݐ௥ ൅ ௥ሻݐߜ െ ܿ · ሺݐݐ௦ ൅ ௦ሻݐߜ

ൌ ܿ · ሺݐݐ௥ െ ௦ሻݐݐ ൅ ܿ · ሺݐߜ௥ െ ௦ሻݐߜ
ൌ ௥ሻݐݐሺߩ ൅ ܿ · ሺݐߜ௥ െ  ௦ሻݐߜ

(3.4) 
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The navigation message allows the user to compute the satellite position in an Earth Centered 

Earth Fixed (ECEF) coordinate system, ܺ௦ሬሬሬሬԦሺݔ௦, ,௦ݕ  ௦. Theݐߜ  ,௦ሻ , and the satellite clock biasݖ

unknowns are the receiver coordinates, ܺ௥ሬሬሬሬԦሺݔ௥, ,௥ݕ  .௥ݐߜ ,௥ሻ,, and the receiver clock biasݖ

Note that the satellite position must be calculated at transmission true time. The GNSS 

satellites orbits have a radius of approximately 26000 km. The propagation time of the signal 

from the satellite to the receiver at the Earth’s surface is approximately 0.07 sec. Since the 

satellite moves at 3800 m/s, during the transmitting period its position changes about 260 m. 

If the time of the received signal is used to compute the satellite position a significant error 

will occur.  

The signal propagation time is estimated by the receiver as the time needed to align a replica 

of the internal PRN code with the one received from the satellite. The transmission time is 

equal to the reception time minus the signal propagation time, ሺݐݐ௥ െ ௦ሻݐݐ , and can be 

estimated by subtracting the interval of propagation of the signal measured by the receiver: 

௦ݐݐ ൌ ௥ݐݐ െ ሺݐݐ௥ െ ௦ሻݐݐ ֞ ௦ݐ െ ௦ݐߜ ൌ ௥ݐ െ ௥ݐߜ െ ߬ሺݐݐ௥ െ ௦ሻݐݐ

֞ ௦ݐ ൌ ௥ݐ െ ௥ݐߜ ൅ ௦ݐߜ െ ሺݐݐ௥ െ ௦ሻݐݐ ൌ ௥ݐ െ
ܲሺݐ௥ሻ
ܿ

 
(3.5) 

Note that the pseudorange is measured by the receiver clock at time, tr, and not at true time, 

ttr. This means that the range, referred at true time, parcel in equation  ௥ܲ
௦ሺݐ௥ሻ ൌ ௥ሻݐݐ௥௦ሺߩ ൅ ܿ ·

ሺݐߜ௥ െ  ௦ሻ should be at receiver time, and this requires an additional correction. For thisݐߜ

correction, the geometric distance at true time can be linearized around the known nominal 

receiver time: 

௥ሻݐݐ௥௦ሺߩ ൌ ௥ሻݐ௥௦ሺߩ ൅
௥ሻݐሺߩ݀

ݐ݀
ሺݐݐ௥ െ ௥ሻݐ ൌ ௥ሻݐ௥௦ሺߩ െ

௥ሻݐሺߩ݀

ݐ݀
 ௥ (3.6)ݐߜ

The parcel 
ௗఘሺ௧ೝሻ

ௗ௧
௥ represents the variation of the geometric range due to an error rtݐߜ in the 

receiver clock. The satellite radial velocity 
ௗఘሺ௧ೝሻ

ௗ௧
  is zero if the satellite is at the closest point 

of approach and may reach values up to 800 m/s for elevation angles equal to 10 degrees. 

This means that the error in the geometric distance induced by this parcel will be smaller than 

1 mm if the receiver clock error is estimated with an accuracy of 1 μs. Because of this small 

contribution, the term 
ௗఘሺ௧ೝሻ

ௗ௧
௥ݐߜ  is often neglected and simply not listed in all equations 

explicitly [Leick, 1995]. 
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Taking all the previous corrections into consideration observation equation for pseudorange, 

accounting only for the receiver and satellite clock errors, is represented as follows: 

௥ܲ
௦ሺݐ௥ሻ ൌ ௥ሻݐሺߩ ൅ ܿ · ሺݐߜ௥ െ ௦ሻݐߜ ൌ

ൌ ට൫ݔ௥ሺݐ௥ሻ െ ௦ሻ൯ݐ௦ሺݔ
ଶ
൅ ൫ݕ௥ሺݐ௥ሻ െ ௦ሻ൯ݐ௦ሺݕ

ଶ
൅ ൫ݖ௥ሺݐ௥ሻ െ ௦ሻ൯ݐ௦ሺݖ

ଶ
൅ ܿ · ሺݐߜ௥ െ  ௦ሻݐߜ

(3.7)

The above pseudorange model is used in basic absolute positioning with GNSS with 

pseudorange single frequency observations, such as the Standard Positioning Service with the 

GPS C/A code. 

3.1.2. Carrier phase 

The carrier phase is a measure of the phase of the received satellite signal relative to the 

receiver-generated carrier phase at reception time. The measurement is made by shifting the 

receiver-generated phase to track the received phase. This is equivalent to integrating the 

carrier phase Doppler magnitude and keeping track of changes in the observed range to the 

satellite. Thus a phase difference is measured rather than the time difference which matches 

identical codes.  

The phase is obtained from integrating the frequency between epochs: 

߮ ൌ න ݂ · ݐ݀
௧భ

௧బ

 (3.8) 

Assuming a constant frequency, setting the initial phase ߮ሺݐ଴ሻ ൌ ߮଴, and taking into account 

the time span which the signal needs to propagate from the transmitter to the receiver, the 

phase observed at the receiving site at time, t, is equal to the phase at the transmitter ݐ െ  ߬, 

where ߬ is the propagation time: 

߮௥ ൌ ߮଴ ൅ ݂ሺݐ െ ߬ሻ (3.9) 

In the case of a moving receiver or transmitter, the received frequency is shifted due to the 

Doppler effect. This means that the received frequency by the receiver, ݂௦, differs from the 

transmitted or nominal frequency, ݂ , apart from relativistic effects, by a value that is 

proportional to the relative velocity receiver-transmitter, 
ௗఘ

ௗ௧
 (see next section): 

∆݂ ൌ ݂௦ െ ݂ ൌ െ
1
ܿ
·
ߩ݀
ݐ݀

· ݂௦ (3.10) 
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The GNSS receiver measurement is equivalent to the beat phase, or the difference between 

the received satellite phase, ߮௦ሺݐ௥ሻ, and the phase of a reference carrier generated by the 

receiver, ߮௥ሺݐ௥ሻ: 

߮௥௦ሺݐ௥ሻ ൌ ߮௦ሺݐ௥ሻെ ߮௥ሺݐ௥ሻ (3.11) 

Where: 

߮௦ሺݐ௥ሻ ൌ ݂௦ ቀݐ௥ െ
ߩ
ܿ
ቁ െ ݂௦ ·  ௦ݐߜ

 ߮௥ሺݐ௥ሻ ൌ ௥݂ · ௥ݐ െ ௥݂ ·       ௥ݐߜ

(3.12) 

Where  ݂௦ is the received satellite frequency, affected by the Doppler shift; 

      ௥݂ is the frequency generated internally by the receiver; 

 ;௥ is satellite clock errorߜ             

 .௥ is receiver clock errorߜ      

And this leads to: 

߮௥௦ሺݐ௥ሻ ൌ ߮௦ሺݐ௥ሻെ ߮௥ሺݐ௥ሻ ൌ െ݂௦
ߩ
ܿ
െ ݂௦ · ௦ݐߜ ൅ ௥݂ · ௥ݐߜ ൅ ሺ݂௦ െ ௥݂ሻݐ௥ (3.13) 

During signal tracking the received carrier phase and the corresponding integer count since 

lock-on are continuously modeled and frequently measured. In this way, the changing 

oscillator frequency is accounted for. Every time the phase is measured the coefficients of the 

phase tracking loop model are updated [Remondi, 1984]. The term ሺ݂௦ െ ௥݂ሻݐ௥   can be 

neglected if the difference ሺ݂௦ െ ௥݂ሻ if its value is small (a difference of 10ିଷ ݖܪ causes an 

error less than 1 mm), if the oscillators are instable, then their behavior should be modeled 

[Hofmann-Wellenhof, 1992]. This leads to a simplified equation: 

߮௥௦ሺݐ௥ሻ ൌ ߮௦ሺݐ௥ሻെ ߮௥ሺݐ௥ሻ ൌ െ݂௦
ߩ
ܿ
െ ݂௦ · ௦ݐߜ ൅ ௥݂ ·  ௥ (3.14)ݐߜ

The GNSS receiver is able to measure the fractional phase at initial lock-on and to keep track 

of changes in the cycles as the distance between satellite-receiver changes, until a loss of lock 

occurs. However, the number of cycles (full carrier phase waves) between the satellite and 

the receiver cannot be accounted for at the initial signal acquisition and it is an ambiguous 

integer number. This is called the integer carrier phase ambiguity, ܰ, a number that remains 
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constant when tracking is continued without loss of lock. The observed carrier phase, ߮௥௦ሺݐ௥ሻ, 

is composed by two terms: 

߮௥௦ሺݐ௥ሻ ൌ ∆߮௥௦ሺݐ௥ െ ଴ሻݐ ൅ ܰ (3.15) 

Where ∆߮௥௦ሺݐ௥ െ  ௥ augmented by theݐ ଴ሻ is the observed fractional phase measured at timeݐ

number of integer cycles since the initial epoch at lock on, ݐ଴; 

 ܰ is the ambiguous carrier phase integer ambiguity at lock on.  

The equation for carrier phase observation after substituting and changing the sign 

convention: 

∆߮௥௦ሺݐ௥ െ ଴ሻݐ ൌ ݂௦
ߩ
ܿ
൅ ݂௦ · ௦ݐߜ െ ௥݂ · ௥ݐߜ ൅ ܰ (3.16) 

This equation can be simplified to a more generic and simplified expressionሺ݂௦ ൌ ௥݂ ൌ

݂ሻ in units of cycle: 

߮௥௦ ൌ ∆߮௥௦ሺݐ௥ െ ଴ሻݐ ൌ ݂
ߩ
ܿ
൅ ݂ሺݐߜ௦ െ ௥ሻݐߜ ൅ ܰ

ൌ
1
ߣ
ߩ ൅

ܿ
ߣ
ሺݐߜ௦ െ ௥ሻݐߜ ൅ ܰ 

(3.17) 

The carrier phase observation is converted to metric units by multiplying by the wavelength: 

Φ௥
௦ ൌ ߩ ൅ ܿሺݐߜ௦ െ ௥ሻݐߜ ൅ ߣ · ܰ (3.18) 

3.1.3. Doppler 

The Doppler effect is the phenomenon of frequency shift of a propagating wave due to the 

relative motion of the emitter and the receiver. Let ݒఘ ൌ
ௗഐሺ௧ೝሻ

ௗ௧
 represent the radial velocity 

between receiver and satellite. The received signal as a frequency of [Xu, 2007]: 

௥݂ ൌ ݂ ቀ1 ൅
ఘݒ
ܿ
ቁ
ିଵ

ൎ ݂ ቀ1 െ
ఘݒ
ܿ
ቁ (3.19) 

where f is the transmitted frequency. 

There is a close connection between phase and Doppler measurements. Doppler 

measurements give the instantaneous phase variation and the integrated Doppler over a 

period of time gives the accumulated phase variation: 
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ܦ ൌ ݂ െ ௥݂ ൌ ݂
ఘݒ
ܿ
ൌ
ఘݒ
ߣ
ൌ
ߩ݀
ݐ݀ߣ

ൌ
݀߮
ݐ݀

 (3.20) 

The observation equation for Doppler measurements can be obtained by differentiating the 

carrier phase observation equation with respect to time: 

ܦ ൌ
݀߮
ݐ݀

ൌ
ߩ݀
ݐ݀ߣ

െ ܿ
௥ݐߜ݀
ݐ݀ߣ

൅ ܿ
௦ݐߜ݀

ݐ݀ߣ
െ ௙ߜ ൅ ߝ ൌ

ൌ
ߩ݀
ݐ݀ߣ

൅ ݂
݀ሺݐߜ௦ െ ௥ሻݐߜ

ݐ݀
െ ௙ߜ ൅  ߝ

(3.21) 

Where ߜ௙ is the frequency correction due to the relativistic effect; 

 .is the remaining error ߝ  

Effects with low frequency variations such as the ionosphere and troposphere are canceled 

out. 

3.2. Error sources in GNSS observables 

A GNSS signal is formed at satellite electronics, transmitted by an antenna, propagated 

trough the space, received by an antenna and processed by the receiver electronics. The 

GNSS range related error sources are defined as all the influences that apply directly to the 

geometric distance measurement, since the formation of the signal at the satellite to the 

processing output at the receiver. All these errors should correspond to one parcel in the 

observation equation for pseudorange and carrier phase measurements and are represented as 

follows: 

 ;௥: receiver clock error (in seconds)ݐߜ 

 ;௦  : satellite clock error (in seconds)ݐߜ 

  ;௥௘௟: relativistic effects (in metres)ߜ 

 ;௧௥௢௣: slant neutral atmosphere delay effects (in metres)ߜ 

 ;௜௢௡,௙: ionospheric delay (in metres)ߜ 

ߜ  ௠ܲ௨௟௧,௙: pseudorange multipath error (in metres); 

  ;Φ௠௨௟௧,௙: carrier phase multipath error (in metres)ߜ 

 ;௥,௙: combined receiver antenna offset and phase centre variation (in metres)ܽߜ 
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 ;௦,௙: combined satellite antenna offset and phase centre variation (in metres)ܽߜ 

 ܾ ௥ܲ,௙: receiver pseudorange bias (in metres); 

 ܾܲ௦,௙: satellite pseudorange bias (in metres); 

 ܾΦ௥,௙: receiver carrier phase bias (in metres); 

 ܾΦ௦,௙: satellite carrier phase bias (in metres); 

 ;௪௡ௗ: carrier phase wind up error (in cycles)ߜ 

ߝ  ௙ܲ: pseudorange observation noise and other unmodelled effects (in metres); 

 ;Φ௙: carrier phase observation noise and other unmodelled effects (in metres)ߝ 

 f: to indicate if the error is frequency dependent; 

 r: to indicate if the error is receiver dependent. 

 s: to indicate if the error is satellite dependent. 

These observation errors will be discussed in detail later on this chapter, can be divided into 

three main groups (receiver, satellite and frequency dependent, see table 3.1) and summarized 

as follows: 

 Satellite dependent effects: antenna offset and antenna phase centre variations; 

 Signal propagation effects: ionosphere propagation, neutral atmosphere propagation 

and multipath; 

 Receiver dependent effects: clock error, antenna offset and antenna phase centre 

variations; 

 Relativistic effects: frequency effect, path range effect and Earth’s rotational effect; 

 Carrier phase windup effect. 
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Table  3.1  –  Summary  of  GNSS  observation  errors  and  its  dependency  on  the  receiver,  satellite, 
frequency and observation type (pseudorange or carrier phase). 

Error type 
Depending on… 

Receiver Satellite Frequency Obs. type 

Rec. clock error ݐߜ௥ Yes No No No 

Sat. clock error ݐߜ௦ No Yes No  No 

Relativity ߜ௥௘௟ Yes Yes No  No 

Troposphere ߜ௧௥௢௣ Yes Yes No  No 

Ionosphere ߜ௜௢௡,௙ Yes Yes Yes  
(known relation) Different sign 

Multipath 
ߜ ௠ܲ௨௟௧,௙ Yes Yes Yes Yes 

 Φ௠௨௟௧,௙ Yes Yes Yes Yesߜ

Rec. antenna offset ܽߜ௥,௙ Yes No Yes No 

Sat. antenna offset ܽߜ௦,௙ No Yes Yes No 

Receiver bias 
ܾ ௥ܲ,௙ Yes No Yes Yes 

ܾΦ௥,௙ Yes No Yes Yes 

Satellite bias 
ܾܲ௦,௙ No Yes Yes Yes 

ܾΦ௦,௙ No Yes Yes Yes 

Windup wnd  Yes Yes Yes Carrier phase 
only

Other error sources that affect the accuracy of the PVT solution are related with the satellites 

orbits accuracy and with receiver site displacements due to Earth’s deformation. The receiver 

site displacements include the effects caused by the solid Earth tide, rotational deformation 

due to polar motion and Earth’s deformation due to mass loading. These satellite-receiver 

signal and site dependent errors will be discussed later, on the next subsections of this 

chapter. 

3.2.1. Satellite and receiver hardware delays 

The hardware delay is caused at the satellite or receiver hardware by electronic components 

such as the RF and signal processing stages (other than clock biases). When combining signal 

processing by all components together, several delays can occur, as illustrated in figure 3.1 

for the legacy GPS signals (those signals transmitted by the satellite block IIR class, before 

modernization). A similar phenomenon can also be observed in the receiver when it generates 

the signal replica. 

L1 (154f0) 



Chapter 3. GNSS observations and error sources 

32 
 

 

Figure 3.1 – GPS satellite hardware biases (based on Wells et al. [1987] and IS‐GPS‐200F [2011]). 

From the IS-GPS-200F (2011) the hardware delay signal tolerances for the GPS signal are, 

with reference to the sections of the mentioned publication: 

 Section 3.3.1.3, phase noise: the carrier phase should be tracked with and accuracy of 

0.1 radians rms. This is equivalent to 5 degrees or 10 ps for the GPS frequencies; 

 Section 3.1.1.5.1, quadratures: the two L1 components are modulated by the C/A code 

and the P code in phase quadrature (the C/A signal lagging the P signal by 90 degrees) 

within 0.1 radians.  

 Section 3.3.1.7.1, group delay: “group delay is defined as the delay between the signal 

modulated output of a specific satellite (measured at the antenna phase centre) and the 

output of that satellite on-board frequency source; the delay consists of a bias term and 

an uncertainty. The bias term is of no concern to the user segment since it is included 

in the clock correction parameters”. The group delay uncertainty shall not exceed 3.0 

ns (2). 

 Section 3.3.1.7.2, group delay differential (inter-frequency): “the group delay 

differential consists of random plus bias components…the absolute value of the mean 
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differential delay shall not exceed 15.0 ns…the variation about the mean shall not 

exceed 3.0 ns (95% probability)”. Corrections for the bias components of the group 

delay differential are provided in the navigation message using parameters designated 

as Total Group Delay (TGD) and Inter-Signal Correction (ISC).  

 Section 3.3.1.8, signal coherence (intra-frequency): The average difference between 

the chips of the signals modulated on the same carrier frequency, the L1 P – L1 C/A 

and L2 P – L2 C, shall not exceed 10 ns. The variable time difference shall not exceed 

1 ns (95% probability). 

A note on the TGD and ICS [IS-GPS-200F, 2011]: 

 The TGD is only for the benefit of single frequency (L1 P or L2 P) users. It is 

necessary by the fact that the SV clock offset estimates transmitted by the navigation 

message are based on two frequency ionospheric corrections. For the case of 

ionospheric-free data combination, the TGD bias is zero, by definition (when using L1 

P and L2 P). The user who uses only L1 P or L2 P shall apply this correction with the 

following equations: 

௅ଵ௉ݐߜ
௦ ൌ ௦ݐߜ െ  ܦܩܶ

௅ଶ௉ݐߜ
௦ ൌ ௦ݐߜ െ ቆ ଵ݂

ଶ

ଶ݂
ଶቇ  ܦܩܶ

(3.22) 

 The ISC accounts for the inter-signal biases between L1 P – L2 P, L1 P – L1 C/A and 

L1 P – L2 C, based on measurements made for each satellite during manufacture and 

may be subsequently updated on-orbit. For maximum accuracy the single frequency 

user must make modifications to  account for this inter-frequency delay with the 

following equations: 

௅ଵ஼/஺ݐߜ
௦ ൌ ௦ݐߜ െ ܦܩܶ ൅  ௅ଵ஼/஺ܥܵܫ

௅ଶ஼ݐߜ
௦ ൌ ௦ݐߜ െ ܦܩܶ ൅  ௅ଶ஼ܥܵܫ

(3.23) 

When combining code and phase observations in point positioning, hardware biases become 

a major concern. These biases that cannot be eliminated tend to merge with other parameters 

and may alter the estimated values. Follows a summary of the way each bias affects the 

estimation process [Banville et al., 2008]: 

 Satellite code biases are mostly eliminated from the code observations by using the 

satellite clock corrections (from the broadcast message or the IGS) along with the 

appropriate TGD and ICS. 



Chapter 3. GNSS observations and error sources 

34 
 

 Receiver code biases tend to propagate into code residuals and to the estimates of other 

parameters, such as the receiver coordinates. 

 Satellite phase biases are different for each satellite on each carrier frequency and they 

tend to merge into the ambiguity parameters. This is not a problem when using the 

ionosphere-free combination because the ambiguities are no longer integers. For 

ambiguity resolution, this aspect becomes a major concern. 

 Receiver phase biases are expected to be the same for each satellite but dependant on 

frequency. They will tend to merge into several parameters, such as the receiver clock, 

the phase ambiguities and potentially to the coordinate estimates. 

3.2.2. Ionosphere effect 

The ionosphere, extending from 50 to 1000 km above the Earth, is characterized by a highly 

dynamical plasma density, which is difficult to model and acts as dispersive medium 

(frequency dependent) for the propagation of electromagnetic waves. Different regions of the 

ionosphere are produced by different chemical components, affected by different 

wavelengths of the radiation of the Sun, with the harder solar radiation, the X rays, 

penetrating farther into the atmosphere and the less extreme UV radiation being stopped at 

greater heights where they produce ionization [Klobuchar, 1996]. 

To understand the behavior of radio signals transmitted through a medium it is necessary to 

know the refractive index of that medium. The refractive index is the ratio of the speed of 

light in vacuum, c, and the speed  of light in the medium, v:  

݊ ൌ ܿ ⁄ݒ (3.24) 

The refractive index of the ionosphere is usually associated with Eduard Appleton and is 

known as the Appleton-Hartree formula, or Appleton-Lassen formula, or simply as the 

Appleton formula [Davies, 1989]. For the L-band, this formula can be simplified to an 

accuracy of better than 1% given by the following expression [Klobuchar, 1996]: 

݊ ൌ 1 േ ௘ܰ݁ଶ

2߳଴݉߱ଶ ൌ 1 േ ௘ܰ݁ଶ

ଶ߳଴݂݉ଶߨ8
ൌ 1 േ

݁ଶ

ଶ߳଴݉ߨ8
· ௘ܰ

݂ଶ
ൌ 1 േ 40.30 · ௘ܰ

݂ଶ
 (3.25) 

Where ௘ܰ is the electron density and has the units of reciprocal metres cubed; 
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݁ is the is the electron charge (െ1.602 · 10ିଵଽ C); 

݉ is the rest mass of a electron (9.109 · 10ିଷଵ kg); 

߳଴ is the permittivity of free space (8.854 · 10ିଵଶ F/m); 

߱ ൌ  .where ݂ is the operating frequency in Hz ݂ߨ2

The propagation in a dispersive medium such as the ionosphere causes an advance in the 

phase and a delay in the pseudorange. Considering the propagation along the ray path s, the 

ionosphere delay can be modeled by the following expressions: 

For the carrier phase (advance):  ߜΦூைே ൌ െ ସ଴.ଷ

௙మ
׬ ௘ܰ݀ݏ ൌ െ ସ଴.ଷ·்ா஼

௙మ௦  (3.26) 

For the code (delay):  ߜPூைே ൌ ൅ ସ଴.ଷ

௙మ
׬ ௘ܰ݀ݏ ൌ ൅ ସ଴.ଷ·்ா஼

௙మ௦  (3.27) 

Where TEC is the abbreviation for Total Electron Content, which is the integrated electron 

density integrated along the signal path. The TEC is expressed in electrons/m3 or in TEC 

units (TECU) where one TECU is defined as 1016 electrons/m3. The TEC is a function of 

time of day, user location, satellite elevation angle, season, ionizing flux, magnetic activity, 

sunspot cycle and scintillation. The daily variability normally ranges between 1016 and 1019, 

with the minimum intensity occurring around midnight, high latitude, high elevation and 

solar minimum activity, and the maximum occurring at mid-afternoon, low latitude and solar 

maximum activity [Kaplan and Hegarthy, 2006]. 

The above expressions represent the TEC along the signal propagation path, ܶܥܧఘ. The value 

for TEC along the zenith direction, ܶܥܧ௭, can be computed from models. To derive the TEC 

in the signal propagation path from the TEC in the zenith direction, a slant factor or mapping 

function has to be introduced, which depends on the zenith angle of the signal path [Xu, 

2007]: 

ఘܥܧܶ ൌ ௭ܥܧܶ ·  ሻ (3.28)ݖሺ݌ܽ݉

Due to the dispersive nature of the ionosphere, the first-order propagation error may be fully 

corrected by combining the signal at two different frequencies. Traditionally PPP [Zumberge, 

1997; Kouba and Héroux, 2001] uses ionosphere free pseudorange and carrier phase 

combination (see annex C): 
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The pseudorange ionosphere free combination: ூܲி ൌ
௙భ
మ௉భି௙మ

మ௉మ
௙భ
మି௙మ

మ  (3.29) 

The carrier phase ionosphere free combination: Φூி ൌ
௙భ
మ஍భି௙మ

మ஍మ

௙భ
మି௙మ

మ  (3.30) 

All the terms in the observation equation remain the same as the raw observations except the 

ambiguity, biases and noise, which are frequency dependent. 

The ionosphere-free combination has some disadvantages:  

 The combinations are not totally ionospheric free. They cannot remove the higher 

order of the ionosphere effects. Although the higher order ionosphere effects usually 

cover less than 0.1% of the total effects, they can still be several tens of centimetres of 

range error during times of high TEC [Parkinson and Klobuchar, 1996];  

 The noise level increases by nearly a factor of three as compared to the noise level of 

the corresponding original code and carrier phase observables; 

 The combined ambiguity values are not integers. 

3.2.3. Tropospheric effect 

The neutral atmosphere is the lower part of the atmosphere over the Earth’s surface. It 

includes the lower part of the stratosphere and the troposphere. Unlike the ionosphere, this 

atmospheric layer is an electrically neutral layer and behaves as non-dispersive medium at 

GNSS carrier frequencies [Mendes, 1999]. In the literature the neutral atmosphere is referred 

as troposphere. To be precise, the term “troposphere” is a misnomer because roughly 25% of 

the delay effect is caused by atmospheric gases above the troposphere, specifically gases in 

the tropopause and stratosphere [Spilker, 1996]. 

While the effects of the electrically charged layer, the ionosphere, behaves as a dispersive 

medium at radio frequencies and its delay effect can be estimated using dual-frequency 

techniques, the non-dispersive nature of the neutral atmosphere can be more problematic, 

requiring modelling or other techniques to reduce its impact on the satellite positioning.  

The electromagnetic signals are affected by the neutral atoms and molecules in the 

troposphere by an attenuation and refraction type effect, reducing signal power and causing a 

delay. The troposphere produces signal attenuation that is generally bellow 0.5 dB and delay 

effects on the order of 2 to 25 m. These effects vary both with the elevation angle because 
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lower elevation angles produce a longer path length through the troposphere and with the 

detailed atmospheric gas density profile versus altitude [Spilker, 1996].  

There are two major tropospheric delay effects: a hydrostatic component and a wet 

component: 

௧௥௢௣ߜ ൌ ௛௬ௗߜ ൅  ௪௘௧ (3.31)ߜ

The first and larger component, ߜ௛௬ௗ, is the hydrostatic tropospheric delay. It is caused by the 

atmosphere dry gases composition, primarily by N2 and O2. The zenith dry atmosphere delay 

corresponds approximately to 2.3 m and varies with local temperature and atmospheric 

pressure in a reasonably predictably manner and its temporal variability is slow, less than 1% 

in a few hours.  

The second component, the wet atmosphere delay, ߜ௪௘௧, is caused by the atmosphere water 

vapour component. This effect is generally smaller than the dry atmosphere delay, about 1 to 

50 cm at zenith (may vary between 1/10 and 2/10 the value of the dry atmosphere delay), but 

its temporal and spatial variation is much more significant, 10 to 20% in a few hours, and is 

less predictable even with surface humidity measurements [Spilker, 1996]. 

The estimation process is facilitated by a simple parameterization using mapping functions 

that describe the elevation angle dependence of the delay for the hydrostatic and wet delay 

components [Niell, 1996]. The total tropospheric in the slant direction delay can be 

parameterized by: 

௧௥௢௣ሺ݁ሻߜ ൌ ݉௛௬ௗሺ݁ሻ · ௛௬ௗ,௭ߜ ൅ ݉௪௘௧ሺ݁ሻ ·  ௪௘௧,௭ (3.32)ߜ

Where ߜ௛௬ௗ,௭ is the hydrostatic zenith delay; 

   ݉௛௬ௗሺ݁ሻ is the mapping function for the hydrostatic delay; 

 ;௪௘௧,௭ is the wet zenith delayߜ   

   ݉௪௘௧ሺ݁ሻ is the mapping function for the wet delay; 

         ݁ is theelevation angle.  
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3.2.3.1. Hydrostatic zenith delay 

The hydrostatic zenith delay can be accurately computed based on reliable surface pressure 

data using the formula of Saastamoinen (1972) as given by Davis et al. (1985) [IERS 

Conventions, 2010]: 

௛௬ௗ,௭ߜ ൌ
ሺ0.0022768 ט 0.0000005ሻ · ଴ܲ

௦݂ሺ߶, ሻܪ
 

௦݂ሺ߶, ሻܪ ൌ 1 െ 0.00266 · cosሺ2߶ሻ െ 0.00000028 ·    ܪ

(3.33) 

Where ߶  is the geodetic latitude, H is station orthometric height and ଴ܲ is the total 

atmospheric pressure in hPa (equivalent to milibars) at the antenna reference point.  

If meteorological instrumentation is not available, local pressure data, required to compute 

the dry zenith delay, may be estimated with the empirical global model GPT [Boehm et al. 

2007]. 

3.2.3.2. Wet zenith delay 

There is currently no simple method to estimate an accurate value for the wet tropospheric 

delay. So in most applications, when sub-decimetre accuracy is sought, the wet zenith delay 

is estimated as an additional variable besides the other geodetic variables, such as the station 

position. This wet zenith tropospheric delay unknown is a common practice in PPP and has 

been implemented since the first PPP processing methods that can be used for kinematic 

positioning [Kouba and Héroux, 2001; Gao and Shen, 2001]. 

3.2.3.3. Mapping functions 

The hydrostatic and wet mapping functions for the troposphere depend on the vertical 

distribution of the hydrostatic and wet refractivity above the geodetic sites. The general form 

of the hydrostatic and wet mapping functions is a continuous fraction, function of the 

elevation angle [Herring, 1992]:   

௛௬ௗ,௦ߜ ൌ

1 ൅
ܽ

1 ൅ ܾ
1 ൅ ܿ

sinሺ݁ሻ ൅ ܽ

sinሺ݁ሻ ൅ ܾ
sinሺ݁ሻ ൅ ܿ

 (3.34) 
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where e is the elevation angle and  a, b and c are coefficients which are different for the 

hydrostatic and wet components. These coefficients should be related with sufficient 

accuracy to account for the characteristics of the atmosphere at the time and position of the 

observation.  

The updated Vienna Mapping Functions (VMF1) are recommended for high accuracy global 

applications. VMF1 are based on numerical weather models data for the determination of the 

coefficients. The hydrostatic and wet coefficients “a” (see equation 3.29), are given on a 

global grid sampling of 2.5 degrees north to south and 2.0 degrees west to east, and for each 

parameter there are four files per day, at 0, 6, 12 and 18 hours Universal Time [Boehm et al., 

2006a]. VMF1 are currently the mapping functions providing globally the most accurate and 

reliable geodetic results [IERS Conventions, 2010]. The use of VMF1 requires the 

availability of files with the coefficients to be interpolated for the station and observation. 

The coefficients are provided in files that can be downloaded at 

http://ggosatm.hg.tuwien.ac.at/DELAY/GRID, with a latency of 34 hours. 

The Global Mapping Functions (GMF) are empirical mapping functions, in the tradition of 

the Niell Mapping Function (NMF) [Niell, 1996], whose parameters are determined from site 

coordinates and day of the year. NMF were widely used mapping functions because is easy to 

implement and one of the best among the empirical mapping functions, prior to GMF 

[Mendes, 1999].  

The GMF are based on an expansion of VMF1 parameters into spherical harmonics, up to 

degree and order 9, on a global grid. Their parameters are calculated using only station 

latitude, longitude (not in the NMF, which are symmetrical along the equator), height and day 

of the year. The results for the comparison of GMF and NMF with VMF indicate that 

[Boehm et al., 2006b]: 

 The regional height biases and annual errors of NMF are significantly reduced with 

GMF; 

 GMF agrees much better with VMF1, however it was found a slight degradation in 

the short-term precision and climate anomalies phenomena such as the El Niño cannot 

be accounted for with such empirical mapping function. 

GMF are easy to implement, were developed with the goal to be more accurate than the 

NMF. It can be used in replace of the VMF1, when the highest accuracy is not required 
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[IERS Conventions, 2010].  This makes GMF the preferable mapping function for use in 

PPP.  

3.2.4. Relativity corrections 

Einstein’s special relativity is based on two postulates [Ashby and Spilker, 1996]: 

 No inertial system is preferred. The equations expressing the laws of physics have the 

same form in all inertial systems. 

 The speed of light is a universal constant independent of the state of motion of the 

source. Any light ray moves in the inertial system of coordinates with constant 

velocity, c (the speed of light in the vacuum), whether the ray is emitted by a 

stationary or by a moving source. 

The formula of the special relativity effects caused by a constant motion of a moving inertial 

coordinate system viewed from a resting inertial coordinate is given by [Xu, 2007]: 
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where: Δݐ, Δݏ, ݂  is the time interval, length and frequency measured by a system at rest; 

Δݐᇱ, Δݏᇱ, ݂ᇱ  is the time interval, length and frequency measured by a moving system 

with constant speed; 

 .is the speed of the moving system with respect to the system at rest ݒ 

This indicates that: 

 1
'





t

t , the time interval viewed at the system at rest is shorter that the time interval 

viewed in the system at constant speed,  

 1
'





s

s , the length viewed at the system at rest is shorter that the length viewed in the 

system at constant speed. 

 1
'





f

f , the frequency observed in the moving system increases when compared to the 

frequency observed at the system at rest. 

Einstein’s general relativity incorporates gravitation by the principle of equivalence: The 

laws of physics are the same in a uniformly accelerated reference frame or in a uniform 

gravitational field. 
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The mathematics of general relativity is extremely complex. However for the treatment of 

relativistic effects on GPS, only a simplified approach is required. Note that the right-hand 

side of the above equation represents the unit mass kinetic energy ( 22v ) scaled by the speed 

of light. That is, the speed relativistic effects may be interpreted as the effects caused by 

kinetic energy due to motion. Analogous effects may also be caused by potential energy due 

to the gravity field. To equation 3.35 is added one parcel due to the potential energy [Xu, 

2007]: 
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 (3.36) 

where ܷ߂  is the difference of the Earth’s gravitational potential at the satellite and the 

potential at the receiver position due to the presence of a gravitational field U. 

The concept of satellite ranging is based on the observed time difference between 

transmission and reception of a radio signal. Two factors affect the concept of time:  

 Motion. The satellite is moving with reference to a receiver and this causes the satellite 

clock tends to be slower than the receiver clock; 

 Gravity. The satellite is subjected to the Earth’s gravity field, which is less than the 

forces on the receiver at the Earth’s surface. This phenomenon causes the satellite 

clock to run faster.  

3.2.4.1. The frequency effect 

If the satellite transmits at frequency 'f then all receivers observe frequency f , due to 

relativistic effects. This offset depends on the relative velocity and on the potential energy of 

the receiver relative to the satellite, and can be determined by equation 3.36.  

This frequency offset has been implemented in the satellite and the users do not need to 

consider this effect, considering its orbital velocity and the gravitational potential with 

reference to the geode. For GPS, the offset of its fundamental frequency (10.23 MHz) is 

approximately 0.00457 Hz and the satellite clock frequency is set in conformity. 

For the receiver at the Earth’s surface, its frequency is also affected due to the velocity of 

rotation of the Earth. The effect can be represented analogously by equation 3.36, where 

ܷ߂ ൌ 0 and ݒ is the velocity of the receiver due to the Earth rotation.  
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These effects are corrected by the receiver’s software, both the satellite orbital motion and 

receiver (Earth rotation) motion [Xu, 2007].  

3.2.4.2. The path range effect 

The path range effect due to the general relativity can be computed by [Holdridge, 1967]: 
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 (3.37) 

where  G is the Gravitational constant; 

EM  is the Mass of the Earth; 

i  is the Geocentric distance to the receiver; 

j  is the Geocentric distance to the satellite; 

j
i  is the Distance between the receiver and satellite. 

This correction has the units of length and a maximum value of 2 cm.  

3.2.4.3. The orbit eccentricity effect 

The orbit eccentricity effect is given by [Xu, 2007]: 

௘ݐ∆ ൌ
2
ܿଶ
ඥܯܩா௔௥௧௛ܽ ݁ sinܧ ൅ ݐݏ݊݋ܿ ൌ

2
ܿଶ
൫ݎఫሬሬሬԦ · ఫሬሬሬԦ൯ݒ ൅  (3.38) ݐݏ݊݋ܿ

Where G is the universal gravitational constant; 

 ;ா௔௥௧௛ is the mass of the Earthܯ    

a is the semi-major axis of the orbit; 

E is the eccentric anomaly of the orbit; 

e is the eccentricity of the orbit; 

 ;ఫሬሬሬԦ is the satellite position vectorݎ

 .ఫሬሬሬԦ is the satellite velocity vectorݒ
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The second term is a constant that cannot be separated from the clock offset. This total 

correction has already been taken into account in the GPS orbits determination and is 

broadcasted in the navigation message by the parameters of the clock error polynomial [IS-

GPS-200F, 2011]. Therefore, this correction only needs to be considered in the satellite orbit 

determination [Xu, 2007]. 

3.2.4.4. The Earth’s rotational effect 

This Sagnac-like effect is caused by the variation of the distance satellite-receiver during 

signal transmission due to the Earth’s rotation and can reach up to 30 m for a fixed receiver 

rotating with the earth. This correction must also be applied for kinematic GNSS receivers 

that are not fixed at the Earth’s surface. The receiver velocity vector with respect to an 

inertial reference is given by: 

௥ሬሬሬԦݒ ൌ ߱௘ሬሬሬሬԦ ൈ పሬሬԦݎ ൅  పሬሬሬԦ (3.39)ݒ

where: ߱௘ሬሬሬሬԦ ൈ  ;పሬሬԦ is the velocity vector of the receiver due to the Earth’s rotationݎ

߱௘ሬሬሬሬԦ  is the angular velocity of the Earth; 

 ;పሬሬԦ is the receiver geocentric position vectorݎ

 .పሬሬሬԦ is receiver velocity vector with reference to the Earth’s surfaceݒ

The first term on the right hand side of equation 3.30 is the velocity due to the Earth’s 

rotation and the second term is the kinematic velocity vector of the receiver related to the 

Earth’s surface.  

The correction due to the Earths rotational during to the signal propagation time can be 

presented as [Ashby and Spilker, 1996]: 

ߩ∆ ൌ
൫ݎపሬሬԦ െ ௦ሬሬሬԦ൯ݎ · ௥ሬሬሬԦݒ

ܿ
 (3.40) 

Where  ݎ௦ሬሬሬԦ is the satellite geocentric position vector. 

A kinematic motion of 100 km/h can cause additional Sagnac effect up to 2 m. 
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3.2.5. Carrier phase wind­up effect 

As described in a previous section, from the incoming signal, the receiver extracts carrier 

phase and code measurements that provide information which allows the estimation of the 

range equivalent quantities between the transmitter and receiver. In particular, the observed 

carrier phase is actually the difference of the relative phase between the phase of the 

incoming electromagnetic wave and the reference phase generated receiver. GPS satellites 

transmit Right Hand Circularly Polarized (RHCP) electromagnetic waves. This implies that 

the observed carrier phase depends on the relative orientation of the satellite and receiver 

antennas. Therefore, a relative rotation between the transmitter and receiver antennas will 

influence the carrier phase measurement, and the result will be an apparent variation of the 

range. A relative rotation of either receiver or satellite antenna around its bore axis will 

change the carrier phase up to one cycle (one wavelength). This effect is designated as the 

“phase wind-up” effect [Wu et al., 1993]. 

Wu et al. (1993) noted that antennas having different spatial orientations (which is inevitable 

on long baselines) will measure different relative phases at the same transmit time (i.e., when 

sampling the same carrier wavefront) that can persist at the level of 1 cm or more after double 

differencing.  For point positioning this effect is quite significant as it can reach up to half 

wavelength. They provide a model of this “phase windup” which eliminates the anomaly and 

modestly improves residuals and solution stability. The phase wind-up correction can be 

evaluated as given by the following equations (see figure 3.2): 

 

 

 

 

 

 

 

 

 

 

Figure 3.2 – Phase wind‐up satellite‐receiver geometry. 
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(3.41) 

where: ሬ݇Ԧ is the satellite-to-receiver unit vector (see figure 3.2);  

 ;ᇱሬሬሬሬԦ are the dipole vectors of the satellite and receiverܦ ሬሬԦ andܦ

x, y and z are satellite body coordinate unit vector (as in the satellite antenna offset); 

x', y’and z’ are the receiver local coordinate unit vector (north, east, up). 

For the most common terrestrial applications such as static surveying, the antenna does not 

suffer for rotations and therefore the error caused by the wind-up is small (of the order of 

centimeters. Note that a full rotation introduces an error of one wavelength, which is 0.19 m 

for L1, 0.24 m for L2) and can be estimated. For this reason, the wind-up is usually neglected 

on GPS applications that do not require centimeter level accuracy.  

Due to its accumulative nature, the wind-up effect can be relatively large for certain 

applications with spinning antennas. This is the case, for guided rockets that use spinning 

rotation as a means of stabilization. An antenna mounted on the tip of such a spinning rocket 

will generate large values of wind-up [Garcia-Fernandez et al., 2005]. 

For static point positioning, not correcting for unexpected wind-up effect due to relative 

satellite rotation while in orbital motion, will result in decimetre level positioning error. 

Rapid phase wind up error can occur in the case of eclipses (when a straight line, starting 

from the Sun, intersects the satellite and then the centre of the Earth, or when the line from 

the Sun intersects the centre of the Earth and then the satellite), when the satellite manoeuvres 

to reorient their solar panels toward the Sun [Kouba and Heroux, 2001]. 

For kinematic positioning there is additional wind-up due to receiver motion, but apply to all 

satellites approximately with the same magnitude. This means that the wind up effect due to 

receiver motion may be ignored without significant error, since it will be mostly absorbed 

into the receiver clock bias estimate [Tolman et al., 2010] or can be estimated in an algorithm 
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that incorporates accurate ionospheric corrections and integrates three carriers ambiguity 

fixing in an undifferenced user navigation filter [Hernandez-Pajares et al., 2004]. 

3.2.6. Antenna phase centre variation 

The geometric distance between the satellite (at signal emission time) and the GNSS receiver 

is referred to the electronic phase centre of the two antennas. Two distinct situations must be 

considered: the phase centre of the transmitting signal at the satellite antenna and the phase 

centre of the incoming signal at the receiver antenna.  

3.2.6.1. Satellite antenna phase centre correction 

The requirement for satellite antenna phase centre correction derives from the separation 

between the GNSS satellite ECEF coordinates computed from orbital parameters and the 

antenna phase centre position in where the signal starts its propagation to the receiver. The 

broadcast GPS ephemerides are referred to the satellite phase centre [IGS-GPS-200F, 2011], 

therefore no correction is required. But this is not the case for IGS precise orbits and clocks.  

IGS precise orbits and clocks are estimated using dynamic force models; therefore, the 

resulting orbital data refers to the centre of mass of the satellite. The separation between the 

centre of mass and the phase centre depends mainly on the satellite model. To correct the 

observation for this separation the user must know the satellite phase centre offsets and 

monitor the orientation of the offset vector in space, as the satellite orbits the Earth. A 

satellite body coordinate system must be defined to describe the antenna phase centre offset 

(see figure 3.3).  

 

Figure 3.3 – Satellite fixed coordinate system (adapted from Kouba, 2009). 

Earth
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 Ԧݕ
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 Ԧ axisݖ –  pointing  to  the  centre  of mass  of  the  Earth, 

coinciding with the antenna pointing direction. 

 Ԧ axisݕ –  solar  panel  axis,  kept  perpendicular  to  the 

vector pointing to the sun. 

 Ԧ axis – perpendicular to the other axes, to form a rightݔ

handed coordinate system. 

 ሬ݊Ԧௌ௨௡ – Unit vector pointing to de sun. On the xz plane. 
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Since November 5, 2006 (GPS Week 1400), the IGS applies absolute phase centre 

corrections for both satellite and receiver antennas [Schmid et al., 2007]. The current models 

for the GNSS satellites body frame antenna phase centre offset are available at from the IGS 

website at http://igscb.jpl.nasa.gov/igscb/station/general/general on Antenna Exchange 

Format (ANTEX) files.  

The corrections are computed in the form of a geocentric displacement vector that is added to 

the satellite geocentric position vector. This requires the satellite body frame antenna offset 

vector to be transformed to a geocentric vector. The algorithm is described by Xu [2007]. 

3.2.6.2. Receiver antenna phase centre correction 

The receiver antenna phase centre is not a fixed physical or geometrical mark that the user 

can refer to. The antenna phase centre depends on the elevation and azimuth of the incoming 

electromagnetic signal. This anisotropy is modeled by a phase centre offset from a physical 

reference point to the mean electrical phase centre pattern, with its elevation and azimuth 

dependent variations.  

The current models for the GNSS satellites body frame antenna phase centre offset and 

variations are also available at the IGS website, in the same ANTEX files as for the satellite 

antennas.  

The correction vector applies directly to the receiver antenna position vector after conversion 

to geocentric coordinates. If the antenna is on a moving platform, an additional correction 

may be required to compensate for motion tilting. 

3.3. Observation equations 

An observation equation expresses a measured value as a function of one or more unknowns. 

The GNSS observation equations used for positioning are described in this section focusing 

on the most important aspects only. For further information refer to the literature [Leick, 

1995; Xu, 2006; Seeber, 2003]. 

For precise positioning all error sources should be accounted for. Taking all the effects that 

apply in the observations domain, as described in the last sections, the pseudorange and 

carrier phase observation equations, derived in 3.1., are completed with the terms, 

corresponding to each one of the mentioned effects: 
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Pseudorange         
(in metres): 

௥ܲ,௙
௦ ൌ ߩ ൅ ܿ · ሺݐߜ௥ െ ௦ሻݐߜ

൅ ߜ௥௘௟ ൅ ௧௥௢௣ߜ ൅ ௜௢௡,௙ߜ ൅ ߜ ௠ܲ௨௟௧,௙ ൅ ௥,௙ܽߜ ൅ ௦,௙ܽߜ ൅ ܾ ௥ܲ,௙ ൅ ܾܲ௦,௙ ൅ (3.42) ܲߝ

Carrier phase  
(in metres): 
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(3.43) 

Some remarks: 

 Terms that do not depend on the observation type neither the frequency, the geometric 

part: ߩ, ܿሺݐߜ௦ െ  ; ௧௥௢௣ߜ ,௥௘௟ߜ ,௥ሻݐߜ

 Terms that are common to pseudorange and carrier phase observations: ߩ, ܿሺݐߜ௦ െ  ,௥ሻݐߜ

 ௜௢௡,௙ (the ionospheric effect has the same magnitude but with different signߜ  ,௧௥௢௣ߜ ,௥௘௟ߜ

for pseudorange and carrier phase), ܽߜ௥,௙, ܽߜ௦,௙; 

 Terms that are not common (may have a different value) to pseudorange and carrier 

phase observations: ௥ܰ,௙
௦ ܾ ,௪௡ௗߜ ,Φ௠௨௟௧,௙ߜ ,P௠௨௟௧,௙ߜ , ௥ܲ,௙, ܾܲ௦,௙, ܾΦ௥,௙, ܾΦ௦,௙. 

3.4. Site displacement effects 

This section describes the effect on reference marks on the Earth’s crust displacements due to 

the effect of the external tide generating potential causing the solid Earth tide and 

displacements due to ocean tide loading. 

3.4.1. Solid Earth tide 

The solid Earth tide is a phenomenon of the deformation of the elastic body of the solid part 

of the Earth caused by the gravitational attracting force of close distance celestial bodies, the 

Moon and the Sun. The periodic vertical and horizontal site displacements caused by tides are 

represented by spherical harmonics of degree and order mn characterized by the Love 

number, ݄௡௠ , and the Shida number, ݈௡௠ . The effective values of these numbers weakly 

depend on station latitude and tidal frequency and need to be taken into account when an 

accuracy of 1 mm is required for station position determination. However for 1 cm accuracy, 

only the second degree tides, supplemented with a height correction term are necessary 

[IERS, 2010]. The vector displacement of one station due to second degree tides is given by: 
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Where ܯܩ௘ is the gravitational parameter of the Earth; 
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 ;௝ is the gravitational parameters of the Moon (j=2) and de Sun (j=3)ܯܩ 

 ܴ௘ is the Earth’s equatorial radius; 

ఫܴሬሬሬԦ  is the unit vector from the geocenter to Moon or Sun and ௝ܴ is the magnitude of 

that vector; 

 is the magnitude of that ݎ Ԧ  is the unit vector from the geocenter to the station andݎ

vector; 

݄ଶ is the nominal degree 2 Love number: 0.6078; 

݈ଶ is the nominal degree 2 Shida number: 0.0847. 

In the equation above, the terms factorized by ݄ଶ  and  ݈ଶ  are the radial and transverse 

components of the tidal displacement. In order to account for the latitude dependence of the 

effective Love and Shida numbers, ݄ଶ  and ݈ଶ shall have the form of [IERS, 2010]: 

݄ଶ ൌ 0.6078 െ 0.0006
3 sinଶሺ߮ሻ െ 1

2
 

݈ଶ ൌ 0.0847 െ 0.0002
3 sinଶሺ߮ሻ െ 1

2
 

(3.45) 

where φ is the geocentric latitude of the station. 

3.4.1.1. Permanent part of tidal deformation 

There is a permanent (time independent) part of the tidal deformation included in the degree 

2 tidal potential. The projections of the permanent displacement into radial and the transverse 

components are, in metres [IERS, 2010]: 

Radial component: ሾെ0.1206 ൅ 0.0001 · ଶܲሺsin߮ሻሿ ଶܲሺsin߮ሻ 
(3.46) 

Transverse component:
 

ሾെ0.0252 ൅ 0.0001 · ଶܲሺsin߮ሻሿ sin 2߮ 

where   ଶܲሺsin߮ሻ ൌ ሺ3 sinଶ ߮ െ 1ሻ/2    

According with IERS (2010), “these are the components of the vector to be added to the 

conventional tide-free position to obtain the mean tide position. The radial component of this 
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restitution to obtain the “mean tide” values amount to about -12 cm at the poles and about +6 

cm at the equator”. 

3.4.1.2. Tidal surfaces used in geodetic analysis 

Site coordinates derived using the correction for the solid Earth tide formulation, are referred 

to the “conventional tide free” surface. A “truly tide free” surface (imagine the Earth alone, 

without the Sun, the Moon or any other attracting space body) is fundamentally 

unobservable, since the solid Earth tide formulation depends on nominal or conventional 

values for the Love numbers. To remove the permanent tide component and define a “truly 

tide free” surface, the fluid limit Love numbers must be used [IERS, 2010]. 

Restoring the permanent component of the Earth tide using the above formulation (see 

previous section) yields the “mean tide” (see figure 3.4). As stated by Dennis Milbert, the 

easiest way to imagine the “mean tide” surface 

(http://home.comcast.net/~dmilbert/softs/solid.htm, accessed on March 2012) “is to pretend 

that the Moon and Sun orbit around the Earth. Imagine them orbiting faster and faster, so 

that, on the average, they are "smeared" into bands around the Earth. Alternatively, you can 

imagine the Moon and Sun as chopped into tiny bits and spread around the Earth in a two-

band system. These "average bands" will cause a permanent gravitational attraction leading 

to an increased equatorial bulge of the non-rigid Earth. In other words, most of the Earth’s 

equatorial bulge is due to the Earth’s rotation. But, there is a portion of the bulge that is 

created by the average tug of the Moon and Sun”. 

Resolution 16 of the 18th General Assembly of the IAG (1984) recommends the use of the 

“mean tide” surface for quantities associated with station displacements. However this 

recommendation has not been implemented in the algorithms used for tide modelling by the 

geodetic community in the analysis of space geodetic data [IERS, 2010].   

The satellite altimetry GDR’s comply with the above IAG resolution, however GNSS derived 

coordinates are referred to one ITRF or a “conventional tide free” surface.  



Chapter 3. GNSS observations and error sources 

51 
 

 

Figure 3.4 –Tidal surfaces used in geodetic analyse (adapted from IERS, 2010). 

3.4.2. Rotational deformation due to polar motion 

Polar motion is caused by the variation in position of the Earth’s rotation axis. This variation 

causes deformations on the radial and horizontal position of points on the Earth’s surface and 

is big enough to affect the geodetic position of a single point.  

The Earth’s flattening, combined with the obliquity of the ecliptic, results in a slow turning of 

the equator on the ecliptic, due to the differential gravitational effect of the Moon and the 

Sun. The slow circular motion, with a period of 26000 years is called precession and the other 

quicker motion with periods from 14 days to 18.6 years is called nutation. The nutation 

includes the Chandler wobble period of the Earth, about 14 months, with 9 m variation. 

[Vaníček and Krakiwsky, 1995].  

From IERS (2010), the pole tide displacement (in milimetres) at given latitude (φ) and 

longitude (λ) is given by the following relations: 

ܵ௥ ൌ െ33 sinሺ2߮ሻ ሺ݉ଵ cosሺߣሻ ൅ ݉ଶ sinሺߣሻሻ

ܵఝ ൌ െ9 cosሺ2߮ሻ ሺ݉ଵ cosሺߣሻ ൅ ݉ଶ sinሺߣሻሻ 

ఒܵ ൌ 9 cosሺ߮ሻ ሺ݉ଵ sinሺߣሻ െ ݉ଶ cosሺߣሻሻ 

(3.47) 

Where ܵ௥ is the radial component (positive upwards); 

         ܵఝ is the meridian component (positive southwards); 

           ఒܵ is the parallel component (positive eastwards); 

Instantaneous Earth surface 
(Observable) 

Conventional tide free Earth surface 
(ITRF) 

Mean tide Earth surface 

True tide free Earth surface 
(unobservable) 

Remove  total  tidal  deformation  with 
conventional Love numbers 

Restoring  deformation  due  to  permanent 
tide using conventional Love numbers 

Remove  deformation  due  to  permanent 
tide using the fluid limit Love numbers 
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݉ଵ and ݉ଶ are the time dependent offset of the instantaneous rotation pole from the 

mean, in arcseconds. More explicitly: 

݉ଵ ൌ ௣ݔ െ ҧ௣         and         ݉ଶݔ ൌ െ൫ݕ௣ െ  ത௣൯ݕ

Where ݔҧ௣  and ݕത௣ (in arcseconds) represent the IERS conventional mean pole position; 

 .௣ (in arcseconds) represent the pole instantaneous positionݕ ௣ andݔ            

 For a given epoch, these parameters can be downloaded from the IERS website. Taking into 

account that ݉ଵ  and ݉ଶ  vary at most 0.8�, the maximum radial displacement is 

approximately 25 mm and the maximum horizontal displacement is 7 mm in the horizontal 

component, for a single point [IERS, 2010]. 

3.4.3. Earth deformation due to mass loading 

In addition to the solid Earth tide and pole tide, temporal variations of the mass distribution 

of the oceanic, atmospheric and hydrologic masses load and deform the Earth’s surface, 

introducing site displacements effects. Since the Earth is not completely rigid, it deforms 

under this mass load variation. One can observe it as variations at the station in vertical and 

horizontal displacement, in gravity, tilt and in strain. This deformation is large enough to be 

detected with space based techniques as well as with terrestrial gravity observations.  

The IERS Global Geophysical Fluid Center provides the geodetic community with models of 

geodetic effects (rotation, gravity and deformation) driven by the temporal variation of the 

Earth fluids. The fluids include fluid motions within the Earth such as the core and mantle, as 

well as the motions of surface fluids (oceans, atmosphere and continental water). 

3.4.3.1. Ocean tide loading 

The motion of ocean water mass caused by the ocean tides moves back and forth and these 

mass redistributions cause periodic loading of the ocean bottom. The displacement of the 

Earth’s surface due to the load caused by the ocean tide is called the ocean tide loading. This 

loading effect can reach up to 10 cm at some coastal regions [IERS, 2010]. 

Computation of the displacements caused by the ocean tide loading depends on which tide 

model is used. Because of the strong dependence of the loading on the coast near tide, besides 

a global ocean tide model, a model near the coastlines will improve the estimates. The ocean 
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loading perturbation at a given location due to a given tidal harmonic is computed by 

integrating the tide height with a weighting function [Farrell, 1972], for all the ocean masses. 

Generally only 11 tidal harmonics are taken into account: the semi-diurnal harmonics M2, S2, 

K2 and N2, the diurnal harmonics O1, K1, P1 and Q1, and the long-period harmonics Mf, Mm, 

and Msa, The total loading may be obtained by summing the effect of all harmonics. The 

displacement due to ocean tide loading for a given position and time is computed as a 

summation of the 11 significant harmonics (amplitude and phase) with corrections for the 

modulating effect of the 18.6 year lunar node [IERS, 2010]: 

∆ܿ ൌ ෍ ௞݂ܣ௖௞ cosሺ߱௞ݐ ൅ ߯௞ ൅ ௞ݑ െ ߶௖௞ሻ
ଵଵ

௞ୀଵ

 (3.48) 

Where ∆ܿ is the displacement component (north, south or west); 

 ௖௞ and ߶௖௞ are the tidal amplitude and phase describing the loading response for aܣ

given site c and harmonic k; 

  ௞݂ and ݑ௞ depend on the longitude of the lunar node; 

߱௞ is the angular velocity for harmonic k; 

߯௞ is the astronomical argument for harmonic k;  

t  represents the time. 

For more information about the computation of  ௞݂ , ݑ௞, ߱௞ and ߯௞ see Scherneck (1999) and 

Doodson and Warburg (1941). 

An automated loading service is available at http://froste.oso.chalmers.se/loading// (accessed 

September 2012) which allows the computation of OTL parameters (amplitudes and phases) 

for the 11 most significant tidal harmonics at a given position and with the option to choose 

among 23 ocean tide models.  

3.4.3.2. Environment loading effects 

The loading effects caused by the environment also deform the surface of the Earth and may 

affect geodetic observations. These effects are caused by [van Dam and Wahr, 1998]: 

 Variations in the horizontal distribution of atmospheric pressure;  
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 Non tidal ocean loading caused by the sea surface height variability as well as by 

density changes in the water column; 

 Variations in the load of ground water, soil moisture, surface water (both in liquid 

form and as snow and glacial ice. 

Atmospheric loading 

Atmospheric pressure variations with periods of some days and months can be considered as 

loading functions on the Earth’s surface and can induce quasi-periodic surface deformations. 

The largest variations are those associated with the passage of synoptic scale pressure 

systems. At the upper limit, displacements in the vertical component of 20-30 mm were 

observed with the passage of a 50 hPa variation in the atmospheric pressure. The 

corresponding deformation at the horizontal plan was observed at 2-3 mm, a factor of ten 

smaller in magnitude [Sun et al., 1995]. 

The approach used to model atmospheric loading is based on the standard approach for 

deformation of the Earth by surface loads [Farrell, 1972]. It involves the convolution of 

Green’s functions with a global surface pressure field. The source of global pressure fields 

derived from products by meteorological centers such as the European Center for Medium 

Weather Forecast (ECMWF) or the National Centres for Weather Prediction (NCEP).   

The diurnal heating at the atmosphere causes surface pressure oscillations at diurnal S1 and S2 

and higher harmonics. The recommendation is to calculate the station displacement using the 

Ray and Ponte (2003) atmospheric tidal model. Gridded values of the three-dimensional 

predicted surface displacements from the above model may be found at 

http://geophy.uni.lu/ggfc-atmosphere/tide-loading-calculator.html [IERS, 2010]. 

Non tidal ocean loading 

The effects of non tidal ocean loading were investigated by van Dam et al. (1997). This effect 

is caused by density variations in the water columns that induce variations in the ocean 

bottom pressure. Ocean Global Circulation Models were used to compute the vertical surface 

displacements. The results show a maximum displacement as large as 20 mm with an average 

value of 3-6 mm for the other stations. However, errors in the Ocean Global Circulation 

Models make it difficult to accurately characterize the non tidal ocean loading.  
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More recently, Williams and Penna (2011) investigated this effect on GPS geodetic height 

data series. They found that the displacements are comparable in size to the atmospheric tide 

loading. Also, the combined correction reduced the error of the final static station height 

solution by 20-30%, to about 12-22 mm.   

Hydrological loading 

Changes in the soil moisture and groundwater volume, in addition to ice, introduce variations 

in mass load and lead to site displacement. The magnitude of this effect at a given position 

depends on the total surface load averaged over few hundred kilometers. A monthly model 

for the global variation of water storage and resultant Earth’s displacement showed that this 

effect can cause vertical displacements up to 30 mm in some regions [van Dam et al., 2001]. 
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Chapter 4. The concept of Precise Point Positioning 

As in any positioning methodology, PPP comprises three components: the observations, the 

correction models and the adjustment procedure. The basic observations are the raw 

pseudorange and carrier phase, which are usually combined to form an ionosphere free 

observation. The correction models must be considered to eliminate or reduce undesirable 

effects and are applied to the observations, to the satellite clock and position and to the 

receiver station position. The adjustment procedure is implemented in the form of a 

sequential filter that adapts to varying receiver kinematic state.  

The basic positioning model for PPP is the same as the one used in the standalone GPS 

receivers, available for users with unrestricted access to the Standard Positioning Service 

(SPS) for general purpose navigation. The most significant feature of PPP is the replacement 

of the satellite coordinates and satellite clock corrections being broadcasted with more 

accurate data from e.g. the IGS and the use of both pseudorange and carrier phase 

observations. Further refinements in PPP include the use of dual frequency code and carrier 

observations, taking into account receiver errors, satellite errors, relativity effects, 

propagation effects and site displacement effects. The primary observables are un-differenced 

code and carrier phase observations from a single receiver 

PPP methodology is a two step procedure. Firstly, a global network provides control data that 

is processed by a global analysis centre. Secondly, the user receiver data is processed using 

the more precise products provided by the analysis centre. In this way PPP may be interpreted 

as a positioning method based on a GNSS service using corrections provided by a global 

network of tracking stations.  

4.1. Observation space and state space GNSS corrections 

Precise positioning is only possible when all the relevant error sources influencing the 

observations (above the centimetre level error) are corrected or mitigated. Various solutions 

are possible in relative positioning. One widely used is through observation differencing, 

which eliminates or significantly reduce all station or satellite correlated errors, allowing 

carrier phase ambiguity resolution. 
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The computation of a differencing solution using simultaneous observations from one or a 

network of reference receivers, as in Differential GNSS (DGNSS) estimates the corrections 

to the observation (usually the pseudorange) of each satellite observation or to the position of 

the observer as the lump sum of all the errors. This means that the sum of all the error effects, 

or the position error, at a reference station is computed and transmitted to the user as a single 

correction value. The user applies this correction value directly to its own observations or to 

the position coordinates, thus improving the positioning accuracy. In this way the correction 

is implemented in the observations space. The Differential method using correction to the 

observations is termed to use an Observation Space Representation (OSR), where the 

correction value represents the lump sum of GNSS errors for each observation [Wübbena, 

2012]. 

Instead of computing only one correction for the observation, as a lump sum of all the errors 

at a reference station, as in the OSR, the state of the system, separated in individual error 

components, is determined from the observations of a network of reference stations. This 

information is transmitted to the user, so that a precise absolute position can be computed, 

taking into account that the provided information allows the correction of individual error 

terms on the user observation equations. An example of the application of this approach is the 

use of precise ephemeris and clock corrections. Most of the terms given in the observation 

equation can be treated as state parameters. This is termed as State Space Representation 

(SSR), where each error term is represented individually. In this way, PPP is a methodology 

based on SSR of GNSS errors.  

4.2. Background 

The term “Precise Point Positioning” was used for the first time by Héroux and Kouba 

[1995], when they proposed the use of “precise” satellite clock orbits and clocks for point 

positioning. Other works have been reported in this field based only on pseudorange 

observations [Lachapelle et al., 1996; Elenriksen et al., 1996; Gao et al., 1997]. Their results 

are at the metre level accuracy, with the dominant error caused by the ionosphere, which 

could result in errors of several metres if not modelled or mitigated using dual frequency 

observations.  

The theoretical foundation of PPP is documented in Zumberge et al. (1997a), a research 

group of the Jet Propulsion Laboratory (JPL) as a more efficient method to process and 
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analyze GNSS data from the IGS stations network, as the volume of GNSS reference stations 

data to analyze was huge and growing rapidly, and “means to analyze this volume in a 

consistent, robust and economical manner is essential”.  This new data processing method, 

requires less computational effort, and makes the accuracy achieved at IGS for global 

solutions available to other users.  

In Zumberge et al. (1997b) they computed orbits and clock information from a subset of a 

global GNSS network, with many of its stations equipped with an atomic clock. This was 

crucial when estimating 30 s interval satellite clock corrections, particularly when Selective 

Availability (SA) was active. With these high rate satellite clock corrections (when compared 

to the 15 min interval on standard IGS precise products), the kinematic positioning of moving 

receivers was achieved with an accuracy of approximately 7 cm (3D RMS), by comparison 

with static stations. At the time, the use of PPP was limited to static applications, because 

GPS data could be used only if collected at the exact same epochs for which there were high-

quality clock corrections. This was so because the satellite clocks were dithered with a 

pseudo-random signal that made the clock errors unpredictable at other epochs. This was 

known as SA and was intended to limit the access to the more precise real-time positioning 

information only to authorized users.  

In 1 May 2000 the US government changed its policy, and SA was turned off. This had an 

advantageous effect in PPP, allowing interpolation of the precise orbits and satellite clock 

corrections with significant less error. Witchayangkoon (2000) investigated PPP and 

achieved similar results to Zumberge et al. (1997a). He also investigated ambiguity fixing, 

error mitigation, the use of single frequency measurements and compared the results before 

and after SA was turned off. Bisnath and Langley [2001] and Bisnath [2004] proposed a 

geometric approach based on a kinematic sequential least squares filter to be used with data 

from LEO satellites equipped with GPS receivers for the purpose of Precise Orbit 

Determination (POD). GPS precise orbits and clock corrections were provided by the IGS. 

The achieved accuracy was at the submetre level. 

Kouba and Heroux [2001] described a PPP approach using dual-frequency pseudorange and 

carrier phase observations along with IGS precise orbit products, with cm level accuracy. 

They emphasized error mitigation especially those related to the un-differenced observations. 

The data processing methodology was based on the ionospheric free combination and the 

troposphere zenith delay estimated as an additional unknown using mapping functions. 
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Additional correction terms were added to account for satellite antenna offsets, carrier phase 

wind-up, and site displacement effects (solid Earth tides, ocean tide loading and polar 

motion). This fundamental work provided the basic PPP methodology that can be 

implemented for static or kinematic positioning and may be considered as a traditional 

approach.  

While early works focused primarily on static applications, there has been a continuous effort 

to extend PPP to kinematic applications addressing the convergence time and carrier phase 

ambiguity resolution.   

Later works reported centimetre to decimetre accuracy by addressing these two aspects. Gao 

and Shen [2001] and Shen [2002] developed a new observation model based on the code-

phase combination and addressed the problem of convergence time and ambiguity resolution 

by a “partial ambiguity fixing method”.  

Colombo et al. (2004) applied PPP to positioning mobile ground vehicles with an accuracy of 

10 cm RMS. The convergence time tends to be slow in kinematic mode, about 30-40 min. 

They noticed an improvement in the consistency of point positioning when using more 

frequent clock corrections. 

Chen et al. (2004) used PPP for sea level monitoring with a GPS buoy. They implemented a 

recursive least squares method to separate the variables that do not change or change slowly 

with time (ambiguities and tropospheric delay) from those parameters that change more 

rapidly with time. The estimated accuracy by comparison with relative positioning solution 

was 20 cm RMS.  

Abdel-salam (2005) investigated ambiguity resolution and biases in PPP and used a new 

approach for estimating the absolute ionospheric delay. The application to kinematic ground, 

marine and airborne positioning was at the 20-30 cm accuracy level.  

Zhang and Fosberg (2007) investigated the use of PPP for airborne LIDAR positioning and 

compared the results with satellite altimetry. The horizontal accuracies were not provided but 

for the aircraft height an accuracy of 10 cm RMS was estimated. 
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4.3. The traditional method 

By “traditional method for PPP” the implementation similar to the one presented by Kouba 

and Héroux (2001) is meant, which is able to process kinematic data. This method can be 

summarized as follows: 

 Use precise satellite and clock products; 

 Combine un-differenced dual frequency pseudorange and carrier phase observations to 

form ionosphere free observation (IF); 

 Implement in a sequential filter for the adjustment procedure; 

 Estimate the zenith troposphere delay as an additional variable; 

 Use correction models to estimate the value of the remaining error sources.  

The vector of unknowns is formed by: 

 Receiver position (3 variables per station):   rrr zyx ,,   

 Receiver clock error (1 variable per station):   rt  

 Wet zenith troposphere delay (1 variable per station):  zwet,  

 Carrier phase ambiguities (1 variable per satellite): IFN   

After the satellite clock corrections, and neglecting or correcting all remaining errors sources, 

the observation model results in the following simplified observation equations: 
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This model is non-linear and thus makes it difficult to solve for the variables in the 

adjustment process using redundant observations. The observation model can be expanded in 

a Taylor’s series [Kurtz, 1991] using a nominal receiver position  0,0,0, ,, rrr zyx : 
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The partial derivatives for each one of the coordinates are: 
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Each observation is equal to the observation model plus an error. For example, for the 

pseudorange:   Pwetrrrrelobserved tzyxPP   ,,,,mod  .  

Taking the partial derivatives as above we form the following equations: 
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The observation model can now be expressed using matrices vdxAW    for each satellite, 

where: 
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4.4. Adjustment procedure 

The adjustment procedure is based on a sequential filter considering that each one of the 

different parameters has a different process noise model. When applying a sequential filter in 

PPP processing, an adaptation should be made on the parameter variance-covariance matrix 

to reflect this time variation. Two approaches will be described: the first is based on a least 

squares sequential filter [Kouba and Héroux, 2001; Shen, 2002] and the other is based on a 

discrete Kalman filter [Witchayangkoon, 2000; Abdel-salam, 2005; Tolman, 2008].  

4.4.1. Least squares sequential filter 

Sequential filter in least squares treats the parameters as pseudo-observations with the 

corresponding variance-covariance matrix. After linearization of the observation equations, 

the solution for the first epoch is estimated using the least squares solution, with a priori 

weighted constraints, for the unknowns: 

101 dxXX                         WPAAPAPdx obs
T1

obs
T

x,01


  (4.9) 

where 1
x,0x,0 CP    is the a priori weight matrix, which is the inverse of the a priori 

covariance matrix of the unknowns;  

obsP  is the observations weight matrix. As a general rule the pseudorange accuracy 

may be assumed as 1 m and the carrier phase as 1 cm. Also satellite weighting should 

be applied to each observation. 

The estimated covariance matrix is:  
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The estimated unknowns are given by:  
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Starting with this first estimated solution, the adjustment procedure is implemented as a 

sequential filter that adapts to varying receiver antenna dynamics. The implementation 

considers the variations in the states of the unknowns between observation epochs and uses 

appropriate stochastic processes to update their variance. The dynamic model (process) which 

relates the vector of the parameters at a specific epoch, i, with the next epoch, i+1, is a simple 

one: 

Δti1i εXX   (4.12) 

where Δtε  is the process noise vector.  

The covariance information has to be updated to include the process noise: 

Δt1x,ix,ix,i CCPC  
1  (4.13) 

Where ΔtC  is the process noise covariance matrix, given as: 
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The stochastic models for the unknowns are: 

 For the coordinates rrr zyx ,, : station position may be constant (static receiver) or 

change over time depending on the receiver dynamics (kinematic receiver). If the 

receiver is static 0)()()( 222   zyx ttt  . If the receiver is on board a ship the 

process noise may be modelled as white noise with a variance of 100 m2. 

 For the receiver clock error rt : the receiver clock will drift according to the quality of 

its oscillator. For a quartz oscillator, the accuracy (difference from the true value after 

a given time interval) is about 1 s/day, and the frequency stability (how well a device 

keeps its frequency over a given time interval) is about 10-8 [Lombardi, 2008]. In order 

to accommodate for receiver clock jumps or if receiver clock steering was not enabled, 
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the clock error model should be set to white noise with a large value, which can 

amount to a few ms.    

 For the zenith wet tropospheric delay, zwet, : its variation in time is considered 

relatively small, in the order of a few cm/hour and may be modelled as a random walk 

process with process noise of 1 cm2/s. 

 For the ambiguities, IFN : it is assumed that its value remains constant as long as the 

carrier phases are free of cycle slips, which means 0)(2  IFt N . 

For the solution at epoch i, the parameters are computed from:
  

i1ii dxXX              WPAAPACdx obs
T1

obs
T1

ix,i

   (4.15) 

4.4.2. Extended Kalman filter 

The origin of the Kalman filter lies in a famous paper published by Kalman (1960) describing 

a recursive solution to the discrete data linear filtering problem. The Kalman filter is a 

recursive optimal estimator that addresses the problem of estimating the state of a process 

that is governed by the linear stochastic difference equation. It is composed by a set of 

equations that provide an efficient computational method to estimate the state of a process in 

an optimal way in the statistical sense, i.e. minimizes the mean square of the error. The key of 

the Kalman filter is updating. As new observations are received sequentially, they are used to 

change the optimal estimate, in a least squares sense, of the process state vector. The Kalman 

filter has been used extensively in various applications related with positioning and 

navigation, showing its versatility in a large variety of noisy environments.  

The filtering technique is based on a first order linear differential equation, which represents 

the dynamics of the linear system. Considering the discrete sampling of a random process, it 

can be modelled as [Brown and Hwang, 1997]:  

kkk1k wxFx   

kkkk vxHb   
(4.16) 

Where kx is the process state vector )1( n at epoch k; 
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 kF  is the state transition matrix )( nn relating the parameter from one epoch to the 

next; 

 kw  is the system error vector )1( n , assumed as a white sequence with known 

covariance matrix kQ )( nn ; 

 kb  is the vector )1( m  measurement at epoch k: 

 kH  is the matrix )( nm  is the design matrix; 

 kv  is the measurement error vector )1( m , assumed to be a white sequence, having 

zero correlation with the system error vector and with known covariance matrix  kR

)( mm  ; 

 n  is the number of parameters; 

 m is the number of measurements. 

The general formula of the Kalman filter is based on a linear combination of the state vector 

old estimate, oldx̂ , with the new observation, newb : 

)xAK(bxx oldnewnewoldnew ˆˆˆ   (4.17) 

The difference between the prediction and the actual observation is multiplied by a gain 

matrix, K , to give the correction to the state vector. This gain matrix involves the statistics of 

oldx̂  and newb  to weight that mismatch.  

The Kalman filter recursive equations are summarized in the following five steps: 

1. Input initial estimates of the state vector 
0x̂  and its error covariance 

0P . 

2. Compute the Kalman gain matrix:   1

k
T

kkk
T

kkk RHPHHPK
   (4.18) 

3. Input the new observations and update the estimate of the state vector and the 

covariance matrix:  

   kkkkkk xHzKxx ˆˆˆ  

   kkkk PHKIP   (I is the identity matrix) 

(4.19) 
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4. Project ahead: kk1k xFx ˆˆ 
  and k

T
kkk1k QFPFP 

        (4.20) 

5. Go to the next epoch, input the state vector and its error covariance and start a new 

loop from step 2. 

The observation equations for positioning with GNSS have nonlinear dynamics and nonlinear 

measurement relationships. In order to apply Kalman filtering the equations must be 

linearized.  There are two methods of linearizing the problem. One is to linearize about some 

nominal trajectory, not depending on measurement data, the Linearized Kalman Filter (LKF). 

The other method is to linearize about a trajectory that is continually updated with the state 

estimates resulting from the measurements, the Extended Kalman Filter (EKF). This is 

similar to a LKF, except that the linearization takes place around the filter’s estimated 

trajectory rather than using a precomputed nominal trajectory [Brown and Hwang, 1997].  

Due to the difficulty to model the trajectory of a floating platform at sea, with enough 

accuracy, the EKF was used in this study. This filter is similar to the one presented in the 

previous section (Discrete Kalman Filter), with the difference of dealing with a nonlinear 

process. Considering the discrete sampling of a nonlinear random process, it can be modelled 

as [Brown and Hwang, 1997]:  

kk1k wk),f(xx   

kkk vk),h(xb   
(4.21) 

where: ix is the process state vector )1( n at epoch k; 

   k),f(xk  is the nonlinear system model function;  

kw  is the system error vector )1( n , assumed as a white noise sequence with known 

covariance matrix )( nnkQ , with n as the number of parameters; 

   kb   is the vector )1( m  measurement at epoch k; 

   k),h(x k  is a nonlinear measurements model function;   
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kv  is the measurement error vector )1( m , assumed to be a white noise sequence, 

having zero correlation with the system error vector and with known covariance 

matrix  )( mmkR , with m as the number of parameters; 

The EKF recursive equations are similar with the ones described previously for the DKF, 

with the introduction of an additional step to linearize the system model function and the 

measurements model function: 

1. Input initial estimates of the state vector xො૙
ି and its error covariance P෠૙

ି. 

2. Compute the linear approximation terms, given by the Jacobian of the system model 

function, fሺxk,kሻ , and  the measurements model function, hሺxk,kሻ: 

                

(4.22) 

3. Compute the Kalman gain matrix:  

 
(4.23) 

4. Input the new observations and update the estimate of the state vector and the 

covariance matrix: 

 

   kkkk PHKIP   (I is the identity matrix) 

(4.24) 

5. Project ahead: 

 

 

(4.25) 

6. Go to the next epoch, input the state vector and its error covariance and start a new 

loop from step 2. 
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The application of the EKF for the adjustment in PPP is implemented as follows: 

 The state vector parameters are: 
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x    with initial covariance 
0P ; 

 The system model is i1i xx   , this means that the process model is IF   (I is the 

identity matrix), with system error covariance Δtk CQ  , as defined by equation 4.14.  

 For each satellite, the observations are: 







 obsIF

obsIFP

,

,
 

 For each satellite, the design matrix k),(xH k  is defined by equation 4.6, for the 

pseudorange and code carrier phase ionospheric free Observation with measurement 

error covariance kR . This matrix will be diagonal, assuming that there is no 

correlation between pseudorange and carrier phase observations, with the carrier phase 

observations accurate at the cm level and the pseudorange at the metre level. It is 

recommended to apply a weighting function for each satellite since the quality of the 

observations depends on various influences that affect the observation accuracy, which 

are related with the signal propagation and the receiver quality.  

4.5. Precise GNSS products 

The GPS broadcast ephemerides have a standard based on the Keplerian orbital parameters 

and their changing rates. They are derived from observations at Earth fixed monitoring 

stations. These stations are positioned with respect to some ITRF (International Terrestrial 

Reference Frame) realization. Therefore GPS positions are defined in the same coordinate 

system. These ephemerides allow limited positioning accuracy in standalone mode, at the 1 m 

level (see annex B). 

An increasing number of users demands high-quality GNSS products for their applications 

(hydrographic surveying, ocean studies, weather services, farming, etc) that require more 

precise information than the one broadcasted by the GNSS satellites. PPP is one methodology 

that depends on the availability of precise products related with the SSR of corrections, in 

particular precise satellite positions and clock corrections. 
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The designated precise ephemerides are provided by the International GNSS Service (IGS). 

The IGS is a service with international multi-agency membership to support geodetic and 

geophysical activities. Such service is accomplished through a global network of tracking 

stations equipped with high quality GNSS receivers. The IGS provides precise satellite 

ephemeris and clock corrections products that are currently made available at no cost in 

different forms that vary in latency and accuracy (see annex B). 

4.6. PPP Performance 

The standard metrics used to describe the performance of a positioning service are: accuracy, 

availability, continuity, coverage, integrity, reliability and initialization period [U.S. 

Government, 2008]: 

 Accuracy is defined as the statistical difference between the estimate or measurement 

of a quantity and the true value of that quantity; 

 Availability is defined as the percentage of time that the service is available to the 

user; 

 Continuity is defined to be the probability that a healthy positioning service continue 

to be healthy without unscheduled interruption over a specified interval of time; 

 Integrity is a measure of the trust which can be placed in the correctness of the 

information supplied by positioning system; 

 Reliability is the ability of a positioning system to perform its required functions over 

a specified time interval; 

 Initialization period is the minimum time required for a positioning system to provide 

a valid solution with a given accuracy. 

Much of the PPP performance inherits the standards for GNSS services based only on the 

signal broadcasted by the satellites, but also depends on the performance standards for the 

service providing the corrections, in the same way that Differential GNSS depends on the 

performance of the reference stations. In this way the availability and continuity of PPP 

depends on the services providing the corrections. 

Since PPP is based on information of a global network of GNSS ground stations, additional 

integrity assurance and error corrections are provided to the user. However as a standalone 

positioning system, it is recommended that PPP has autonomous integrity capacity. 
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The initialization period considered in PPP is longer than the one considered for standard 

GNSS positioning (below one minute), since it requires more time for the solution to 

converge or achieve a high accuracy level, mainly due to the time needed to decorrelate the 

phase ambiguity. This additional time, the convergence period, is the length of time required 

from a cold start to a decimetre-level position solution. It is presently about 30 min to a few 

minutes, under normal conditions, but may vary depending on the methodology used to 

determine the ambiguities, the quality of the observations, satellite geometry and availability 

of redundant observations [Bisnath and Gao, 2009]. 

4.7. Software using PPP 

Several software products implementing a PPP processing strategy have been developed in 

the last years by government agencies, universities and individuals, such as:  

 BERNESE (by the University of Bern), http://www.bernese.unibe.ch/index.html; 

 GIPSY-OASIS II (by the Jet Propulsion Laboratory), https://gipsy-oasis.jpl.nasa.gov; 

 TerraPos (by TerraTec and the Norwegian Hydrographic Service), 

http://www.terrapos.no/index.html; 

 RTKLIB (by Tomoji Takasu at Tokyo University Marine Science and Technology), 

http://www.rtklib.com/;  

 GPSTk (by the Space and Geophysics Laboratory within the Applied Research 

Laboratories at The University of Texas at Austin), http://www.gpstk.org/. 

Currently available post-processing online services are listed at the Precise Point Positioning 

Software Centre (http://gge.unb.ca/Resources/PPP/). These services are open without costs 

for any user, and may be found at: 

 Canadian Spatial Reference System PPP (CSRS-PPP) by Natural Resources Canada 

(NRCan), http://www.geod.nrcan.gc.ca/products-produits/ppp_e.php. 

 GPS Analysis and Positioning Software (GAPS) by University of New Brunswick, 

http://gaps.gge.unb.ca/; 

 Automatic Precise Positioning Service (APPS) by Jet Propulsion Laboratory, 

http://apps.gdgps.net/; 

 magicGNSS by GMV, http://magicgnss.gmv.com/ppp/. 

Martín et al. (2012), compared the results of kinematic GNSS-PPP using most of these 

different online post-processing services. Three trajectories with different kinematic 
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properties were tested: light airplane flight, standard car and man walking. The reference 

trajectory was first computed in GNSS carrier phase relative positioning mode. The 

differences of the PPP with respect to the reference trajectory show that kinematic PPP can 

achieve an accuracy (standard deviation) level better than 10 cm for planimetric 

measurements and better than 20 cm for the altimetric measurements. Based on an average of 

all kinematic scenarios, the most favourable online software was for the MagicGNSS, 

followed by NRCan with only slightly worst results.  
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Chapter 5. PPP methodology used in this study 

The traditional model for Precise Point Positioning as given by Kouba and Héroux (2001) 

and described in the previous chapter was the basic reference used in this study. Some 

modifications were implemented to adapt the method for kinematic positioning of a platform 

at sea and test further developments towards enhanced data processing strategies to improve 

convergence time, reduce pseudorange noise influence in the solution and use more efficient 

stochastic models for the observations from each satellite.  

The developed PPP methodology is based on the requirements to position a floating platform 

at sea, either a buoy or a ship. The GNSS observations are processed sequentially and all the 

corrections are computed epoch by epoch, based on the time of observation and on the 

pseudorange based approximate point position. It was thought to be adequate for use in real 

time processing, provided that precise products are available (satellite positions and clock 

corrections). In addition, the software is based on a modular approach, allowing extensible 

and maintainable programming code.   

5.1. Parameters to be determined in kinematic positioning 

Using the GPS+ Toolkit C++ library [Tolman et al., 2004] (see Annex D), based on the 

traditional PPP method, several modifications and new routines were implemented when 

required, to improve and complement the existing software. 

One of the implemented modifications is related with the parameters to be estimated.  In a 

moving platform, we are also interested in determining the velocity vector.  Also the carrier 

phase ambiguities while being estimated as float numbers; its integer nature was kept to allow 

ambiguity fixing. These functionalities were implemented in the context of the GPSTk 

library. Thus, the parameters to be determined in this model are: 

 Position; 

 Velocity; 

 Receiver clock error; 

 Receiver clock rate; 

 Wet zenith troposphere delay; 

 Carrier phase ambiguity for L1; 

 Carrier phase ambiguity for L2; 
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5.2. Observation data files 

The data acquired by the receivers is first converted to the standard format RINEX (Receiver 

Independent Exchange) observation and navigation files. Usually each manufacturer provides 

an utility to convert from proprietary format to RINEX. This format was first defined by 

Gurtner et al. (1989). Several versions have been developed as a consequence of revisions 

made to meet the evolving requirements of the GNSS community. The latest version, 3.1, 

was published in June 2009 [Gurtner and Estey, 2009]. The format consists of three types of 

ASCII files: 

 The observation data file containing the pseudorange and carrier phase for each of the 

satellites tracked by the station receiver, among other receiver related information; 

 The navigation file containing the navigation message broadcasted by the satellites; 

 The meteorological data file containing information from meteorological sensors that 

may be installed at the receiver station. This information is useful to model the 

troposphere effect on the observations. 

5.3. Additional files to implement the corrections 

To correct for all the possible error sources, PPP requires additional information to account 

for the following effects: 

 Satellite position corrections; 

 Satellite precise clock corrections; 

 Satellite and receiver antenna offsets; 

 Tidal constituents (also called harmonics) to compute the ocean loading tide 

displacement for a given position; 

 Polar motion parameters; 

5.3.1. Satellite positions and clock corrections 

The satellite positions and clock corrections can be downloaded from a precise products 

provider. The correction files are given in SP3 format [Hilla, 2010]. The SP3 files used in this 

study were downloaded from the IGS (see annex B), containing  correction values regularly 

spaced at 15 min interval, which is not dense enough to interpolate the clock correction at 1 s 

interval, as required for kinematic applications due to the negative impact of satellite clock 

corrections on PPP.  
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In contrast to the satellite orbital positions, which have a smooth trend, satellite clock 

interpolation may not be accurate enough, due to the high level of irregularity on its trend. 

Montenbruck et al. (2005) showed that linear interpolation of satellite clock corrections at 

300 s is not adequate to achieve centimetre level accuracy. This conclusion was also verified 

in this study using Lagrange polynomials as an interpolation method. The results show an 

accuracy of 0.5 m (3D RMS). Thus, for static positioning it is advantageous to avoid 

interpolation and decimate the GPS receiver data in order to coincide with precise ephemeris 

and clock corrections epochs. However this is not feasible in kinematic positioning whose 

sampling rate is usually higher than 1 Hz. 

The influence of sampling rate when using IGS 5 min, 30 s and 5 s interval satellite clock 

corrections in PPP was investigated by Fei et al. (2010). The results show that satellite clock 

sampling rate has very little effect on the static PPP solution, provided that the observations 

are decimated to the epochs of the satellite clock corrections. However, the satellite clock 

sampling rate has a significant impact on the kinematic PPP, solution when a solution is 

required every second or even smaller intervals, when interpolation is mandatory. The error 

caused by interpolation for intermediate epochs depends on the sampling rate. The 5 min 

interval satellite clock corrections reduce the accuracy by 30-50 percent when compared to 

the 30 s and 5 s interval satellite clock corrections. The 30 s and 5 s interval satellite clock 

corrections interpolation produce the same results and satisfy the requirements for cm level 

accuracy in PPP. 

Satellite clock correction files, at 30 s interval, are available for download from the IGS 

(ftp://igscb.jpl.nasa.gov/pub/product/), in the RINEX CLK format [Ray and Gurtner, 2006]. 

The information from the SP3 and CLK files is combined by the software in a data structure, 

where the satellite positions and clock corrections are given both at 30 s interval, by 

interpolating the satellite positions of the SP3 file (at 900 s interval) to the epochs of the CLK 

file (at 30 s interval). In this way, both satellite and clock parameters are provided at 30 s 

intervals, suitable for kinematic applications, as required for this study. 

5.3.2. Satellite and antenna information 

The information for the satellite and receiver antenna phase centre correction is provided in 

the form of ANTEX files [Rothacher and Schmid, 2010].  These files contain azimuth and 

elevation dependent Phase Centre Variation (PCV) as a result of a calibration process for 
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each antenna model (both for satellite and receivers). These files can be downloaded from the 

IGS website at ftp://igscb.jpl.nasa.gov/pub/station/general/. 

5.3.3. Ocean tide loading constituents 

The tidal constituents to compute the ocean tide loading displacement are provided in the 

form of BLQ format as given by an open service, the "Ocean tide loading provider" at 

http://froste.oso.chalmers.se/loading//, for a single position. For kinematic positioning, 

instead of using this online service, which is restricted to a single position per submission, it 

is recommended to have files with spatial grid information for each one of the tidal 

constituents and interpolate for each position as the platform moves.  

5.3.4. Polar motion parameters 

The daily polar motion parameters can be downloaded from the International Earth Rotation 

Service (IERS) under the form of a time series of the so-called Earth Orientation Parameters 

at http://www.iers.org/nn_10968/IERS/EN/DataProducts/EarthOrientationData/. 

5.4. Data verification and cleaning 

The PPP method developed in this study uses dual frequency pseudorange, dual frequency 

carrier phase and also Doppler observations. Considering the current status of the GNSS 

constellations and the usual GNSS receiver performance, the observations recorded at each 

epoch, for each satellite should normally provide five independent observations: carrier phase 

on two frequencies, pseudorange on two frequencies and Doppler on a single frequency. 

Data verification and data cleaning of the observations is a relevant step in the preparation of 

the processing with PPP algorithms. Since the observations are processed sequentially, any 

error in the data series will induce erroneous solutions, and should be detected before starting 

the processing. This task is performed sequentially at each single epoch GNSS observation 

epoch by applying the following detection rules: 

1. For each satellite, verify if pseudorange and carrier phase observations are present for 

both frequencies L1 and L2. If not ignore this satellite in the data record. 

2. For each satellite, verify if there are gross errors in the pseudorange observations. A 

gross error for a pseudorange observation is considered as one value that is above or 

below reasonable limits. Considering the receiver antenna on the Earth’s surface, the 

height of one GPS satellite, for example, is approximately 20200 km, a reasonable 
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domain for pseudorange observations should be between 15000 and 25000 km, 

accounting for all the errors included on the raw observations. If an erroneous value is 

flagged, ignore this satellite in the data record.  

3. For each satellite, verify if there are gross errors in the carrier phase observations. 

Some RINEX observation files signal a “0” if there is no observation. This cannot be 

interpreted as a valid observation and if it occurs, we must ignore this satellite in the 

data record. 

4. For each satellite, verify if it is above a given elevation threshold. If not ignore this 

satellite in the data record.  

5. Verify if, after passing by all the previous simple filters, a given GNSS data record 

still has enough satellites to compute the positioning solution. 

5.5. Cycle slip detection 

Cycle slips occur if the receiver loses phase lock of the satellite signal. This may be caused 

by obstructions, high signal noise (caused by multipath and ionospheric scintillation), 

interference and receiver signal processing. In a cycle slip the carrier phase shows a sudden 

jump by an integer number of cycles. The fractional part of the phase is not affected by this 

discontinuity in the observation sequence. The cycle slip may be as small as one or a few 

cycles, or contain millions of cycles. As soon as the cycle slips have been detected, there are 

two ways to deal with them: one is to repair or remove the data; the other is to set a new 

ambiguity unknown in the GNSS observation equations [Seeber, 2003].  

With two frequency signals it is possible to combine the observations to enhance cycle-slip 

detection. The goal is to create an observable where the variations due to cycle slips are 

greater, making them easily detected. This requires that high variation effects, such as the 

geometry, clock errors, troposphere effect and ionosphere effect are previously removed. 

Two kinds of data combinations are used: one based in carrier phase measurements only and 

another based on the combination of carrier phase and pseudorange measurements. Among 

the possible combinations the ones used in this study and already provided in the GPSTk 

library are [Blewitt, 1990]:  

 Use the carrier phase geometry-free (see annex C) combination in order to remove the 

geometry and all non-dispersive effects. This provides a low-noise signal (multipath 

and noise less than 1 cm). It is affected by ionospheric refraction but this effect varies 

as a smooth function. Any unusual variation may indicate cycle slips in one or the two 
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frequencies. However, two special cycle slips can lead to very small variations, and the 

cycle slip may remain undetected [Wellenhof et al., 1997].  

 Use the Melbourne-Wübbena combination of code and carrier phase (see annex C). 

This combination cancels all the non-dispersive effects and also the ionosphere 

refraction. However the combined observable is affected by multipath and its 

performance is worse than the carrier phase ionospheric combination. The noise level 

is in the range of a few cycles, mainly dependent on the noise of the pseudorange 

observations and it is used as a secondary test.  

A time series of phase data which has no cycle slips is called a “phase connected arc”. After a 

cycle slip is detected a new phase connected arc is marked, for the purpose of initializing a 

new carrier phase ambiguity.  The Loss of Lock Indicator (LLI) indexes of carrier phase 

observations contained in the RINEX observation files are also used to detect cycle slips. 

5.6. Weighting satellite observations   

The noise level of the GNSS signal at the receiver depends on the influences through the 

propagation path and also on the receiver performance. It is known that satellite observations 

with lower elevation angles have the lowest SNR and are more affected by tropospheric 

effects, when compared to observation from satellites with higher elevation angles. This 

means that there are two potential and simple ways of weighting the observations, either 

derived from the satellite elevation angle or from the SNR. Experimental results with GNSS 

observations from a static station showed little difference when comparing the cosecant of the 

elevation angle weighting function with the SNR weighting function [Collins and Langley, 

1999]. 

The weighting function used in this study is based on the MOPS (Minimum Operational 

Performance Standards) of the Radio Technical Commission for Aeronautics (RTCA) of the 

document RTCA DO-229D [RTCA, 2006]. The algorithm of the MOPS weighting function 

is implemented in the GPSTk library as a C++ class. This algorithm combines the influence 

of several effects to estimate the weight of each satellite: 

௦ݓ ൌ
1

௥௘௖௩ଶߪ ൅ ௎ோ஺ߪ
ଶ ൅ ௠௨௟௧ߪ

ଶ ൅ ௧௥௢௣ߪ
ଶ ൅ ௜௢௡ߪ

ଶ  (5.1) 

Where ߪ௥௘௖௩ଶ  is the estimated noise due to the receiver performance; 
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௎ோ஺ߪ
ଶ  is the estimated noise due to the User Range Accuracy (URA) indicator 

provided in the navigation message and represents the 1-sigma range error due to 

satellite and control segment errors; 

௠௨௟௧ߪ
ଶ  is the estimated noise due to multipath; 

௧௥௢௣ଶߪ  is the estimated noise due to the troposphere effect; 

௜௢௡ߪ
ଶ  is the estimated noise due to the ionosphere effect. 

5.7. Data combinations 

The methodology implemented in this study allows the use of a set of known GNSS 

observation data combinations, seeking improvements when compared to the use of the 

traditional Ionospheric Free (IF) combination. The primary goal is to reduce the noise level of 

the combined observable, mitigate the ionospheric effect and keep the integer nature of the 

ambiguities. 

In the scope of this study, GNSS data combinations were implemented to perform specific 

tasks, either to mitigate the ionospheric effect, for cycle slip detection and ambiguity 

determination (see annex C), as listed: 

 Inter-frequency combinations: 

 o Ionospheric Free (IF) 

 o Geometry Free (GF) 

 o Wide-lane (WL) 

 o Narrow-lane (NL) 

 Pseudorange and phase  combinations: 

 o Code (pseudorange)-phase average (CP) 

 o Melbourne-Wübbena (MW) 

 o Divergence-free (DF) 

The data combinations CP and DF were introduced to GPSTk in the scope of this work. 



Chapter 5. PPP methodology used in this  

80 
 

5.8. Ambiguity determination  

The methodology used in this study allows the estimation of the initial GNSS carrier phase 

ambiguities before solving the model equations using a recursive filter. These initial 

ambiguities are approximate values that are contaminated by the noise of pseudorange 

measurements and are useful as a first approximation of the initial ambiguity value for the 

solution estimation process using a recursive filter. These approximate initial values reduce 

significantly the initial variance and process noise that must be considered for the ambiguities 

stochastic modelling and also improve the convergence time. 

The initial ambiguities are estimated directly using the DF combination (see annex C): 
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(5.2) 

The DF combination cancels the terms that are of equal magnitude for the pseudorange and 

carrier phase observations, such as the receiver-satellite geometric range, receiver clock error, 

ionosphere, troposphere, and antenna offset. At this initial stage, all the remaining terms 

(multipath, phase windup, receiver hardware delay and satellite hardware delay) are lumped 

to the noise term. The initial carrier phase ambiguities are estimated directly from the 

equation system 5.2. No attempt was made to fix the ambiguities, due to the influence of the 

pseudorange noise, which is too high when compared to the carrier phase wavelength. 

5.9. Deterministic model 

The deterministic model relates the observations with the parameters to be determined. This 

study uses the model based on the one described by Gao and Shen (2001). This model uses 

the CP combination for each frequency (see annex C) instead of the IF combination for code:  

஼௉,ଵܥ ൌ 0.5 ଵܲ ൅ 0.5Φଵ
஼௉,ଶܥ ൌ 0.5 ଶܲ ൅ 0.5Φଶ 

(5.3) 

The CP combination also eliminates the ionosphere effect, but has three times smaller noise 

when compared to the IF code combination and allows to keep the integer nature of the 

ambiguities. The already mentioned carrier phase IF combination (equation 3.25) completes 

the equation system. 
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This approach forms a set of three of three linearly independent equations for each satellite 

and has the following advantages when compared to the traditional approach: 

 All the data combinations are ionospheric free, with one additional observation per 

satellite; 

 The data combinations involving pseudorange observations have smaller noise; 

 It keeps the integer nature of the ambiguities and each ambiguity can be estimated 

individually, which means that the ambiguity fixing techniques can be implemented.   

The resulting observation equations for each satellite are the following: 

஼௉,ଵܥ ൌ ߩ ൅ ܿ · ݐ݀ ൅ ݌݋ݎܶ ൅       0.5 · ଵߣ ଵܰ ൅ 0 ൅ ݁ݏ݅݋݊
஼௉,ଶܥ ൌ ߩ ൅ ܿ · ݐ݀ ൅  ݌݋ݎܶ ൅        0 ൅ 0.5 · ଶߣ ଶܰ ൅ ݁ݏ݅݋݊

ூி,஍ܥ ൌ ߩ ൅ ܿ · ݐ݀ ൅ ݌݋ݎܶ ൅ ଵ݂
ଶ

ଵ݂
ଶ െ ଶ݂

ଶ ଵߣ ଵܰ െ
ଶ݂
ଶ

ଵ݂
ଶ െ ଶ݂

ଶ ଶߣ ଶܰ ൅  ݁ݏ݅݋݊

(5.4) 

When using only ionospheric free data combinations, remain three linearly independent 

equations from the four raw observations (based on dual frequency pseudorange and carrier 

phase observations). Then, the minimum number of satellites required for computing a single 

epoch solution is: 

 A minimum of four satellites are required to compute the instantaneous velocity vector  

the receiver clock rate, using Doppler observations; 

 The other parameters (position, receiver clock error, zenith troposphere delay and 

carrier phase ambiguities) are computed using the pseudorange and carrier phase 

observations. The number of unknowns is five plus two times the number of satellites. 

If only four satellites are visible, there are 13 unknowns for 12 observations and the 

system cannot be solved in a single epoch. Thus, to compute a positioning solution at 

least five satellites are required, i.e. 15 observations for 15 unknowns.  

5.10. Stochastic model 

The influence of random processes should be stochastically modelled in the parameter 

estimation process along with its deterministic component. Three components of stochastic 

modelling must be considered: observations, system dynamics and parameters. 
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5.10.1. Observations stochastic model 

The noise term in the observation equation model is the sum of measurement noise and any 

other error not properly corrected. The stochastic model of the observations includes 

information about the accuracy of the equation model.  

This study considers the influence of the measurement process and the linear combination of 

observations. The standard deviation of the measurement noise is assumed to be 1 cm for 

carrier phase measurements and 1 m for pseudorange measurements. Using the error 

propagation law, assuming a normal distribution, the CP combination has an error of 1 m and 

the carrier phase IF combination has an error of 3 cm. 

As mentioned in section 5.6, each observation is also weighted by a function that depends on 

the satellite elevation angle and is based on the MOPS observation weighting algorithm 

[RTCA, 2006].  

5.10.2. Parameters stochastic model 

Recalling the deterministic model, mentioned in section 5.9, observation equations contain 

parameters that correspond to the position coordinates, receiver clock error, zenith 

tropospheric wet delay and carrier phase ambiguity. The random behaviour of these 

parameters can be modelled taking in consideration the kinematic motion onboard a ship or 

on a buoy, as described on table 5.1. 

Table 5.1 – Parameters stochastic models used for kinematic motion onboard a ship or on a buoy. 

 Initial Variance Model (variance) 

Position coordinates 100 m2 White noise (100 m2)

Receiver clock error 100 m2 White noise (100 m2)

Zenith troposphere wet delay 0.1 m2 Random walk (0.01 m2/hour)

Carrier phase ambiguity 100 m2 Constant if no cycle slips
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Chapter 6. Software development 

Software development is a crucial part of this study. The software should be reusable, 

adaptable and easily readable, for further upgrade and improvements in a flexible way. This 

task was highly facilitated through the use of the open source GPSTk abbreviation for “GPS 

Toolkit”) library.  

The general structure of any software used for GNSS positioning requires the input of 

observations and user options. Then this input information is used to compute the solution. 

The final solution is prepared to send for output, either in the form of a string for a display or 

to a file. This general structure may be divided into three basic components [Xu, 2007]:  

 Functional library – consisting of physical models, algorithms and tools;  

 Data platform – to prepare the data for use in a time loop; 

 Data processing core – to construct the observation equations, accumulates them 

within the time loop and computes the solution. 

The GNSS software developed as part of this study was designated as SAPPos (Satellite 

Absolute Precise Positioning) and obeys to this general structure. The development of 

SAPPos will be described next, with reference to the GPSTk C++ classes that were used to 

solve specific tasks, the modified GPSTk classes and the new classes required to introduce in 

order to solve specific problems of kinematic precise positioning of marine platforms. 

6.1. The GPS Toolkit (GPSTk)   

The GPSTk library is being extensively used by the GNSS community to rapidly and easily 

develop, implement and solve GNSS related problems. The GPSTk is an advanced GNSS 

Open Source Software initiated by the Applied Research Laboratories of the University of 

Texas, to provide a world class GNSS library computing suite to the satellite navigation 

community. It is written in C++ programming language and the first version of the GPSTk 

was presented by Tolman et al. (2004).  

The GPSTk library is being continuously improved and is open to the participation for the 

benefit of all users in the following ways: bug reports, new algorithms, suggestions for 

improvements and contributions of additional applications. The latest stable version, version 

2.0, is available for download since 27th June 2012. For more information consult the 
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website, http://www.gpstk.org/bin/view/Documentation/WebHome. Annex D provides 

additional information concerning with the installation and how to use the library under 

Microsoft Windows XP operating system, as a result of the experience achieved during the 

development of this study. 

6.2. Functional Library 

The SAPPos functional library includes the following physical models, algorithms and tools 

required to compute a PPP solution, much of them inherited from the GPSTk, such as: 

 Physical models:  

 Tropospheric model; 

 Relativity model; 

 Satellite antenna offset model; 

 Solid Earth tide model; 

 Sun and Moon orbital model. 

 Algorithms.  

 Data pre-processing; 

 Cycle slip detection; 

 Satellite weighting; 

 Single point positioning; 

 Single point velocity determination; 

 Geometric precision; 

 Adjustment algorithms. 

 Tools: 

 Data structures;  

 Data input and output. 

 Coordinates transformation (from ECEF XYZ to geodetic); 

 Time systems transformation; 

 Broadcast orbit transformation (from keplerian elements to ECEF XYZ); 

 Interpolation methods; 

 Matrix operations; 

 Statistical analysis. 
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Most of the models, algorithms and tools are already part of the GPSTk C++ library, such as 

the data structures, cycle slip detection, times systems transformations, relativity model, Solid 

Earth tide model, satellite antenna offset model, Sun and Moon orbital model, broadcast 

orbits transformation, adjustment algorithms. Therefore it is considered unnecessary to 

describe each one. Only the modifications and new C++ classes introduced in the scope of 

this thesis will be described on the next sub-section. The C++ code is described in annex E. 

6.2.1. Precise clock files 

As mentioned in section 5.3, precise clock corrections contained on IGS standard SP3 files, 

are given in a 15 min interval, which is not adequate for kinematic applications. In the scope 

of this thesis, focused in standalone precise kinematic positioning, it was required to develop 

the ability to deal with 30 s interval CLK files, which is not available from the GPSTk 

library.   

The new class PreciseCLK simply reads data parameters from a CLK file data parameters 

organizing them into a CLK-header and CLK-data streams. The 30 s satellite clock 

corrections are added to the satellite positions and clock corrections data structure by a new 

function“addClock” in GPSTk TabularEphemerisStore class. Satellite positions for the 

epochs of the CLK data stream are interpolated from the 15 min interval positions derived 

from SP3 files, using Lagrange interpolation of order 10. In this way a tabular data structure 

with 30 s satellite position and clock corrections is created at data pre-processing stage which 

is then ready for use during the sequential loop stage. 

6.2.2. Tropospheric model 

Several tropospheric models are available on the GPSTk library, all derived from an abstract 

base class TropModel. However the GMF’s [Boehm et al., 2006b] and the GPT [Boehm, 

2007] models (see section 3.5) are not available. New classes were developed for the specific 

purpose to implement the GMF’s and GPT. These new classes are based on the Fortran 

versions available for download at http://ggosatm.hg.tuwien.ac.at/DELAY/ and programmed 

in C++ according with the GPSTk guidelines for programmers, using the same abstract base 

class as used for the others tropospheric models. 

The new class GMFTropModel requires the input of the approximate receiver position, 

observation date and satellite elevation angle. This information is provided in the GNSS data 
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measurements and by the pseudorange position solution. The air temperature and pressure 

may be input by the user or automatically computed for the observation position using the 

GPT model. The output consists of the dry zenith troposphere delay and the mapping 

functions values, both for the wet and hydrostatic component.  

6.2.3. Solid Earth tide 

The displacement caused by the solid Earth tide is computed using the GNSS pseudorange 

approximate solution. It was used the GPSTk class SolidTides. This class uses the equation 

for the displacement of the station due to degree two, as described in 3.4.1. The displacement 

is given with respect to the “conventional tide-free” surface.  

An additional correction for the permanent tide was added to the software, in order to convert 

the tidal reference from the “conventional tide-free” to the mean-tide surface. This was 

required whenever GNSS coordinates used to derive SSH were compared to satellite 

altimetry SSH.  

6.3. Data platform 

The program structure developed in this study is based on “Example 9” given at GPSTk API 

(Application Programming Interface) http://www.gpstk.org/doxygen/example9_8cpp-

example.html. Also the physical models, algorithms and tools used in the software were 

copied from the GPSTk library. Proper modifications to the GPSTk routines were made 

whenever necessary. 

The data platform is dedicated to the preparation of all possibly needed data for use and 

performing the preparation in a time loop: 

 Common part: 

o Program start; 

o Read user input parameters; 

o Read all the data files necessary to run of the software (e.g. satellite data file, 

station data file, etc); 

o Data pre-processing; 

o Transform satellite orbit data; 
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 Sequential time loop: 

o Get the needed data for use at related epoch (e.g. initial coordinates of the 

receivers, etc); 

o Compute all possible parameters and model values for use at related epoch 

(e.g. transformation matrices, orbit data, correcting models, etc); 

o Read the observation data and transform it to a suitable form for use; 

o Single point positioning; 

o Single point velocity determination; 

 Summary part: 

o Statistic analysis of the results; 

o Quality control; 

o Results output. 

6.4. Data processing core 

The data processing core forms the observations equations and solves the problem in 

accordance with specific user options previously defined. The EKF from the GPSTk was 

modified to allow the input of initial conditions for the receiver coordinates receiver clock 

error and L1 and L2 ambiguities for initialization of the filter.  

The initial conditions for the receiver coordinates and clock error are estimated using the IF 

pseudorange LMS (Least Mean Squares) solution. In this way, these parameters initial error 

are reduced when compared with a completely unknown initialization. The initial condition 

for the ambiguity is based on the method described at section 5.8, using the DF data 

combination.  

A different data processing core can be chosen depending on the user option. As an example 

the SAPPos can be configured for standard point positioning that uses the LMS algorithm to 

compute the solution. In the future if new requirements are defined, the data processing core 

may be easily adapted to perform new tasks, taking advantage of the modularity and 

modifiability of OOP.  A flowchart of the SAPPOS is represented on figure 6.1. 
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Figure 6.1 – Flowchart of the program SAPPos (Satellite Absolute Precise Positioning) developed  in 
this study. 
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Chapter 7. Experiments and results 

The PPP methodology and the software developed in this study was tested using GNSS data 

collected by receivers installed on static stations and also on a survey ship. This chapter 

describes how the data was collected, presents the results and analyses the performance of the 

PPP methodology developed. 

The chapter is divided into three main sections. The first section is devoted to the analysis of 

the PPP performance by comparing with a static position with known coordinates. The 

second section is devoted to the analysis of PPP performance for kinematic positioning in 

marine platforms by comparing with a reference trajectory computed by carrier phase GNSS 

relative positioning. The third section compares SSH derived from PPP with satellite 

altimetry data. Different processing options are considered for the analysis of its influence on 

the positioning quality. 

7.1. PPP on a static station   

7.1.1. Using PPP in static mode 

As mentioned in section 5.10, PPP can be used for static positioning simply by changing the 

stochastic model of the station coordinates, which are assumed to be constant with an initial 

error. The initial approximate position is based on the standard point positioning solution, 

with may be assumed to have a conservative estimated accuracy of 10 m (standard deviation) 

for each coordinate.  

Observations from an EUREF permanent network station, LEON, were used to evaluate the 

performance of SAPPos for static PPP. GNSS observations at 30 s interval were first 

decimated for the epochs of the IGS SP3 files.  

The result is plotted on figure 7.1, for the time series of the three coordinates. The solution 

converged after 5 epochs, which are 15 min apart, and the 95% confidence spheroid of the 

differences for the final solution, when compared to the station true position, is 0.9 cm. As 

expected the accuracy of the vertical coordinate is worst when compared with the horizontal 

coordinates, due to geometric influence of the satellite configuration on the position solution. 
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Figure 7.1 – Result of static PPP processing by SAPPos using data  from EUREF permanent network 
station LEON with reference to its true position. 

7.1.2. Using PPP in kinematic mode 

Another data set from the EUREF station LEON, with observations at 1 s interval, was 

processed by SAPPos, in kinematic mode. Now, CLK 30 s clock corrections were used in 

conjunction with SP3 files to allow interpolation with a reasonable accuracy for all 

observation epochs. The results of the kinematic solution agree with the static one, with a 

bias of 5 cm and 3D RMS error of 7 cm, considering only the results after convergence. 

Table 7.1 – Summary statistics of the SAPPos kinematic solution with reference to the true position 
of a fixed station (in metres). 

 bias std. dev. max. 
North -0.02 0.02 0.08
East 0.00 0.03 0.07
Up 0.05 0.05 0.09

Since the horizontal coordinates have better accuracy that the vertical component and to 

enhance plot readability, only the geodetic height difference is plotted on figure 7.2. The time 

series shows some variations which are related with the influence of the satellite geometry, or 

PDOP (. In good visibility conditions the PDOP is around 2 or 3. The observed higher PDOP 

values are explained by obstruction, interference or missing data in satellite precise 

ephemeris files (SP3) or high data rate clock correction files (CLK). Also, due to the 

geometry influence in the position accuracy the horizontal coordinates have smaller 
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differences than the height as in the example on table 7.1. However, it should be remembered 

that, for marine applications, the vertical component is the one that is requires the highest 

accuracy level. 

 

Figure  7.2–  Result  of  kinematic  PPP  processing  by  SAPPos  using  data  from  EUREF  permanent 
network station LEON with reference to its true position. 

The time required for the solution to converge depends on the system model and stochastic 

parameters used in the recursive filter to estimate the solution. The convergence criterion was 

a 3D error less than 10 cm with reference to the known station position. SAPPos uses a 

Kalman filter formulation, already implemented in the GPSTk library.   In the example above 

a simple system model as white noise was assumed for the coordinates. The convergence 

period was about 2000 s. This period may be reduced by estimating the carrier phase 

ambiguities, but this option was not intentionally considered for processing a static station. 

7.2. PPP on a marine platform   

One of the problems of the performance evaluation of PPP in a marine environment, at the 

open sea is due to lack of a good reference. In this study it was used GPS data already 

collected at sea and processed in relative positioning mode, which is proved to be accurate 

enough to serve as reference trajectory. 



Chapter 7. Experiments and results 

92 
 

In the scope of project “study of the Portuguese Oceanic Coastal zone Using remote Sensing 

data” (POCUS), a test campaign was prepared, using a survey vessel, NRP Auriga. The aim 

of this study was to evaluate the feasibility of GPS measurements of SSH on board a ship by 

comparing it with satellite altimetry SSH [Marreiros et al., 2012]. The GPS data acquired 

during this campaign was used to evaluate the performance of SAPPos on board a ship.  

7.2.1. Equipment installation 

The data collection campaign was previously planned to occur on the 16 and 17 June 2007 in 

order to coincide with the altimetric satellite JASON and ENVISAT passes. All the 

equipment was installed on board the Portuguese Navy coastal survey ship NRP Auriga, with 

a length of 31 m (see Figure 7.3).  

Two shore stations were used as reference for relative carrier phase GPS positioning in post-

processing. Relative carrier phase GPS positioning can achieve centimetre level accuracy in 

kinematic platforms (Xu, 2007). The use of kinematic relative positioning is feasible in the 

vicinity (few tens of kilometres) of a single reference station. The range of the kinematic 

solution can be increased significantly by using multiple reference stations near the planned 

trajectory. It is advisable to fix the carrier phase integer ambiguities prior to the mission start, 

in the vicinity of one reference station.  The lock to the GPS signals, as the ship follows its 

planned track, will be maintained with careful installation of the antennas in order to have 

good visibility to satellites and no electromagnetic interferences. In normal sea state 

conditions, ship motion may cause antenna height variations of a few metres. The 

determination of SSH requires an additional care for the compensation of vessel motion and 

draught variations during the mission, as described on section 2.4. 

The following equipment was installed on board the NRP Auriga: 

 Two GPS receivers TRIMBLE 4000 SSE each one with a dedicated antenna 

TRIMBLE Compact L1/L2 with groundplane. The two antennas were installed on a 

base with 2 m length, in the port-starboard direction, fixed to the passage between the 

two chimneys of the ship. The two antennas were used to determine independent GPS 

OTF positioning solutions. 

 The ship was already equipped with a GPS/INS used for motion compensation of 

multibeam surveys, the SEAPATH 200. This system is composed by two antennas and 

an Inertial Measurement Unit (IMU). The accuracy of its measurements are (RMS): 
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o Roll: 0.1º; 

o Pitch: 0.1º; 

o Heave: 5 cm or 5% whichever is higher. 

The IMU was installed in a fixed position near the ship’s gravity centre. This position is not 

exactly defined and may change during the mission period due to changes in load, such as 

fuel and water consumption. An approximate location may be found from the ship’s 

drawings. Any displacement error of the IMU’s location from the ship’s gravity centre may 

induce non-existent heave measurements due to roll or pitch motion effects on the vertical 

displacement of the IMU.  

Raw data from the dual frequency GPS receivers were recorded at a 1Hz data rate. One raw 

data file was created every 2 hours. Raw data from the Seapath 200 were recorded using a 

serial logger and configured for 10 Hz data rate output. 

The two GPS antennas of the Seapath 200 were installed in the longitudinal direction of the 

ship, making a cross with the other two standalone GPS antennas (see figure 7.3). 

 

Figure 7.3 – Portuguese navy survey ship NRP Auriga and equipment configuration with approximate 
body frame coordinates, in metres. 

  the  GPS 

stalled 
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Two coastal reference stations were installed as close as possible to the ships planned track in 

order to allow good quality relative positioning results for the entire test period. One 

reference station was installed at the extreme north of the navigation plan (Gaia) and the 

other at the extreme south (Carvoeiro). The maximum distance of the ship’s position from the 

closest reference station was 110 km (see figure 7.4). 

 

Figure 7.4 – Mission navigation plan  (black  line),  satellites  track  (gray  line) and  reference  stations 
(black dots). 

The data collection campaign took place between 16 0830 UTC and 17 1810 UTC of June 

2007 in order to coincide with the ENVISAT and JASON-1 passes along the Portuguese 

coast (see figure 7.4) during a navigation period of 33 hours. GPS measurements of SSH 

were computed along ENVISAT pass 160 (cycle 59) and JASON-1 pass 137 (cycle 200). The 

collected GPS and IMU data sets were recently reprocessed using PPP and compared with 

satellite altimetry data processed with improved coastal corrections [Marrreiros et al., 2012] 

7.2.2. Determination of the antenna position in the ship’s body frame 

The body frame coordinates given in figure 7.3 are a first approximation based on the ships 

drawings. An error in the Trimble GPS antennas body frame coordinates will induce an error 

in the determination of ship motion effects. It was found that more accurate body frame 

coordinates must be estimated for each one of the Trimble GPS antennas.  
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For the estimation of accurate body frame coordinates of each GPS antenna, a simple 

procedure was implemented based on the assumption that the instantaneous SSH may be 

considered constant from one epoch to the next, 1 s interval, along the ships track. This 

estimation procedure was implemented sequentially in a search space centered on the 

approximate solution, for a given consecutive set of GPS ships positions without gaps and 

outliers, as follows: 

1. Firstly, approximate values are assumed as a potential solution for the antenna 

position in the ships body frame, from the ships drawings. 

2. The Trimble GPS antenna geodetic height is estimated and corrected for pitch, roll 

and heave using the ships assumed body frame coordinates. 

3. The motion corrected (correction for pitch, roll and heave) GPS geodetic height 

variation (from one epoch to the next) is computed. 

4. The sum of the GPS geodetic height variations for all the data set is accumulated and 

stored. 

5. Another potential solution for the body frame coordinates is tested. A grid of potential 

solutions is given by a small variation (5 cm) applied to each one of the antenna 

coordinates (x, y or z) in the body frame, within a reasonable range (in this case, +/- 1 

m). The process in steps 2 and 3 is repeated, and another sum of GPS geodetic height 

variations is stored. 

6. If the sum of new accumulated GPS geodetic height variations is smaller than the one 

previously stored, then replace the stored value and assume the new potential solution 

as the best one. 

7. Continue this process within the grid of potential solutions. 

8. Finally, the most accurate solution is the one that corresponds to the smallest 

accumulated value of GPS geodetic height variations for all the potential solutions. 

This methodology was applied to two subsets, one for each antenna, where all GPS ships 

position solutions were validated as good. The data sets should be long enough in order to 

minimize the influence of positioning errors in this estimation procedure. In this case, each 

data set is about 1 hour long (contains 3600 consecutive epochs) for each one of the antennas 

without gaps and outliers. The final result for the antenna position is shown in table 7.2. 
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Table 7.2 ‐ GPS antennas coordinates in the ships body frame (in metres). 

 
X 

Longitudinal 
(positive backwards) 

Y 
port-starboard 

(positive to port) 

Z 
vertical 

(positive downwards) 
Port antenna 6.11 0.85 -8.19 
Starboard antenna 6.10 -1.16 -8.00 

Note that the distance between the two GPS Trimble antennas is 2.01 m, in the port-starboard 

direction as computed from the estimated coordinates, which is in agreement with the true 

value observed with a tape during the installation on the on board antennas.  

7.2.3. Determination of a reference trajectory 

GNSS raw data from each receiver was converted and merged into a single RINEX file. Each 

one of the two TRIMBLE GPS receivers data installed on board was processed in OTF mode 

independently for each reference station. OTF is an abbreviation for “On-The-Fly” and stands 

for a processing method that does not requires static initialization of GPS carrier phase 

ambiguity resolution and is used for kinematic applications that require a centimetre level 

accuracy. More information about this method may be found in the specialized literature such 

as Leick (1995) and Xu (2007). 

The commercial software package TRIMBLE Total Control v 2.73 was used to process the 

GNSS data. Since two antennas were installed on board and two reference stations were 

available, four independent baselines were computed: 

 Gaia – Port antenna; 

 Gaia – Starboard antenna; 

 Carvoeiro – Port antenna; 

 Carvoeiro – Starboard antenna. 

The results of RTK data processing for each one of the baselines are summarized in the plots 

of height versus time for each one of the four baselines, after correcting for ship motion 

effects (roll, pitch and heave). From the RTK derived height time series plotted in figure 7.6 

it is observed that: 

 Some outliers are visible mainly when the ship is at longer distances from the 

reference station. 

 The starboard GPS antenna gives the best results and has less data gaps, when 

compared to the port antenna. It was found this was cause by malfunction of the GPS 

receiver connected to the port antenna. 
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 The baseline Carvoeiro-Starboard antenna is the one that shows overall the most 

consistent results. 

 Near Gaia reference station the baseline Gaia-Starboard seems to be the one with the 

most consistent results. 

From these observations the final solution was based on a combination of the Carvoeiro-

Starboard antenna and Gaia-Starboard antenna, taking in consideration the criteria of 

minimum distance of the Starboard antenna to each one of the reference stations. A mixed 

solution set was created using results from each one of the above mentioned baselines. See 

figure 7.6, where the vertical dashed lines indicates the period that corresponds to each one of 

the baselines: 

 Baseline Gaia – Starboard is used from the start to epoch 58000 s; 

 Baseline Carvoeiro – Starboard is used from epoch 58001 to 125000 s; 

 Baseline Gaia – Gaia Starboard is used again from epoch 125001 to the end. 

 

Figure 7.5 – RTK derived height time series for each one of the two antenna of the ship using the two 
reference stations (four baselines). 

The final reference trajectory solution for the ship’s trajectory was based in a mixed solution 

using the two reference stations for the starboard GPS antenna. The criteria for selecting the 

reference station was the minimum baseline distance. Using this criterion the maximum 

distance to a reference station is 110 km. The height plot of the final data set is represented in 

figure 7.6. 
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Figure 7.6  – Final GPS OTF height derived from the ship reference trajectory heights, using both 
reference stations. The distance to each reference station is also represented. 

7.2.4. Performance analysis of the developed PPP software  

The RINEX data files from the ship starboard antenna were used for processing in PPP mode, 

using the software developed under the scope of this study, SAPPos. Additionally the same 

RINEX data files were used for processing with the open source software RTKLIB [Takasu, 

2010]. The RTKLIB (http://www.rtklib.com/rtklib.htm) is an open source software for GNSS 

positioning that can be used, among other functionalities, for PPP.  

The satellite positions were derived from IGS precise ephemeris SP3 files. The satellite clock 

errors were interpolated from IGS 30 s CLK files. The estimated coordinates consider the 

antenna phase centre offset. Solid Earth, ocean loading and pole tidal effects have also been 

applied. The tropospheric zenith path delay was estimated as an additional unknown and a 

dual frequency combination was used to eliminate the ionospheric effect.  

PPP results from SAPPos were first compared to the OTF solution using a reference station 

for the entire trajectory, the baseline Gaia-starboard antenna (figures 7.7 and 7.8). The main 

conclusions of this analysis are:  

 Near the reference station, the two time series are highly correlated and both show the 

same high frequency variations due to ships motion (figure 7.7).  

 As the ship moves away, the OTF solution seems to reduce its accuracy, while the 

PPP solution keeps the expected trend. The largest differences occur between 62000 
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and 85000 s, when the ship was at the greatest distance from both the reference station 

and the PPP solution seems to keep its centimetre accuracy (figure 7.8).  

 The PPP convergence time was 300 s (figure 7.8).  

 

Figure 7.7 ‐ Detail of PPP vs OTF height series, near the reference station, Gaia. 

 

Figure 7.8 – SAPPos PPP vs OTF height full time series. The lower plot represents the differences. 
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Next, the more accurate OTF reference trajectory, resulting from the combination of using 

the two reference stations, was used to evaluate the performance of both SAPPos and 

RTKLIB (figure 7.9).  

 

Figure 7.9 – PPP height differences for SAPPos – OTF and RTKLIB – OTF (lower graph) and respective 
histograms (top graph). 

The statistical analysis of the height differences time series indicates that the RTKLIB 

solution seems to be more accurate, with a standard deviation of 10 cm, when compared to 

the SAPPos solution, with a standard deviation of 14 cm. The average value of the 

differences is 1.8 cm. The slightly better results with RTKLIB when compared with SAPPos 

are due, probably, to the functionally available on the RTKLIB to fix the carrier phase 

ambiguities.  

The convergence time, however seems to be slightly better for the SAPPos, about 300 s, 

when compared with the RTKLIB. The assumption for this faster convergence is probably 

due to the preliminary ambiguity determination based on the DF combination implemented in 

the SAPPos. 
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7.3. Comparison of satellite versus ship based SSH 

The SSH derived in the previous section is now compared with coastal altimetry. The 

processing of coastal satellite altimetry data in this specific project, using state-of-the-art 

methodologies, is described in Marreiros et al. (2012).  

The results for the comparison between ship-based and satellite altimetry SSH show that both 

measurement systems are able to capture the main signals present in the SSH along the 

observed profiles. The standard deviation of the differences for the ENVISAT is 9 cm, while 

for JASON-1 is 13 cm. These results are within the expected values, considering that they 

have been derived with 20 Hz altimeter data and that the satellite and ship measurements 

span different time periods. The GPS derived SSH results seem to be more accurate along the 

ENVISAT path than along the JASON-1 path (figures 7.10 and 7.11). This may be explained 

by an increased wave motion when the ship was moving southwards along the JASON-1 

track. As ship´s roll, pitch and heave increases, errors in lever arms calibration and GPS 

satellite cycle slips causes a loss of accuracy in the position solution. 

It should also be recalled that, although the ship cruise was planned to coincide as close as 

possible with the passage of the satellites in the middle point of ship’s track plan, there is a 

maximum time difference between ship and satellite measurements of 8 and 6 hours at the 

start and end of the data collection period for the ENVISAT and JASON-1, respectively. 

Therefore, patterns of ocean variability in the study region may have contributed to the 

residual differences shown in figures 7.10 and 7.11.  
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Figure 7.10  ‐ GNSS derived and satellite altimetry SSH, using  the GPD wet  tropospheric correction 
and  WITM  ocean  tide  model,  along  ENVISAT  pass  160,  cycle  59.  The  two  data  series  were 
intentionally offset  from  each other.  The  lower plot  represents  the differences between  the  two 
data series. 

 

Figure 7.11 ‐ GNSS derived and satellite altimetry SSH using the GPD wet tropospheric correction and 
the  WITM  ocean  tide  model,  along  JASON‐1,  pass  137,  cycle  200.  The  two  data  series  were 
intentionally offset  from  each other.  The  lower plot  represents  the differences between  the  two 
data series. 
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Chapter 8. Conclusions and recommendations 

The study carried out during this investigation has shown that PPP can be used for precise 

positioning of marine platforms and all objectives set forth at the Introduction of this thesis 

were generally achieved. The analysis done through this investigation have contributed 

towards a better understanding of several specific problems in PPP involving the use of the 

most appropriate physical models, selection of the best data combinations and the 

improvement of performance, including the convergence time. 

The specific contributions of this study can be summarized as follows: 

1. Development of a positioning methodology that can be used for kinematic positioning 

with a single GNSS receiver;  

2. Assessment of the quality of the resulting PPP estimate accuracy in a marine 

environment and comparison to the derived  ship based PPP with SSH estimates 

obtained from satellite altimetry; 

3. New routines were programmed to implement methods not available at the GPSTk 

library. The software implementation, based on the GPSTk library, is standard and as 

portable between platforms as possible; 

4. As a result of this thesis, a new PPP software suite that can be used in real life, both 

for static and kinematic applications in the domain of hydrography and oceanography, 

is freely available, and can integrate further developments. This has the potential to 

avoid the dependence of commercial software packages, reducing costs; 

5. The comparison with satellite altimetry demonstrated the feasibility of GNSS 

measurements of SSH on board ships for collecting in situ data for validation of 

coastal altimetry products. 

8.1. Conclusions 

PPP is capable of achieving centimeter accuracy level in the case of static positioning. By 

comparison with a reference trajectory computed by RTK, the accuracy of kinematic PPP 

was accessed to be also at decimetre level.  

The accuracy of kinematic PPP was accessed to be also at decimetre accuracy level by 

comparing with a reference trajectory computed by RTK.  
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Precise satellite clock errors cannot be interpolated for a long period interval (900 s) without 

significant error. For kinematic PPP, when the solutions are estimated along the trajectory at 

1 s interval, high data rate (no higher than 30 sec interval) clock corrections are required.  

The modifications made to the PPP software by introducing new data combinations, 

troposphere model and satellite weighting, significantly improved the accuracy and 

convergence time when compared to the traditional PPP model. The comparison with the 

RTK solution, near the reference station, shows the same accuracy, at centimetre level. This 

study shows that PPP allows offshore marine precise positioning where reference stations are 

not available for a reliable RTK solution.  

The best performance for PPP was achieved with the IF carrier phase combination and CP 

combination for each frequency. The MW combination was used to estimate the ambiguities 

and also improved the convergence time to 300 s in kinematic positioning. 

The comparison between ship-based and satellite altimetry measurements of SSH along two 

satellite tracks on the west Iberian coast showed that the difference between the various 

ENVISAT and JASON-1 SSH data sets derived by using appropriate models for the wet 

tropospheric correction and for the ocean tides are smaller than the differences between the 

SSH captured by the two measurements systems: altimeter and GPS installed on a vessel. In 

part this can be explained by the particular conditions of the study area with moderate ocean 

tide variability and low to moderate variability in the wet path delay. 

8.2. Recommendations for future work 

The methodology presented in this study can be applied to any GNSS system, such as GPS, 

GLONASS, etc. However, only GPS data was processed and the software is not yet able to 

process observations from another GNSS. This is a relevant topic that requires further 

investigation and will certainly improve the performance of PPP.  

The developed PPP methodology estimates the ambiguities as float numbers and keeps its 

integer nature allowing ambiguity fixing, in theory. Further development will be dedicated to 

this pending issue. 

Concerning with the GNSS-derived SSH two types of improvement can be performed. First, 

implement more accurate ship dynamic models in order to estimate the influence of 
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hydrodynamics, squat or load variation effects. Secondly, improved methodologies to reduce 

error sources derived from lever arms calibration and ship draught variation shall be adopted. 
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Annex A.  Status and future of GNSS 

A.1.  Introduction 

This annex is devoted to the description of Satellite Navigation Systems. A Satellite 

Navigation System (SatNav) is a system of satellites that provides autonomous geo-spatial 

positioning. Satellite methods utilize artificial satellites to which ranges, range differences 

and any other measurement that may be used for the purpose of determining the coordinates 

of the observer.  

In standard point positioning mode, SatNav allows small electronic receivers to determine 

their location (longitude, latitude, and altitude) to within a few metres using radio signals 

transmitted along the line-of-sight to the satellites. The receivers calculate the precise time as 

well as the antenna position.  

One SatNav with global coverage is designated as Global Navigation Satellite System 

(GNSS). The following GNSS are operational or in development phase: 

 GPS – Global Positioning System (United Sates of America); 

 GLONASS – Russian Federation´s Global Navigation Satellite System (Russia); 

 GALILEO – European Satellite Navigation System (Europe); 

 BEIDOU – Chinese word for compass (China). 

Some nations are developing regional coverage SatNav, such as: 

 QZSS – Quasi-Zenith Satellite System (Japan); 

 IRNSS – Indian Regional Navigation Satellite System (India); 

A Satellite Based Augmentation System (SBAS) consists of widely dispersed reference 

stations that monitor and gather GNSS data. These data are forwarded to a master station for 

processing to determine the integrity and differential corrections for each monitored satellite. 

The integrity information and corrections to observations are then send to an Earth station 

and uplinked to a geostationary satellite. The geostationary satellites downlink the integrity 

and differential corrections for each monitored satellite using a frequency with a modulation 

similar to that used by GNSS. The geostationary satellite also can serve as an additional 

ranging signal. Currently the following SBAS are available: 

 WAAS – Wide Area Augmentation System (United Sates of America); 
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 EGNOS - European Geostationary Navigation Overlay Service (Europe); 

 GAGAN – GPS Aided Geosynchronous Augmented Navigation System (India); 

 SDCM – System for Differential Corrections and Monitoring (Russia); 

 MSAS  - Multi-functional Transport Satellite (MTSAT) Satellite-based Augmentation 

System (Japan); 

 SNAS (China); 

In general, a SatNav is composed of three segments: 

 The space segment, consisting of a constellation of satellites transmitting radio signals 

to the users; 

 The user segment, consisting of the worldwide user receiver and antenna sets. It 

performs signal reception, data demodulation and computation of the navigation 

solution. The variety of applications requires development of specific methods for 

ground, sea, aviation and space applications; 

 The control segment, consisting of a global network of ground facilities, that track the 

satellites, monitor their transmissions, perform analyses and send command and data to 

the satellites. 

A.2. GPS: Global Positioning System (USA) 

The GPS is a satellite radio navigation system developed by the Department of Defense 

(DoD) of the USA. This system uses a Medium Earth Orbit (MEO) satellite constellation 

transmitting microwave signals allowing a GPS receiver to determine its position, velocity 

and time. 

The roots of GPS are closely connected to the dawn of the space age when the launch of the 

Sputnik satellite by the Soviet Union in 1957, since the satellite orbit could be determined by 

observing the Doppler Effect. Using this knowledge the USA developed the first satellite 

positioning system, called TRANSIT. This system was developed by the confluence of a vital 

need and advanced technology. The vital need was to have accurate navigation systems for 

the new class of submarines developed to carry Polaris missiles [Parkinson et al., 1996].  

With Transit, the horizontal position of a moving vehicle can be determined by measuring the 

Doppler shift of satellite signals, with an horizontal accuracy of 80 to 100 m (2D RMS). This 

system had no precise timing aboard the satellites, the calculation of a position took about 15 
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min and it was not fully global and available. Transit has been continuously operational since 

January 1964 (when the first position fix was computed on board of a submarine) until the 

end of 1996.   

The concept of GPS was born in 1973 when the DoD decided to develop a satellite 

navigation system based on previous systems (like TRANSIT). In 1977 the first receiver tests 

were performed using pseudolites. The first operational GPS satellite was launched in 1978. 

Till 1985 a total of 11 block 1 satellites were launched. In 1993 the system reached full 24-

satellite constellation. In this year it was also decided to allow the world wide civilian use.  

In 17th July 1995 the Full Operational Capability (FOC) was achieved 

(http://www.navcen.uscg.gov). Five years later, on 1st May 2000, the deactivation of the SA 

was announced by the U.S. President Bill Clinton 

(http://clinton.nara.gov/WH/EOP/OSTP/html/0053_2.html), leading to an immediate 

improvement of the accuracy for civilian users from 100 m to 20 m. In September 2007 the 

U.S. Government announced its decision to produce the future generation of GPS satellite, 

known as GPS III, without the SA feature and permanently eliminate this source of 

uncertainty in GPS that was a concern for worldwide civil users (http://georgewbush-

whitehouse.archives.gov/news/releases/2007/09/20070918-2.html). 

A.2.1. Space segment and signals 

The GPS baseline constellation consists of 24 satellites distributed in 6 orbital planes, with 

four slots per plane. Three of the 24 slots are expandable. Any surplus satellites that exist on 

orbit will occupy other locations in the orbital planes. There are no a priori specified slots for 

surplus satellites. The reference orbit parameters are [DoD, 2008]: 

 Semi-major axis: 26559.7 km: 

o Altitude: 20200 km; 

o Period: 11 hours 58 min (aprox.12 sidereal hours);  

 Eccentricity: 0.01º; 

 Inclination: 55º 

These orbits are nearly circular and have a period of approximately 12 sidereal hours. As of 

11 August 2012 the space segment was built-up by 32 satellites: 10 satellites of block IIA, 12 

satellites of block IIR, 7 satellites of block IIR(M) and 2 satellites of block IIF (University of 
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New Brunswick GPS constellation status: 

http://gge.unb.ca/Resources/GPSConstellationStatus.txt).  

The original GPS design contains two ranging codes; the C/A (Coarse Acquisition) code, 

which is freely available to the public, and the restricted P (Precision) code, which is reserved 

for military applications and is encrypted, forming the P(Y) code.  

After the launch of satellites IIR(M), two new signals were added on both frequencies L1 and 

L2: A new civil signal (L2C) and a new military signal (L1M and L2M). The new satellites 

IIF transmit another signal, on a new frequency, the L5C.  

As part of the modernization plan, the satellites model III, still under production and planned 

to start launch after 2014, will include a new civil signal (L1C). 

GPS uses Code Division Multiple Access (CDMA) technique to send different signals on the 

same frequency. The modulation method used for these basic GPS signals is the Binary Shift 

Phase Keying (BPSK). The new signals L2C and L5C are also BPSK modulated, the L1M 

and L2C are Binary Offset Carrier (BOC) modulated and the L1C is Multiplexed Binary 

Offset Carrier (MBOC) modulated (see table A.1). 

Table A.1 – GPS frequency and signal plan (see http://www.gps.gov). 

Satellites 

Frequency and Signals 
L1 

(1575,45 MHz)
L2  

(1227.60 MHz)
L5  

(1176.45 MHz)
L1C/A 
BPSK 

L1P(Y) 
BPSK 

L1M 
BOC

L1C 
MBOC

L2P2(Y) 
BPSK

L2M 
BOC

L2C 
BPSK 

L5C 
BPSK

IIA 
1990-1997 X X   X    

IIR 
1997-2004 X X   X    

IIR(M) 
2005-2009 X X X  X X X  

IIF 
2010-... X X X  X X X X 

III 
2014-... X X X X X X X X 

 

A.2.2. Control segment 

The Operational Control Segment (OCS) began operation in 1985, consisting of five monitor 

stations, four ground antennas for upload and the Operational Control Center. The master 
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control station is in Colorado Springs, EUA, and the others are located on Ascension Island 

(Atlantic Ocean), Diego Garcia (Indian Ocean), Kwajalein and Hawaii (both Pacific Ocean) 

[The current OCS includes a master control station, an alternate master control station, 12 

command and control antennas and 16 monitoring stations. The locations of these facilities 

are shown in the map bellow: 

 

Figure A.1 – GPS control segment (from http://www.gps.gov/systems/gps/control/). 

A.3. GLONASS (Russia) 

GLONASS (stands for GLObal Navigation Satellite System) is a satellite navigation system 

developed by the former Soviet Union for military use. It was soviet second generation 

satellite navigation system, improving their Tsikada system which required one or two hours 

of signal processing to determine a position with high accuracy. The system is operated by 

the Coordination Scientific Information Centre (KNIT’s) of the Ministry of Defense of the 

Russian Federation.  

For a long time since, the start of GLONASS, the periods for observing more than four 

satellites were limited because GLONASS was not fully operational. Development of 

GLONASS began in 1976 with a goal of a global coverage predicted for 1991. In 1995 the 

constellation was completed, but the system fell rapidly into decay with the collapse of the 

Russian economy. Older satellites were taken out of service after their life time has been 

exceeded. The satellite replacement did not occurred and only 8 satellites remain in orbit in 
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2001. To have uninterrupted working conditions it is essential that a minimum of 18 satellites 

are in orbit, which was achieved by 2008-2009 and the complete 24 operational satellites 

constellation was achieved on May 2012 [Oleynik, 2012].  

GLONASS was first planned to broadcast two types of signal: a standard precision (SP) 

signal and an encrypted high precision (HP) signal. All satellites transmit the same SP signal, 

however each satellite transmits on a slightly different frequency using a 25-channel 

Frequency Division Multiple Access (FDMA) technique. Due to interference with radio 

astronomy, the frequency band had already to be modified, more than once. Like GPS, 

GLONASS transmits navigational data at 50 bits/s. The wavelengths of the carrier are 

different for each satellite due to the different frequencies used. The knowledge of the 

wavelength is crucial for ambiguity resolution. The wavelength difference between the two 

extremes is 0.15 cm, which is less than 0.01 carrier cycle. 

Second generation GLONASS satellites started deployment in 2003 also broadcast an 

additional frequency and an additional code base on CDMA. It is intended to follow the 

direction of signal modernization, to improve accuracy of phase and range measurements and 

interoperability with other GNSS [Oleynik, 2012]. 

A.3.1. Space segment and signals 

The first GLONASS satellite was launched into orbit in 1982. A fully functional GLONASS 

constellation consists of 24 satellites deployed in 3 almost circular orbits. As of 16 November 

2012, 31 satellites were in orbit with 24 operational (http://www.glonass-

center.ru/en/archive/). The reference orbit parameters are [ICD-GLONASS, 2008]: 

 Semi-major axis: 25510 km: 

o Altitude: 19100 km; 

o Period: 11 hours and 16 min. 

 Eccentricity: 0.01º; 

 Inclination: 64.8º; 

A characteristic of the GLONASS constellation is that any given satellite only passes over the 

exact same spot over the Earth every eighth sidereal day. The system is designed in such a 

way, that constellation, and therefore DOP-values will repeat each sidereal day, but with 

different satellites. For comparison each GPS satellite passes over the same spot twice every 
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sidereal day. Also, users in higher latitude areas obtain better GLONASS DOP-values than 

GPS, due to the higher inclination of satellite orbits. 

The second, generation of satellites, known as GLONASS-M, were developed beginning in 

1990 and first launched in 2003. These satellites possess a substantially increased design 

lifetime (7 years). Since 2003 the satellite type GLONASS-K1are being deployed, which has 

also increased design lifetime (10 years) and a new L-band frequency and new CDMA signal 

open for civil users. After 2013, a new GLONASS-K2 will start to be launched. These 

satellites have a reduced weight of only 750 kg and offer an additional L-band frequency with 

additional navigational signals at frequencies L1 and L2.  

A fourth generation satellite, the GLONASS-KM is under design phase with the requirements 

to have higher life time and with twice the weight and onboard power supply, when 

compared with the GLONASS-K’s. The deployment phase is planned to start in 2017.  

A.3.2. Control segment 

The GLONASS control segment is composed by (see figure A.2): 

 SCC – System Control Center; 

 TT&C – Telemetry, Tracking and Command station (5 stations); 

 ULS – Uplink station (3 stations); 

 MS – Monitoring station (10 stations); 

 CC – Central Clock (2 stations); 

 SLR – Laser Tracking Station (2 stations); 

 

Figure A.2 – GLONASS control segment [Revnivykh, 2008]. 
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A lack of a global coverage of ground stations is a drawback of the GLONAS system, since it 

may cause delays in the discovery of satellite anomalies and updating of satellite data.  

A.3.3. GPS vs GLONASS 

GLONASS performance on position and velocity determination is comparable with GPS 

once the full system is operational [Oleynik, 2012].  

GLONASS and GPS are not entirely compatible with each other however, they are generally 

interoperable.  Already available in the market, GNSS receivers already provide GPS and 

GLONASS measurements. The main advantages for the user community are increased 

accuracy and higher system integrity on a worldwide basis [Xu, 2007].  

Table A.2 – Comparison of GPS and GLONASS. 

 GLONASS GPS 
No of satellites 24 24 
No of orbital plans 3 6 
Inclination 64.8º 55º 
Orbital radius  25510 km 26560 km 
Fundamental frequency 5.011 MHz 10.23 MHz 

Carriers 
L1 1606 to 1615.5 MHz 1575.42 MHz 
L2 1246.0 to 1256.5 MHz 1227.60 MHz 

Signals 
C/A 0.511 MHz 1.023 MHz 
P 5.110 MHz 10.23 MHz 
Geodetic reference PZ 90 WGS 84 
Time reference GLONASS time GPS time 

A.4. GALILEO (Europe) 

GALILEO is a GNSS initiated by the European Union and the European Space Agency for 

providing a highly accurate, guaranteed global positioning service under civilian control. It is 

inter-operable with GPS and GLONASS. A user will be able to take a position with the same 

receiver from any of the GNSS satellites in any combination. GALILEO will deliver real-

time positioning for public use with metre level accuracy, will guarantee availability of the 

service under the most extreme circumstances and will inform users within seconds of a 

failure of any satellite. 

A private company or a consortium of companies will establish the Ground Segment, takes 

responsibility for the launch of the satellites and will operate the system. The question of 
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financial founding and the formation of the private consortia slowed down the process of 

development. It seems that the deployment phase is fully paid by the public, while the 

funding of the operational and maintenance phase is still under discussion. 

The development program comprises two main phases [ESA, 2013]: 

  The In-Orbit Validation (IOV) phase. The IOV is concluded and consisted of 

assessing the system testes, the operation of two experimental satellites and a reduced 

constellation of four operational satellites and their ground infrastructure. Two of 

operational satellites were launched and positioned in one orbital plane on 21 October 

2011. The other two operational satellites were launched on 12 October 2012 and 

positioned on another orbital plane on 12 October 2012. 

 The Full Operational Capability (FOC). The FOC consists of the deployment of the 

remaining ground and space infrastructure, including an intermediate initial 

operational capability phase with 18 satellites in operation (the 4 IOV plus 14 others). 

By 2015, 18 satellites should be in place, followed by the rest until 2020.  

A.4.1. Space segment and Signals 

Fully functional GALILEO constellation consists of 27 satellites and 3 spares deployed in 

three almost circular orbits with a semi-major of 29600 km in a so-called Walker (27,3,1) 

configuration. This semi-major radius axis results in an orbit repetition time of 10 days. Each 

satellite will broadcast precise time signals, precise ephemeris and other data. The GALILEO 

satellite constellation has been optimised to the following constellation specifications: 

 Semi-major axis: 29600 km: 

o Altitude: 23222 km; 

o Period: 14 hours;  

 Eccentricity: 0.01º; 

 Inclination: 56º. 

The first GALILEO test satellite, Giove-A, was launched into orbit on 28 December 2005. A 

second test satellite, Giove-B, was launched on 27 April 2008. This satellite will incorporated 

some enhancements over GIOVE-A, allowing additional signals to be generated and received 

on the ground. The aim was to keep on providing early in-orbit experimentation with the 

common baseline L1 open service signals (see GALILEO homepage: 

http://www.esa.int/Our_Activities/Navigation/The_future_-_Galileo/What_is_Galileo). 
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The GALILEO navigation signals are transmitted in the four frequency bands: 

Table A.3 – GALILEO carrier frequency per signal [ICD‐GALILEO, 2010]. 

Signal Frequency 
E5a 1176.450 MHz 
E5b 1207.140 MHz 
E5 (E5a+E5b) 1191.795 MHz 
E6 1278.750 MHz 
E1 1575.420 MHz 

The frequency bands have been selected in the allocated spectrum for Radio Navigation 

Satellite Services (RNSS), and in addition to that, E5a, E5b and L1 bands are included in the 

allocated spectrum for Aeronautical Radio Navigation Services (ARNS), employed by civil-

aviation users, and allowing dedicated safety-critical applications.  

 

Figure A.3 – GALILEO frequency plan [ICD‐GALILEO, 2010]. 

All GALILEO transmitting satellites share the same frequency bands, making use of the 

CDMA technique. Spread Spectrum signals are transmitted including different ranging codes 

per signal component, per signal, per frequency and per satellites.  

A.4.2. Control segment 

The core of the GALILEO ground segment will be the two control centres. Each control 

centre will manage ‘control’ functions supported by a dedicated Ground Control Segment 

(GCS) and ‘mission’ functions, supported by a dedicated Ground Mission Segment (GMS). 

The GCS will use a global network of five transmitting stations to communicate with each 

satellite on regular contacts, long-term test campaigns and contingency contacts. A global 

network of thirty GALILEO Sensor Stations (GSS) will be used to monitor the navigation 
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signals of the satellites on a continuous basis. The prime element of the GSS is the reference 

receiver (see GALILEO homepage: http://www.esa.int/Our_Activities/Navigation/ 

The_future  -_Galileo/What_is_Galileo). 

A.4.3. Services 

Like modernized GPS, GALILEO will also transmit freely on three frequencies with 

pseudorange codes modulated on each frequency. GALILEO will offer five different services 

to accommodate the needs of various users [ICD-GALILEO, 2010]: 

 Open Service (OS): This service is free of charge. Receiver manufacturer’s, however 

have to pay to implement e.g. patented memory codes. The OS is intended for mass 

market users such as cellular telephone, personal digital assistants (PDA’s) and vehicle 

and pedestrian navigation. 

 Commercial Service (CS): This service offers higher data rates than the OS and will 

lead to higher accuracy level. As the user has to pay for this service, access control via 

encryption of the data channels will be implemented. 

 Safety of Life (SoL): This service will provide integrity information, i. e. within a 

certain “time to alarm” (6s) the user is warned if a certain satellite should not be used. 

This service is intended for users requiring guaranteed integrity such as CAT-1 aircraft 

landing, train guiding and marine applications. 

 Public Regulated Service (PRS): This service is still under discussion within the 

European Union. It is intended for authorized public or strategic applications requiring 

a high level of continuity such as police, telecommunications networks and emergency 

services. The military use of GALILEO would also work with PRS. Its signal 

modulation and encryption will provide anti-spoofing and anti-jamming capabilities. 

 Search and Rescue (SAR): Together with other satellite systems it will be possible to 

locate distress transmitters. For the first time, also a return channel will be 

implemented. 

Table A.4 – GALILEO frequencies and services [ICD‐GALILEO, 2010]. 

  E5a  E5b  E6  SAR  E1 

OS  X  X      X 

CS  X  X  X    X 

SoL  X  X      X 

PRS      X    X 

SAR        X   

 



Annex A.  Status and future of GNSS 

128 
 

A.5. COMPASS (China) 

In December 2011, China released a test version of the interface control document for the 

COMPASS [ICD-Beidou, 2011]. It is a small publication (with eleven pages) covering only 

the description of the open civil signal and gapping to describe information concerning with 

coordinate system, time scale and ephemeris data description. The official COMPASS 

website is available at http://en.beidou.gov.cn/index.html. 

China started to build its independent GNSS in 1980’s, the COMPASS (Beidou in Chinese). 

China decided to develop a GNSS starting with regional services and expanding to global 

services. A three step development strategy has been adopted [ICD-Beidou, 2020]: 

 Phase I: Experimental, from 2000 until 2003, with the launch of 3 satellites; 

 Phase II: Regional services for China and its surroundings, planned for 2012; 

 Phase III: Global coverage, planned for 2020. 

A.5.1. Frequency and signals 

The positioning services will be transmitting signals using the following frequencies: 

Table A.5 – Compass frequencies [Hegarty and Cartre, 2008]. 

Signal Center frequency (MHz) Bandwidth (MHz) 
B1 1561.098 4.092 
B1-2 1589.742 4.092 
B2 1207.14 24 
B3 1268.52 24 

A.5.2. Services  

Compass is being projected to incorporate two positioning services: an open service and an 

authorized service, the last with higher accuracy for use by the Chinese government and its 

military. 

The open service will provide accuracies of 10 m in positioning, 0.2 m/s in velocity and 50 ns 

in time dissemination. 

A.5.3. Orbital characteristics 

The nominal constellation of the Compass regional system (Phase II) is composed of 14 

satellites, including 5 Geostationary Earth Orbit (GEO), 4 Medium Earth Orbit (MEO) and 5 
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Inclined Geosynchronous Orbit (IGSO. The GEO satellites are positioned at longitudes: 

58º.75 E, 80º E, 100º.5 E, 140º E and 160ª E  [ICD-Beidou, 2011].  

The first COMPASS experimental satellite was launched on October 2000 and the 

operational satellite was launched on April 2007 [Hegarty and Chatre, 2008]. 

A.5.4. Control segment 

The control segment, as with any GNSS, will consist of a master station, monitor stations and 

upload stations. No further information is available at present date. 
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Annex B.  GNSS Precise products providers 

B.1. International GNSS Service (IGS) 

The International GNSS Service (IGS) was officially established in January 1994, originally 

known as the “International GPS Service for Geodynamics, from 1999 as the “International 

GPS Service” and finally, since March 2005 with the current designation. It is an operational 

scientific service of the International Association of Geodesy (IAG) and one of several 

services contributing to the Global Geodetic Observing System (GGOS). The origins and 

early development of the IGS are described by Beutler et al. (2008).  

The IGS operates is a voluntary, non-commercial confederation of about 200 institutions 

worldwide, self-governed by its members. As of 23 August 2012 the tracking network was 

composed by 440 stations with 369 active stations. It primarily supports scientific activities 

based on high accurate Earth observations using GNSS. The mission of the IGS is to provide 

“the highest quality data and products as the standard for global navigation satellite system 

(GNSS) in support of Earth science research, multidisciplinary applications and educations. 

These activities aim to advance scientific understanding of the Earth system components and 

their interactions, as well to facilitate other applications benefiting society (IGS, 2012).  

The production plan of the IGS is organized into Stations that transmit GNSS and 

meteorological data to the Data Centres, where the data is archived and provided open access 

to IGS data and products. The IGS Data Centres fall into three categories: operational, 

regional and global. The Operational Data Centres are in direct contact with the stations. The 

Regional Data Centres collect data from operational data centres and/or stations, maintain a 

local archive of the data received, provide on-line access to these data to the users of the 

region and transmit data from a subset of their sites (minimally, IGS reference stations) to the 

Global Data Centres. The Global Data Centres are the main interfaces to the Analysis Centres 

and the user community.  

The IGS products result from the processing of station data by the Analysis Centres which 

are combined at the Analysis Centre Coordinator (ACC). The IGS ACC has overall 

responsibility for generating the main official IGS combined products. For the period 2012-

15, the ACC functions are performed by NOAA’s National Geodetic Survey, in Silver 

Spring, Maryland, USA.  The IGS Central Bureau is sponsored by the National Aeronautics 
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and Space Administration (NASA) Earth Surface and Interior Focus Area and hosted by the 

Jet Propulsion Laboratory (JPL) of the California Institute of Technology(see figure B.1). 

 

Figure B.1 – A diagram showing the organization of the IGS (from. 
http://igscb.jpl.nasa.gov/organization/figure1.html accessed 15 May 2012) 

The IGS collects archives and distributes GNSS observation data sets that are used to 

generate the following products (IGS, 2012): 

 GPS satellite ephemerides; 

 GLONASS satellite ephemerides; 

 Earth rotation parameters; 

 IGS tracking station coordinates and velocities 

 GPS satellite and IGS tracking station clock information; 

 Zenith tropospheric path delay estimates; 

 Global ionospheric maps. 

The IGS provides precise satellite ephemeris and clock products that are currently made 

available at no cost in different forms that vary in latency and accuracy, see table B.7. The 

IGS satellite ephemerides and clocks are provided in SP3 (a standardized orbit file format) 

and CLK (RINEX extension to handle clock information). 
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Table B.1 – Extract of IGS product table. Orbit accuracies are 1D mean RMS over the three XYZ 
geodetic components. Clock accuracies are relative to IGS time scale, which is linearly aligned to GPS 

time in one‐day segments. The SDev values are computed by removing a separate bias for each 
satellite, whereas this is not done for the RMS values (IGS, 2012). 

GPS satellite ephemerides and clocks 
 

accuracy latency updates 
Sample 
interval 

Broadcast 
Orbits ~ 100 cm 

real time  daily 
Sat. clocks ~ 5 ns RMS 

~ 2.5 ns SDev 

Ultra-rapid 
(predicted half) 

Orbits ~ 5 cm 
real time 

at 03, 09, 15, 21 
UTC 

15 min 

Sat. clocks ~ 3 ns RMS 
~ 1.5 ns SDev 

15 min 

Ultra-rapid 
(observed half) 

Orbits ~ 3 cm 
3 - 9 hours 

at 03, 09, 15, 21 
UTC 

15 min 

Sat. clocks ~ 150 ps RMS 
~ 50 ps SDev 

15 min 

Rapid 
Orbits ~ 2.5 cm 

17 - 41 hours at 17 UTC daily 
15 min 

Sat. clocks ~ 75 ps RMS 
~ 25 ps SDev 

5 min 

Final 
Orbits < 2.5 cm 

12 - 18 days every thursday 
15 min 

Sat. clocks ~ 75 ps RMS 
~ 25 ps SDev 

30 s 

GLONASS satellite ephemerides 
Final Orbits ~5 cm 12 - 18 days weekly 15 min 
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Annex C. GNSS data combinations 

C.1.  Introduction 

Data combinations are methods of combining GNSS data measured with the same receiver at 

the same station. It is different from data differentiations. Data differentiations are methods of 

combining GNSS data (of the same type) measured at different stations [Xu, 2007]. Data 

differentiations are not possible in PPP, by definition. 

Data combinations can be advantageous for solving specific GNSS problems, most often 

used for three purposes: 

 Provide an observable that has a wavelength greater that the raw observables, a wide-

lane observable, which has advantages for ambiguity resolution; 

 Reduce the ionosphere effect; 

 Reduce noise and the effect of multipath; 

It is not possible to have all these desirable characteristics at the same time in a single data 

combination. Each data combination has its advantages and drawbacks. Depending on the 

requirements, the optimal data combination will not always be the same. 

This annex summarizes the data combinations for dual frequency observations used in the 

scope of this thesis. The following linear data combinations are considered, with the 

abbreviated notation: 

 Linear combinations between observations of the same type: 

o Ionosphere-free (IF);  

o Geometry-free (GF); 

o Wide-lane (WL); 

o Narrow-lane (NL). 

 Linear combinations between observations of different type: 

o Code-phase (CP); 

o Melbourne-Wübbena (MW); 

o Divergence-Free (DF). 
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C.2. General equations for the combinations of two or more observables 

A general combination of two observables, 21 OO , can be formed by 2211 OnOn  where n1 and 

n2 are arbitrary real numbers. However, to make such a combination in order to have the 

same physical meaning as the basic observables, the combination must be scaled by 21 nn  . A 

general formula for the combination of k observables is given as a weighted average [Xu, 

2006]: 

  kk
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However, order to make such a combination that still has the same meaning as a pseudorange 

or carrier phase observation, in a dimensional sense, the standardized combination has to be 

formed as a weighted average. This implies that: 

1...1  knn (C.2) 

C.2.1. Standard deviation of the combined observable 

Considering the standard deviation of each observable, k , according with the covariance 

propagation law, the standard deviation of the combined observable is: 
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It can be shown that  22
1

2 ,...,min kC k   . This means that data combination will degrade the 

data of the more accurate of the raw observables. The above equations are valid either for 

pseudorange and carrier phase observations. 

C.2.2. Frequency and wavelength of the combined observable 

The combination of k carrier phase observations of different frequency leads to the following 

expression for the combined carrier phase (from equation C.1): 

kkkCC nn   ...111
    

( in metric units) (C.4) 
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This equation can be expanded explicitly as [Collins, 1999]: 

  CCkkkkCC NNnNnnn   ...... 1111 (C.5) 

Where  ρ is the geometric distance; 

   C is the wavelength of the combined observable; 

   CN is ambiguity of the combined observable. 

The above equation leads to: 
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But for CN  to be an integer, the terms 
C
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equivalent linear combination in units of cycle, instead of units of cycle. It will be 
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The combined frequency is given by: 

  kkC fifif  ...11 (C.8) 

And the wavelength is given by: 
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(C.9) 

C.2.3. Ionosphere effect on a combined observable 

The ionospheric delays of signals at different frequencies are different, and its linear 

combination is:  
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Assuming the dependency only on the frequency (the TEC only depends on the signal path), 

the ionospheric delay (see section 3.4) is given by the simplified expression: 

  22
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  (C.11) 

Using this relation, the combined ionospheric delay for the carrier phase is given as: 
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The ionosphere delay factor with reference to the L1 ionosphere delay is given as: 
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 (C.13) 

C.3. Inter­frequency linear combinations 

Given the coefficients for a linear combination in the units of cycles, the following can be 

derived as follows: 

 Coefficients in the range domain (using equation C.7); 

 Accuracy of the combined observable with reference to the L1 observable (using 

equation C.3); 

 Wavelength of the combined observable (using equation C.9); 

 Frequency of the combined observable (using equation C.8); 

 Combined observable ionosphere factor (using C.13); 

The following table summarizes the main properties for the most used linear combinations of 

observations, considering the GPS L1 and L2 frequencies with the same noise level.  
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Table C.1 – Summary of the main properties of some inter‐frequency linear combinations. 

 
 ૛࢔ ૚࢔ ૛࢏ ૚࢏

࡯࣌
૚ࡸ࣌

ሻ࢓ࢉሺࢉࣅ  ሻࢠࡴࡹሺ࡯ࢌ
࡯,࢔࢕࢏ࣘࢾ

૚ࡸ,࢔࢕࢏ࣘࢾ

IF 
1 െ ଶ݂

ଵ݂
 ଵ݂

ଶ

ଵ݂
ଶ െ ଶ݂

ଶ ൌ 2.546  െ ଶ݂
ଶ

ଵ݂
ଶ െ ଶ݂

ଶ ൌ െ1.546 
2.97 48.44 

618.849 

 
0 

GF 1 െ ଵ݂

ଶ݂
 1 െ1 1 - - -0.65 

WL 1 െ1 ଵ݂

ଵ݂ െ ଶ݂
ൌ 4.529 െ ଶ݂

ଵ݂ െ ଶ݂
ൌ െ3.529 5.74 86.19 347.820 -1.28 

NL 1 1 ଵ݂

ଵ݂ ൅ ଶ݂
ൌ 0.562 ଶ݂

ଵ݂ ൅ ଶ݂
ൌ 0.438 0.71 10.69 2803.020 1.28 

The development of these combinations is given in the next sub-sections. The minus signal of 

the ionosphere factor of the GF and WL has the meaning of a delay, when compared to the 

L1 ionosphere effect.  

C.3.1. Ionosphere­free combination (IF) 

The simplified observation equation for the carrier phase, considering only the ionosphere 

effect is: 
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For a linear combination of two frequencies, the following condition must be fulfilled: 
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Where i and j are two arbitrary numbers. However the choice is not completely arbitrary 

since the increase of the combined observation noise must be considered. A common choice 

derives from defining ݅ ൌ 1. This choice is the well known ionosphere free combination (IF), 

also referred as the L3 combination [Dach et al., 2007], where: 
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(C.16) 
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The IF is based on the same observation type (carrier phase or pseudorange) at different 

frequencies. The error sources that are the same for both frequencies remain unchanged. The 

error sources that depend on the frequency are combined and do not cancel, except the 

ionosphere effect.  

The observation equations for the pseudorange and carrier phase ionosphere free combination 

are:  
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(C.17) 

This combination has some weaknesses: 

 It does not allow keeping the integer characteristics of the ambiguity parcel. The 

ambiguity can only be estimated as a float unknown;  

 The measurement noise (standard deviation) is three times higher than the basic 

observations; 

 It cannot remove the higher order effects, which, although covering less than 0.1% of 

the total effects, can be several tens of centimetres of range error during periods of 

high ionosphere activity [Klobuchar, 1996]. 

C.3.2. Geometry­free linear combination  

The geometry component of the observation equations is the one that contains the terms 

referred to the geometric distance and the receiver and satellite clock errors. A geometry free 

combination linear combination removes the geometry component and can be formed by 

making differences between observables: code-code, code-phase and phase-phase.  

The simplified carrier phase observation equation considering only the geometry terms, the 

ionosphere and the ambiguity is: 
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For a linear combination of two frequencies, the following condition must be fulfilled: 
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(C.19) 

Where i and j are two arbitrary numbers. However the choice is not completely arbitrary 

since the increase of the combined observation noise must be considered. A common choice 

derives from defining݅ ൌ 1. This choice is the well known ionosphere free combination, also 

referred as the L4 combination [Dach et al., 2007], where: 

 
݅ ൌ 1 
1
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൅
1
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(C.20) 

The GF removes all the terms that are independent on the frequency. 
 

C.3.3. Wide­lane linear combinations  

The wide-lane is formed by the combination of two observations of the same type, in 

accordance with the following equation (in the range domain):  
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For carrier phase observations, this combination is designated as L5 [Datch et al., 2007]: 
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The standard deviation is 5.7 times bigger when compared with the L1 basic observable. 
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Looking more carefully at the ambiguity parcel and windup effect: 
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Where 
21 ff

c
WL 

  is the wide-lane wavelength, 86.2 cm, which is roughly four times larger 

than the L1 and L2 wavelengths.      

For the windup parcel:  
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C.3.4. Narrow­lane linear combination 

The narrow-lane is formed by the combination of two observations of the same type in 

accordance with the following equation (in the range domain): 
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For carrier phase observations: 
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The standard deviation is 0.7 times with reference to the L1 basic observable. 

Looking more carefully at the ambiguity parcel and windup effect: 
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Where 
21 ff

c
NL 

  is the wide-lane wavelength, 10.6 cm, which is roughly half the value of 

the L1 and L2 wavelengths.      
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For the windup parcel:  
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C.4. Linear combinations of observations of different type 

C.4.1. Code­phase average linear combination  

The pseudorange and phase observations on the same frequency suffer the same amount of 

ionospheric effect but with opposite sign, therefore, their sum is ionosphere-free. The code-

phase combination [Gao and Shen, 2001] also removes the ionosphere effect and its standard 

deviation is smaller than the pseudorange IF combination. It is a linear combination of 

pseudorange and carrier phase observations at the same frequency: 
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The standard deviation for this combination is the same as for the pseudorange, which is an 

advantage when compared to the code ionosphere free combination. Also note that the integer 

ambiguity also remains an integer number. 

C.4.2. Melbourne­Wübbena linear combination (MW) 

The Melbourne-Wübbena is formed by the combination of two of the two carrier phase and 

the two pseudorange observations as described by Melbourne (1985) and Wübbena (1985). It 

is a combination of the WL (phase) minus NL (code).  The combination is given by: 

  
21

2
2

21

1
1

21

2
2

21

1
1 ff

f
P

ff

f
P

ff

f

ff

f
PC NLWLMW 










  (C.30) 

This combination eliminates the effect of the ionosphere, the geometry, the clocks and the 

troposphere. With good quality pseudorange observations (rms < 1 m) may be used for the 

resolution of wide lane ambiguities. 
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C.4.2.1. Ionospheric­free carrier­phase and pseudorange smoothing 

The key idea is choose data combination parameters for dual frequency carrier phase and 

pseudorange combinations which eliminates the effect of the ionosphere. Given a generic 

data combination of dual frequency carrier phase and pseudorange measurements: 

ܥ ൌ ଵΦଵߙ ൅ ଶΦଶߙ ൅ ଵPଵߚ ൅  ଶPଶ (C.31)ߚ

Where ߙଵ, ,ଶߙ ,ଵߚ  ଶ are the parameters of the data combination, with real number values. Inߚ

order to fulfil the condition of being an ionospheric free combination, the parameters should 

be chosen such as: 

ଵδΦION,ଵߙ ൅ ଶδΦION,ଶߙ ൅ ଵδPION,ଵߚ ൅ ଶδPION,ଶߚ ൌ
ൌ ଵδΦION,ଵߙ ൅ ଶδΦION,ଶߙ െ ଵδΦION,ଵߚ െ ଶδΦION,ଶߚ ൌ 0 

(C.32) 

Where δΦION,ଵ, δΦION,ଶ   are the carrier phase ionospheric delays for each and frequency, which 

is symmetric with relation to pseudorange ionospheric delay. Considering that ஔ஍ION,భ
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get: 
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(C.33) 

Where f is the carrier frequency. 

The coefficients must also allow the combination to maintain the scale equivalent to the line 

of sight range. This implies that: 

൜
ଵߙ ൅ ଶߙ ൌ 1
ଵߚ ൅ ଶߚ ൌ 1 (C.34) 

C.4.2.2. Divergence Free ionospheric combination (DF) 

For ߚଵ ൌ 1 ֜ ଶߚ ൌ 0  it is equivalent to combine the pseudorange observation, P1, using a 

combination of dual frequency carrier phase observations to reduce the impact of the 

ionosphere. It is designated as Divergence-Free (DF) ionospheric combination. The DF 

combination corrects the effect of the ionosphere temporal variation in a pseudorange minus 

carrier phase smoothing process [MacGraw, 2006; Konno, 2007]. 
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The value of the carrier phase parameters are: 
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A similar derivation can be made for ߚଵ ൌ 0 ֜ ଶߚ ൌ 1  which corresponds to combine the 

pseudorange observation, P2. The complete DF combination for P1 and P2 are: 
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The carrier phase coefficients in units of cycle are (recalling table C.1): 

݅ଵ ൌ െ ଵ݂
ଶ ൅ ଶ݂

ଶ

2 ଵ݂ ଶ݂
݅ଶ ൌ 1 

(C.37) 

This means that the combined ambiguity is no longer an integer number. 

C.4.2.3. Ionospheric Free combination (IF)  

The IF combination already explained for the carrier phase observation may also be applied 

to pseudorange observations on two frequencies. In this case the ionosphere effect is 

eliminated by combining dual frequency observations on the carrier the carrier phase and 

pseudorange individually. It is achieved by making the data combination coefficients as: 
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which leads to: 
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Annex D. Notes about the GPS Toolkit (GPSTk) 

D.1. What is the GPSTk? 

The GPSTk is an open source project sponsored by the Applied Research Laboratories of the 

University of Texas (ARL:UT), having several collaborations around the world. It aims to 

provide a Global Navigation Satellite System (GNSS) computing suite available to the 

satellite navigation community.  

The initial release of the GPSTk was performed in the summer of 2004 and has been 

presented for the first time at ION-GNSS-2004 [Tolman et al., 2004]. The GPSTk software 

suite is available to the user under the Lesser GNU Public License (LGPL). The LGPL grants 

the user a number of rights; notably, the ability to choose whether to modify and redistribute 

the source code. It does not require that works based on the GPSTk adopt an open source 

license (http://www.gnu.org/licenses/lgpl.html). 

D.2. Why the GPSTk? 

GPSTk may be a good option for the student that intends to create its own software for GNSS 

related applications. GPSTk provides a wide set of already tested routines and source code 

that can be incorporated directly in to any personal project.  In this way, the project developer 

allows the developer to reduce the effort in computer programming and may devote its 

expertise to the development of the particularities of its project.  

Any GPSTk user may join the wide community of developers and contribute, with its 

routines, to the software development, by submitting its own code according with given 

guidelines. Development facilities are provided by the popular Sourceforge 

(http://sourceforge.net/) open source 

The core of the GPSTk is its software library. The design goals are portability, modularity, 

easy to use, extensibility and maintainability. These goals allow the GPSTk to maximize the 

number of possible users and lifetime of the library while decreasing the effort and costs with 

long-term maintenance. These goals were achieved due to strict adherence to the ANSI 

standard C++ and Object Oriented Programming (OOP). 
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One of the great advantages of the GPSTk is its flexibility and ease to use. The GPSTk 

supports a wide range of functions generally necessary for processing GNSS observations. 

Such functions are commonly described in textbooks.  

D.3. GPSTk documentation and information sources 

One of the problems when starting with GPSTk is the lack of a dedicated and user friendly 

manual for the beginner. However very useful information is available and should be read 

before starting to develop applications. Most of the GPSTk documentation and information 

sources are available at the project website:  

http://www.gpstk.org/bin/view/Documentation/WebHome 

Starting at the GPSTK homepage, you may follow the links to get information concerning 

with: 

 System requirements download and installation: start from the GPSTk home page; 

 Publications and presentations devoted to de GPSTk and research publications using 

the GPSTk in PDF files:                                                                       

http://www.gpstk.org/bin/view/Documentation/GPSTkPublications 

  A detailed description of the functionality provided by the GPSTk library can be 

found in the Aplication Programmer Interface (API) generated by Doxigen. This API 

is generated daily from the GPSTk Subversion repository: 

http://www.gpstk.org/doxygen/ 

 How to ask a support question. Before asking a question is also very useful to read 

already answered questions: 

http://www.gpstk.org/bin/view/Documentation/AskedQuestions 

 User’s guide to GPS applications: 

http://www.gpstk.org/bin/view/Documentation/UsersGuide 

 Some examples of programming with GPSTk were found in the GPSTk main pages 

and also in the API generated by Doxigen. We found the latter more useful and up to 

date.  
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D.4. Download and installation under MSWindows  

D.4.1. Download and installation of the MS Visual C++ compiler 

A free of charge Visual C++ compiler express product is available for download at Microsoft 

website. The Microsoft express products do not have all the features as the regular ones, but 

the C++ express edition includes all the features to work with GPSTk libraries and source 

files. Although Microsoft® Visual Express products are provided free of charge, it is required 

to register your product within 30 days of installation for continued use. Download site: 

http://www.microsoft.com/express/Downloads/#2008-Visual-CPP 

For the installation process, just follow the recommended options. After installation you may 

wish visit Microsoft update to check for latest updates for your computer. After installation 

you have 30 days to register at Microsoft. It’s free of charge. 

D.4.2. Download and installation of the latest GPSTk stable version 

The latest stable version is available online on Sourceforge 

(http://sourceforge.net/projects/gpstk/files/) for most desktop platforms. The stable release is 

intended for general use. Each version is in the form of a tarball containing the platform 

independent GPSTk project source code and supporting information. Additional files contain 

compiled binaries for several common platforms. MD5 and SHA1 hashes are provided in the 

Release Notes for each version. GPSTk uses the GNU "standard" for naming releases, e.g. 

gpstk-1.1.07. The first number is a major release identifier, the second is a revision, and the 

third is a patchlevel. After the version number will be a descriptor that indicates the contents 

of the particular file.  At present date (December 2012) the latest sable version is gpstk-2.0. 

For the installation process, just follow the recommended options. A directory will be created 

with all already compiled lib, hpp and exe files, ready to be linked with your C++ project. 

D.4.3   Download and installation of the latest GPSTk development version 

For investigation and software development may be advantageous to download the GPSTk 

development version. The development version is not completely tested and approved for 

release as the stable version but may include new classes and modifications of previous ones, 

considering the latest advances in GNSS technology and methods for data processing. The 
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instructions to download the latest stable version are provided in: 

http://www.gpstk.org/bin/view/Documentation/GPSTkDownloads. 

The latest development code can be obtained using SourceForge's Subversion repository for 

the GSPTk. The contents of the repository can be browsed over the web 

(http://gpstk.svn.sourceforge.net/viewvc/gpstk/), or downloaded using the Subversion utility 

svn. The following command can be used to obtain a copy of the latest code using the svn 

utility:  “svn checkout https://gpstk.svn.sourceforge.net/svnroot/gpstk” 

Subversion is an open source system for code revision. It is available for download online: 

http://subversion.tigris.org/project_packages.html. The full text of the Subversion manual is 

also available over the web: http://svnbook.red-bean.com/en/1.1/. 

D.5. Build a C++ project using pre­compiled GPSTK files 

Follow the main steps by the described order and in accordance with the windows: 

1. Start the MS Microsoft Visual C++ compiler. 

2. In the menu, select File -> New -> Project. 

In the New Project window, select as the figure bellow: 
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1. Enter the name of your Project, select a location and do not create a directory for 

solution. 

2. In the next window, click “Finish”. This will create a console application with a 

precompiled header. 

Now your project is ready to be linked with the pre-compiled GPSTK lib and hpp files, but 

you must change the project properties, according with the procedure: 

1. Select the project properties, by clicking on the project name of the solution explorer 

window with the right button of the mouse. The project properties will shows up. 

2.  Change the Active solution configuration to Release (instead of Debug). 
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3. Add Include directories. The GPSTK include directory is in …\GPSTK1_6\include. 

You must also add the REGEX (Regular Expression Library) include directory 

located in …\GPSTK1_6\regex. 

 

4. Change the Runtime Library to Multi-threaded(/MT). 
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5. Add library directories. The GPSTK include directory is in …\GPSTK1_6\lib. You 

must also add the REGEX (Regular Expression Library) include directory located in 

…\GPSTK1_6\regex. 

6. Input additional dependencies: gpstk.lib geomatics.lib procframe.lib 

rxio.lib regex.lib. 
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D.6. Building GPSTk under MSWindows 

Information about this topic is provided at: 

http://www.gpstk.org/bin/view/Documentation/BuildingGPSTkUnderWindows. The GPSTk 

is not supported under Microsoft Visual C++ Version 6.0, or earlier, because templates in 

classes are not supported. Currently there is support for Microsoft Visual Studio C++ .NET 

2003 (Version 7) and the Microsoft Visual C++ Express 2005 (Version 8, freely available at 

MSWindows website). Makefiles for Microsoft Visual C++ are not provided in the toolkit, 

however note that the Visual C++ IDE is able to import existing code, and so makefiles could 

be generated via the IDE. The GPSTk supports using “jam” and the command line tools to 

build. Here are the 5 steps (followed by 6 notes) needed to build under Microsoft Visual C++: 

1. Ensure that prerequisites such as “jam” (http://www.perforce.com/jam/jam.html) have 

been installed.  

2. Ensure that there is a system regular expression library installed. See D.7. 

3. “jam” must be told where to find the command line tools (compiler and linker). It 

does this through the environment variable MSVCNT; see step 5. Problems have 

arisen here when the installation directory has whitespace in it. It has worked 

correctly with Visual Studio Express 2005 with white space. You could also try 

quoting the string with whitespace. Another option is to install the MS VC++ tools 

into a directory with no whitespace; for example C:\MSVC2003. Some have said that 

jam can be made to work using the "DOS 8.3" version of the path, but this has not 

been tested.  

4. Open a command window in which to build the toolkit. The MS VC++ tools require 

that appropriate paths be defined before the command line tools will work. MS 

provides a batch file that sets the PATH and other environment variables; it is called 

VSVARS32.bat and is found in the directory C:\MSVC2003\Common7\Tools. Don't 

confuse this with VCVARS32.bat. After you have run VSVARS32, you should be 

able to type “cl” at the command prompt and get the MS compiler.  

5. “jam” also relies on environment variables, two of them, in order to run. The jam 

executable looks at the variable MSVCNT to find the path of the command line tools. 

Also, the Jamrules file has been set up to look at the variable MSCVER to determine 

which set of compiler and linker options is to be used. Thus for the 2003 compiler: 

  
 set MSVCNT=C:\MSVC2003\VC7 

 set MSCVER=1300 
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or if you are using the 2005 compiler instead: 

 set MSVCNT=C:\MSVC2005\VC 
  set MSCVER=1400 

Of course you may have other install directories; this example uses C:\MSVC2003 for 

the 2003 tools and C:\MSVC2005 for the 2005 tools. Note the different subdirectories 

\VC7 and \VC; this is an MS thing, these are the directories where the \bin, \lib, and 

\include directories are found. (The values 1300 and 1400 were chosen because all 

MS compilers define the macro _MSC_VER as a float number of the form 

'MMmm.mm' where MM is the major version, and mm.mm is the minor version 

number; in MS VC++ versions 6, 7 and 8 the major versions are 12, 13, and 14 

respectively).  

8. At this point, change directory (cd) to your copy of the \dev directory (if using 

Subversion) or the \gpstk directory (if using the tarball) of the toolkit, i.e. the 

directory that contains Jamrules, and simply type jam to build the entire toolkit. Jam 

will tell you which compiler you are using, and then get to work. To install, define the 

environment variable PREFIX to point to the root of the installation and then type jam 

install.  

Note 1: You could install BOTH MS compilers, in different directories, and then put all this 

setup into batch files that allow you to run either one independently. For example: 

      REM Batch file go2005.bat  Run from the command line 
      REM    before using jam and the MS 2005 build tools. 
      set MSVCNT=C:\MSVC2005\VC 
      set MSCVER=1400 
      REM This is a copy of VSVARS32.bat that came with MS VC++ 2005 
      call VSVARS32_2005 
      REM Move to my working directory 
      cd C:\WorkingDirectory 

and 

      REM Batch file go2003.bat  Run from the command line 
      REM    before using jam and the MS 2003 build tools. 
      set MSVCNT=C:\MSVC2003\VC7 
      set MSCVER=1300 
      REM This is a copy of VSVARS32.bat that came with MS VC++.NET 2003 
      call VSVARS32_2003 
      REM Move to my working directory 
      cd C:\WorkingDirectory 
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With these batch files the whole process is a simple as: 

 Open command window; 

 Type go2005 (or go2003); 

 Type jam.  

 Type 'jam clean' to delete all the object (.obj) and executable (.exe) files.  

Note 2: The Jamrules file is where the MSCVER variable is required (unlike the MSVCNT 

variable, which the jam executable requires). If you use only one compiler exclusively, you 

might edit the Jamrules file and remove this version dependency; then you would not need 

MSCVER at all.  

Note 3: In any case you ought to look at the Jamrules file; look for $(NT), which the 

Windows executable jam.exe defines, for items relevant to Windows. C++FLAGS contains 

C++ compiler options, CCFLAGS contains C compiler options (but note that CCFLAGS is 

changed in \src\Jamfile for compiling regex.c), LINKFLAGS are linker options, and 

LINKLIBS are extra libraries included in the link.  

Note 4: We have found that optimization is a practical necessity in building with these 

compilers. The option /O2 (that's capital 'oh' not 'zero') seems to be best for speed. Jamrules 

now includes /O2 in both versions of the MS compilers. Of course you may change this, or 

any compiler or linker options, by editing Jamrules.  

Note 5: In the past one of the problems in using jam with the MS compilers beyond version 

6.0 has been that the libraries advapi32.lib and kernel32.lib seemed to be missing. This, 

however, comes from the jam executable, not from MS. These libraries are required, and 

provided, in MS VC++ 6.0, and this is the default for the jam executable. Jam.exe does this 

by defining the default LINKLIBS to include these libraries. Since they are not required for 

later versions, Jamrules now redefines LINKLIBS to be empty. If you want to understand the 

defaults in jam.exe, go to the jam website and find the Jambase file - it is a 'Jamrules' file that 

contains all the defaults.  
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D.7. Building GPSTk from the source code under MSVC++ 

Apart from the instructions described above, here is another receipt for using GPSTk core 

libraries in Visual Studio 200X without using “jam”:  

1. Download the project source files from Sourceforge and extract the tar files to a 

directory.  

2. In MSVC++ create a new Win32 console application project. (In order to avoid using 

precompiled headers, you must select 'Empty Project' option in the application wizard 

dialog)  

3. Right click on the project name (this is the name that is specified during creation of 

the project) in the solution explorer and click on Add -> Existing Item and add all the 

files in the 'src' directory (under the extracted files location that is created in step 1) to 

the project.  

4. (Again) Right click on project name in the solution explorer and click on Add -> 

Existing Item and add only 'example1.cpp' which is located under the examples 

directory.  

5. Open the project property page (Right click on the project name in the solution 

explorer and select properties)  

6. In the opened properties dialog expand the Configuration Properties -> C/C++ tab and 

select Command Line. Copy the following line to the Additional Options text box:  

-D_CRT_SECURE_NO_DEPRECATE -wd4274 -DWIN32 /EHsc /GR -wd4290 -wd4267 

7. Again in the same project properties dialog box expand Configuration Properties -> 

C/C++ tab and select General. Add the location of 'src' directory to the Additional 

Include Directories. (This is necessary because, unfortunately, some non-system 

header files in the source files were included using < >) Also, add the location of the 

regex library that you have installed. This should contain a file regex.h.  

8. That is all. Build the program (building takes some time) and run. You will see the 

output of example1 in the output window.  

D.8. Installation of Regex for MSVC++ 

Starting with GPSTk version 1.6 (and currently in the development version in subversion), 

the GPSTk will require the system provide regular expression (regex) support. All supported 

platforms except MSVC++ provide this functionality. There are multiple ways this could be 
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provided on Visual C++ however the following approach has been and will continue to be 

tested: 

1. Download setup of the Regex package (GNU regular expression library) at 

http://gnuwin32.sourceforge.net/. 

2. Run the installer and install to the location of your choice (e.g. c:\Program 

Files\GnuWin32). 

3. Choose a "Full installation". 

4. Update the PATH, LIB, and INCLUDE variables in your compiler configuration 

settings for your platform with the paths of the newly install regex library. For 

example, this file might be: 

c:\Program Files\Microsoft Visual Studio8\Common7\Tools\vsvars32.bat  

Add c:\Program Files\GnuWin32\include (or the appropriate install directory) to the 

INCLUDE variable, c:\Program Files\GnuWin32\lib to the LIB variable, and 

c:\Program Files\GnuWin32\bin to the PATH variable. Here are the detailed steps for the 

modification on one system, This uses the free version of Microsoft Visual Studio 8:  

 The build shell is run with the command:  

%comspec% /k ""C:\Program Files\Microsoft Visual Studio 

8\VC\vcvarsall.bat"" x86 

 Regex is installed into c:\Program Files\GnuWin32\. In the GnuWin32\lib directory 

are the files libregex.dll, a libregex.la regex-bcc.lib regex.lib regex2.def. In the 

GnuWin32\include directory is the file regex.h. 

 For this system, the file updated was:  

c:\Program Files\Microsoft Visual Studio 8\Common7\Tools\vsvars32.bat.  

It is recommended that you add the Regex library to the system PATH variable in order to 

prevent having to add it to your path each time you want to run or compile a GPSTk program. 

This can be done by doing the following:  

1. Clicking start, right clicking on My Computer, and clicking properties; 

2. Go to the "Advanced" tab; 

3. Click "Environment Variables";  

4. Edit the PATH variable, if it doesn't exist, create it.  



Annex D. Notes about the GPS Toolkit (GPSTk) 

 159 
 

Append the path to the "bin" directory in the location where you installed GNUWin32 Regex 

into. The default for this is C:\Program Files\GnuWin32\bin, usually you put a semicolon 

before the location to append a directory to the Path variable. 
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Annex E.  Source code developed in this study (on a CD) 

This annex contains the source code developed in the scope of this study and the GPSTk 

library version 1.6. 

This annex is on a CD with the following directories: 

 GPSTk library version 1.6. Some of these classes were modified in order to  allow 

kinematic positioning, the use of new data combination, tropospheric models and 

initial ambiguity determination; 

 GPSTk under development. This directory contains GPSTk that were under 

development for reading the data records on CLK files; 

 Main Module: Contains the main components of the software. 

 New classes: The new classes were developed to perform GNSS data processing tasks 

required to achieve the goal of this study, not included on the GPSTk library: 

o Filter for GNSS observations to remove form the GNSS data structure carrier 

phase observations with value “0”; 

o Work with GMF mapping functions; 

o Work with the GPT model; 

o Read satellite precise clock files in the format CLK. 

 Regex support: Contains the routines required to run the Regular Expression Library 

under Windows. 

 

 

 

 

 

 

 

 

 

 

 

 

 


