
ar
X

iv
:2

01
2.

02
73

0v
3 

 [
m

at
h.

A
T

] 
 1

 D
ec

 2
02

1

PRINCIPAL BUNDLES ON 2-DIMENSIONAL CW-COMPLEXES WITH

DISCONNECTED STRUCTURE GROUP

ANDRÉ OLIVEIRA

Abstract. Given any topological group G, the topological classification of principal G-bundles
over a finite CW-complex X is long-known to be given by the set of free homotopy classes of
maps from X to the corresponding classifying space BG. This classical result has been long-
used to provide such classification in terms of explicit characteristic classes. However, even
when X has dimension 2, there is a case in which such explicit classification has not been
explicitly considered. This is the case where G is a Lie group, whose group of components
acts non-trivially on its fundamental group π1G. Here we deal with this case and obtain the
classification, in terms of characteristic classes, of principal G-bundles over a finite CW-complex
of dimension 2, with G is a Lie group such that π0G is abelian.

1. Introduction

It is a classical fact that, for a path-connected CW-complex X and for a topological group G,
the set of topological types of principal G-bundles over X is in bijection with the set [X,BG]
of free homotopy classes of maps from X to the classifying space BG of G. It is, however,
many times useful to have a more explicit classification of such bundles, that is, to have a more
detailed description of the set [X,BG], for example in terms of characteristic classes.

In this note we provide such a description in a setting which is quite classical, and hence which
ought to be very well-known. We obtain an explicit and complete classification of G-bundles
over a 2-dimensional connected finite CW-complex X, for any Lie group G with π0G abelian1,
in terms of cohomology classes. This includes two classical cases. Firstly, if G is connected,
such bundles are classified by the cohomology group H2(X,π1G). Secondly, there is a natural
action of π0G on π1G, and if this action is trivial, then G-bundles over X are classified by
the product H1(X,π0G) ×H2(X,π1G). Nonetheless, such π0G-action can be non-trivial and,
somehow surprisingly, this case does not seem to have been explicitly treated so far. An instance
where this phenomenon occurs is the case of the projective orthogonal group of even rank, which
we explicitly deal with as an example.

The importance of the topological classification of principal G-bundles over any finite, 2-
dimensional, CW-complex by itself or by its connections with other areas of Mathematics and
Physics is obvious, so the mentioned untreated case deserves to be considered. This is the
purpose of this article. Just to give an example where such a topological classification plays
an important role, consider the following. Suppose G is semisimple and consider the space
R(X,G) = Homred(π1X,G)/G of reductive representations ρ : π1X → G modulo the G-action
by conjugation. These spaces, or spaces deeply related to them, arise from several different
natural points of view (Physics, Gauge Theory, Hyperbolic Geometry, etc.) and have been
intensively studied in the past decades, mostly in the case X is a closed oriented surface, where
deep connections arise with the theory of holomorphic vector bundles [13] and also with the
theory of Higgs bundles, under the so-called non-abelian Hodge correspondence (there are many
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2 A. OLIVEIRA

references for this subject: the seminal paper is [8] and an overview and other references may be
found for instance in [21]). However, the spaces R(X,G) have also been studied for compact,
non-orientable surfaces [9, 1, 2, 17] and even for any finite 2-dimensional CW-complex [3].
Now, the topological type of G-bundles over X provides a way to distinguish certain connected
components of R(X,G) and to give a lower bound on the number of such components (for
example, it is known that if G is a complex Lie group and X is an orientable closed surface,
such bound is exact [5]). Hence, the theorem of this article gives a way to achieve this for any
Lie group G with π0G abelian.

To give a hint on the classification theorem, note first that if a G-bundle over X is given by the
homotopy class of a map X → BG, then the homotopy class of composite X → BG → Bπ0G
defines a topological invariant µ1 ∈ [X,Bπ0G] ∼= H1(X,π0G) of the given G-bundle, measuring
the obstruction to reduce its structure group to the identity component of G. Having this,
the classification result (see Theorem 2.2) states that there is a bijection between the subset of
[X,BG] consisting of isomorphism classes of principal G-bundles over X with invariant µ1 ∈
H1(X,π0G) and the quotient set H2(X,π1Gµ1

)/π0G. Here π1Gµ1
denotes the local system

obtained from µ1 and from a natural action of π0G in π1G and where π0G acts on H2(X,π1Gµ1
)

also via the same action of π0G in π1G.

2. The classification and examples

2.1. A first topological invariant. Let X be a path-connected 2-dimensional CW-complex.
Let also G be a Lie group, with (discrete) group of connected components π0G. Recall that
isomorphism classes of principal G-bundles over X are topologically classified by the set [X,BG]
of free homotopy classes of maps from X to the classifying space BG. There is a natural map

(2.1) χ : [X,BG] → [X,Bπ0G], χ([f ]) = [p0,∗ ◦ f ],

where p0,∗ : BG → Bπ0G is the map induced from the canonical projection p0 : G → π0G.
From here one readily defines a first topological invariant of a G-bundle E over X.

Definition 2.1. Let E be a G-bundle over X represented by a map f : X → BG. Define

µ1(E) = χ([f ]) ∈ [X,Bπ0G].

SinceBπ0G is the Eilenberg-Maclane spaceK(π0G, 1), it follows that [X,Bπ0G] ∼= H1(X,π0G).
µ1(E) is obviously a topological invariant of E and it represents the isomorphism class of the
π0G-bundle on X obtained from E through the projection G → π0G.

From now on we fix an element µ1 ∈ [X,Bπ0G] and our task is to classify G-bundles E on
X such that µ1(E) = µ1.

2.2. The classification theorem and examples. Notice that the action

Ψ : G −→ Aut(G)

of G on itself by conjugation induces an action of π0G on the higher homotopy groups πiG (by
πiG we always mean homotopy groups based at the identity of G): for a ∈ G, consider the
induced automorphism Ψ(a)∗ : πiG → πiG and, if b ∈ G is in the same component as a, then
Ψ(a) is homotopic to Ψ(b) via a path joining a and b, hence Ψ(a)∗ = Ψ(b)∗.

In particular, we are interested in the action of π0G on π1G, which we will denote by

(2.2) Ψ(−)∗ : π0G −→ Aut(π1G).

Assume now, once and for all, that the group π0G is abelian and consider the homomorphism
in π1, µ1∗ : π1X → π0G, induced from the invariant µ1 : X → Bπ0G that we have previously
fixed (recall that π0G = π1(Bπ0G)). Given this, we have an induced action of π1X on π1G

(2.3) Ψ(−)∗ ◦ µ1∗ : π1X −→ Aut(π1G)

and so this action defines a local system π1Gµ1
on X.

Let H∗(X,π1Gµ1
) be the cohomology of X with values in the local system π1Gµ1

. Recall

that this is the cohomology of the cochain complex C∗

Z[π1X](X̃, π1G) = HomZ[π1X](C∗(X̃), π1G),
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where Zπ = Z[π1X] is the group ring of π1X and C∗(X̃) is the Zπ-module of chains on the

universal cover X̃ of X.
Note now that Ψ(−)∗ in (2.2) induces, by composition, a π0G-action on the Zπ-module

C2
Z[π1X](X̃, π1G). Explicitly, a ∈ π0G acts on a 2-cochain τ ∈ C2

Z[π1X](X̃, π1G) as

(2.4) a · τ = Ψ(a)∗ ◦ τ.

Since X̃ has dimension 2, every 2-cochain is a cocycle hence, passing to the quotient, (2.4) yields
a π0G-action on H2(X,π1Gµ1

). Let

H2(X,π1Gµ1
)/π0G

be the corresponding quotient set.
We are now ready to state the result concerning the topological classification of principal

G-bundles over X.

Theorem 2.2. Let G be a Lie group with π0G abelian and let X be a 2-dimensional con-
nected CW-complex. There is a bijection between the set of isomorphism classes of continuous
principal G-bundles over X with invariant µ1 ∈ H1(X,π0G) and the (non-empty) quotient set
H2(X,π1Gµ1

)/π0G.

This means that the map

χ : [X,BG] → H1(X,π0G)

defined in (2.1) is such that there is bijection of sets χ−1(µ1) ≃ H2(X,π1Gµ1
)/π0G.

Remark 2.3. Of course if one has a topological space M which is homotopically equivalent to
a finite 2-dimensional CW-complex X, then [M,BG] ∼= [X,BG], so the above theorem also
applies for the classification of principal G-bundles over M . For instance, M could be the
complement of a finite number of points in a compact 3-dimensional manifold.

Remark 2.4. Using different methods, Theorem 2.2 has actually been proved before in [14], in
the particular case X is a closed oriented surface.

We will prove the theorem in section 5. In the next sections, we will briefly recall some
notions (of obstruction theory and of Postnikov sections) which will be required for it. Before
that, let us now consider some explicit examples (most of them quite classical) of applications
of this theorem.

Example 2.5. Let X be any finite connected 2-dimensional CW-complex and G a Lie group
with π0G abelian.

(1) If G is connected, then G-bundles over X are classified by

[X,BG] ∼= H2(X,π1G)

as it is well-known (for surfaces, see for example [15], Proposition 5.1).
(2) If π0G acts trivially on π1G, then G-bundles over X are classified by

[X,BG] ∼= H1(X,π0G)×H2(X,π1G).

Because π0G is abelian, this case yields

[X,BG] ∼= π0G
2g × π1G

when X is a closed (i.e., compact and without boundary) oriented surface of genus g,
and yields

[X,BG] ∼= (π0G)2 × π0G
k−1 × π1G/2π1G

when X is a closed non-orientable surface which is a connected sum of k copies of the
projective plane RP

2. Here (π0G)2 denotes the 2-torsion subgroup of π0G.
(3) When G = O(n), the group of orthogonal transformations of Rn, with n > 3, then we

are in the situation of the previous item and the classification is given by the first and
second Stiefel-Whitney classes w1, w2.
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(4) If X is simply-connected, then principal G-bundles over X are classified by

[X,BG] ∼= H2(X,π1G)/π0G.

In particular, this holds for the 2-sphere S2 and gives [S2, BG] ∼= π1G/π0G. Again this
is quite classical: see [20], Section 18.

(5) Here is another classical example, in which π0G acts non-trivially on π1G, and so which
we can deduce from the above theorem. Consider G = O(2), the group of orthogonal
transformations of R2.

Then π0O(2) = Z2 acts non-trivially on π1O(2) = Z, by changing the sign of the gen-

erator. Indeed, a generator can be represented by the loop γ(θ) =
(

cos(2πθ) sin(2πθ)
− sin(2πθ) cos(2πθ)

)
,

with θ ∈ [0, 1], and the non-trivial element of π0O(2), which we can represent by
(
1 0
0 −1

)
,

takes it to the inverse loop γ(−θ).
(a) Suppose X is a closed oriented surface of genus g. Then we have the isomorphism

H2(X,Z) ∼= Z by cap product with the fundamental class. Since the action of
π0O(2) = Z2 on H2(X,Z) by (2.4) is by post-composition on the coefficients, the
isomorphismH2(X,Z) ∼= Z is π0O(2)-equivariant with the action on the right-hand-
side given by (2.2). Note that this argument always applies for any coefficients π1G,
and hence applies generally and not just for G = O(2).
Hence, O(2)-bundles over X with µ1 = 0, i.e. w1 = 0 (hence which reduce to
SO(2) ∼= S1-bundles), are classified by H2(X,Z)/Z2

∼= Z/Z2
∼= Z>0.

Consider now O(2)-bundles over X with first Stiefel-Whitney class w1 = µ1 6= 0
(so non-orientable rank 2 orthogonal bundles on X). These are hence classified
by H2(X,Zw1

)/Z2. Then, by Poincaré duality with local coefficients (see [18],
Theorem 10.4) and by [4, Proposition 5.14 (1)] (or [22, Theorem 3.2, VI]),

(2.5) H2(X,Zw1
) ∼= H0(X,Zw1

) ∼= Z/Hw1
= π1O(2)/Hw1

,

where

(2.6) Hw1
= 〈x− γ · x |x ∈ π1O(2), γ ∈ π1X〉

and γ ·x is the action of γ on x determined by w1 and by (2.3). From the calculation
at the beginning of the example, Hw1

∼= 2Z, so H2(X,Zw1
) ∼= Z2. Now we have

to look at the action of Z2 on the set H2(X,Zw1
) induced by (2.4). As above,

the isomorphism H2(X,Zw1
) ∼= Z2 = {0, 1} is equivariant with respect to the

π0O(2)-actions (2.4) and (2.2), because duality is also given by cap product and
also because the isomorphism of [4] Proposition 5.14 (1) is π0G-equivariant. Again
this holds in general and not just for G = O(2). But the Z2 = π0O(2)-action on
Z2 = {0, 1} changes the sign of the generator, hence preserves the parity, thus is
trivial. So H2(X,Zw1

)/Z2
∼= Z2.

We conclude then the following common knowledge fact: rank 2 orthogonal bun-
dles over a closed oriented surface X of genus g are topologically classified by the
characteristic classes in

(µ1, µ2) ∈ ({0} × Z>0) ∪ ((Z2)
2g

r {0}) × Z2

where µ1 is the first Stiefel-Whitney class and µ2 is the (non-negative) degree when
µ1 = 0 and the second Stiefel-Whitney class when µ1 6= 0.

(b) Suppose now that X a closed but non-orientable surface. ThenH2(X,Z) ∼= Z/2Z ∼=
Z2, and we have to see how Z2 = π0O(2) acts via (2.4) on H2(X,Z). This is
the same as considering the action (2.2) of Z2 = π0O(2) on Z/2Z ∼= Z2 because
the isomorphism H2(X,Z) ∼= Z/2Z is equivariant by arguments similar to the
orientable case (just take instead the fundamental class of X in homology with
local coefficients, cf. [7], Example 3H.3); this holds in general and not only for
O(2). From above, such action changes the sign of the generator, hence preserves
the parity. So H2(X,Z)/Z2

∼= (Z/2Z)/Z2
∼= Z/2Z ∼= Z2.
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Suppose now that µ1 = w1 6= 0. Write

(2.7) wX : π1X → Aut(Z) ∼= Z2

for the corresponding non-trivial orientation character associated to the oriented
double cover (this is really the first Stiefel-Whitney class of X i.e. of its tangent
bundle), and ZwX

for the associated local system on X. Then, as above, using
Poincaré duality (see [18, Theorem 10.4]), and [4, Proposition 5.14 (1)], we find
that

(2.8) H2(X,Zw1
) ∼= H0(X,ZwX

⊗Z[π1X] Zw1
) ∼= (Z/HwX

⊗Z Z/Hw1
) ∼= Z2 ⊗Z Z2

∼= Z2,

where Hw1
is given analogously to (2.6) and HwX

= 〈x−γ ·x |x ∈ Z, γ ∈ π1X〉 with
π1X acting by the non-trivial orientation character wX in (2.7) (thus so thatHwX

∼=
2Z). Here we used again that the two first isomorphisms are π0G-equivariant with
respect to (2.4) and (2.2) (and this is true for any group, not just O(2)).
Concluding, rank 2 orthogonal bundles over a non-orientable surface X which is a
connected sum of k copies of RP2, are topologically classified by

(µ1, µ2) ∈ ({0} × Z2) ∪ (Zk
2 r {0} × Z2) = Z

k
2 × Z2.

(6) Let us see now a perhaps slightly less known case. We will use, without reference,
some of the results we used in the previous example, which hold in general, such as the
various versions of Poincaré duality and the π0G-equivariance of the isomorphisms from
the various H2 under the actions (2.2) and (2.4).

Let n > 4 be even and consider the projective orthogonal group PO(n) = O(n)/Z2,
where Z2 = {±In} is the center of O(n). (If n is odd PO(n) is connected.) Since n is
even, π0PO(n) ∼= Z2 and

π1PO(n) =

{
Z2 × Z2 if n = 0 mod 4

Z4 if n = 2 mod 4.

More precisely, the universal cover of PO(n) is the Pin(n) and, if p : Pin(n) → PO(n)
is the covering projection, then, as a set (and using the abelian notation) ker(p) =
{0, 1, ωn,−ωn} where ωn = e1 · · · en is the oriented volume element of Pin(n) in the
standard construction of this group via the Clifford algebra Cl(n) (see, for example,
[10]). So, if n = 0 mod 4, ±ωn are elements of order 2, while if n = 2 mod 4, ±ωn

have order 4. It turns out that π0PO(n) acts on π1PO(n) by leaving 0 and 1 fixed
and identifying ±ωn. More precisely, recall that Pin(n) is a group with two connected
components, Pin(n)− and Spin(n), where Pin(n)− denotes the component which does
not contain the identity. We have that ±ωn do not lie in the centre of Pin(n) (which
equals to {0, 1}). In fact, ωn commutes with elements in Spin(n) and anti-commutes
with elements in Pin(n)−. This explains that π1PO(n)/π0PO(n) = {0, 1, [ωn]} where
we [ωn] denotes the class of ωn ∈ π1PO(n) in π1PO(n)/π0PO(n), consisting by ±ω.
(a) Suppose now that X is a closed oriented surface of genus g.

Hence, PO(n)-bundles on X which reduce to PSO(n) (so with µ1 = 0) are classified
by

H2(X,π1PO(n))/Z2
∼= π1PO(n)/Z2

∼= {0, 1, [ωn]}.

If µ1 6= 0, then reasoning in a similar manner to the O(2) case in (2.5), one shows
that H2(X, (Z4)µ1

) ∼= {[0], [ωn]} ∼= Z2 if n = 2 mod 4. So 0 and 1 are identified in
this twisted cohomology. In addition, 0 and ωn are not in the same orbit under the
π0PO(n)-action, so the action of Z2 = π0PO(n) in Z2 = H2(X, (Z4)µ1

), induced by
(2.4), is trivial. So H2(X, (Z4)µ1

)/Z2
∼= Z2 for µ1 6= 0 and n = 2 mod 4. The same

argument gives the same result for n multiple of 4. Concluding, if n > 4 is even,
PO(n)-bundles over the surface X are classified by characteristic classes

(µ1, µ2) ∈ ({0} × {0, 1, [ωn]}) ∪
(
(Z2g

2 r {0}) × Z2

)
.
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So we see that, when n > 4 is even, there are precisely 22g+1+1 isomorphism classes
of topological PO(n)-bundles over such surface. These invariants have interpreta-
tions in terms of obstruction theory of bundles [14, Proposition 3.2]. Namely, a
PO(n)-bundle with µ1 = 0 (so actually a PSO(n)-bundle) lifts to SO(n)-bundle if
and only if µ2 = 0, 1 and lifts to Spin(n)-bundle if and only if µ2 = 0. A PO(n)-
bundle with µ1 6= 0 lifts to O(n)-bundle if and only it lifts to a Pin(n)-bundle and
this happens if and only if µ2 = 0. Indeed, if a PO(n)-bundle with µ1 6= 0 lifts
to O(n), then one can always choose such a lift to have vanishing second Stiefel-
Whitney class; see Remark 3.6 of [14].

(b) Suppose now that X is closed and non-orientable. Then

H2(X,π1PO(n)) ∼= π1PO(n)/2π1PO(n).

Here, 2π1PO(n) = {0}, if n = 0 mod 4, while 2π1PO(n) = {0, 1} for n = 2 mod 4,
so

H2(X,π1PO(n)) ∼=

{
Z2 × Z2 if n = 0 mod 4

{[0], [ωn]} ∼= Z2 if n = 2 mod 4.

By acting further by Z2 = π0PO(n) as above, we see that PO(n)-bundles on the
non-orientable surface X which reduce to PSO(n), so with µ1 = 0, are classified by

H2(X,π1PO(n))/Z2
∼=

{
{0, 1, [ωn]} if n = 0 mod 4

{[0], [ωn]} ∼= Z2 if n = 2 mod 4.

Consider now µ1 6= 0 and, as above, let wX : π1X → Aut(Z) ∼= Z2 be the non-trivial
orientation character, with ZwX

the corresponding local system on X. Then, as in
(2.8) and in Example 5(a),

H2(X,π1PO(n)µ1
) ∼= H0(X,ZwX

⊗Z[π1X] π1PO(n)µ1
)

∼= Z2 ⊗Z {[0], [ωn]} ∼= Z2 ⊗Z Z2
∼= Z2,

independently of the residue of n modulo 4. The next action of Z2 = π0PO(n) in
Z2

∼= H2(X,π1PO(n)µ1
) is trivial as in Example 5(a).

Concluding, projective orthogonal bundles of rank n > 4 even, over a non-orientable
surface X which is a connected sum of k copies of RP2, are topologically classified
by

(µ1, µ2) ∈

{
({0} × {0, 1, [ωn]}) ∪ (Zk

2 r {0} × Z2) if n = 0 mod 4

Z
k
2 × Z2 if n = 2 mod 4.

Remark 2.6. The explicit examples (3), (5) and (6) are valid not only for the stated groups
but also for any group which is homotopically equivalent to it. For example, respectively,
G = GL(n,R), n > 3, G = GL(2,R) and G = PGL(n,R), with n > 4 even.

3. Reminder of obstruction theory in fibrations

Here we briefly sketch the theory of obstructions in fibrations which will be used in the proof
of Theorem 2.2. Some good references, among several others, on this material are [4, 20, 22].
We always take based spaces.

Consider a Hurewicz (or Serre) fibration p : E → Y with fibre F and let f : X → Y be
a continuous map. The group π1F acts on πkF (cf. Section 6.16 of [4] or Section 4A of [7])
through free homotopies of based maps Sk → F and the quotient πkF/π1F is [Sk, F ]. Assume
that F is simple, meaning that the action of π1F on πkF is trivial for every k (in the course of
the proof of Theorem 2.2, we will be in this case). Hence [Sk, F ] = πkF , for all k.
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3.1. Obstruction to extending a partial lift. LetX1 be the 1-skeleton of our two-dimensional
CW-complex X and let

g : X1 −→ E

be a partial lift of f :

F

E

X1 X Y.

p
g

f

Recall the cochain complex C∗

Z[π1X](X̃, π1F ) = HomZ[π1X](C∗(X̃), π1F ), with Z[π1X] being

the group ring of π1X and C∗(X̃) the Zπ-module of chains on the universal cover π : X̃ → X.

The obstruction to extending the partial lift g : X1 → E to a lift f̃ : X → E is given by

a 2-cochain, not in C∗

Z[π1X](X̃, π1F ) but rather in C∗

Z[π1X](X̃, π1Fα1
), where π1Fα1

is a local

system where π1F is given the Z[π1X]-module via

(3.1) α1 : π1X
f∗
−→ π1Y −→ Aut(π1F ),

with π1Y → Aut(π1F ) induced by the monodromy representation π1Y → Auth
∗
(F ), where

Auth
∗
(F ) denotes the space of based homotopy self-equivalences of F ; see [4, Proposition 6.62]

(here one uses again that F is simple). We will just give an idea of the definition of the mentioned
2-cochain. For details, see Section 7.10 of [4].

Consider a 2-cell ẽ2i ∈ C∗(X̃) of X̃ and let hi : D → X̃ be the corresponding characteristic

map (D ⊂ R
2 denotes the closed unit disc), with ϕi = hi|S1 : S1 → X̃1 the attaching map. The

composite p◦g◦π◦ϕi : S
1 → Y is null-homotopic because it equals to f ◦π◦ϕi which extends to

D → Y . By lifting this null-homotopy (p is a fibration) we obtain a homotopy between g ◦π ◦ϕi

and a map S1 → F . So [g ◦ π ◦ ϕi] ∈ [S1, F ] = π1F because F is simple. This element of π1F
depends however on the null-homotopy of f ◦ π ◦ ϕi. To remove this dependence, one has to
consider the local system π1Fα1

.
So consider the 2-cochain

(3.2) c2(g) ∈ C2
Z[π1X](X̃, π1Fα1

)

whose value on 2-cells ẽ2i is

c2(g)(ẽ2i ) = [g ◦ π ◦ ϕi] ∈ π1Fα1

and then extend linearly. It is an obstruction 2-cochain, since g extends to a lift f̃ : X → E of
f if and only if c2(g) = 0; cf. Theorem 7.37 (and also Theorem 7.1) of [4]. In particular if F is

simply-connected, the existence of such lift f̃ is granted.

Remark 3.1. Even though we will not need this fact here, the cochain c2(g) is in fact a cocycle
so represents a class in H2(X,π1Fα1

). It turns out that such class vanishes if and only if g can
be redefined (relative to the 0-skeleton) in such a way that it can then be extended to a lift

f̃ : X → E of f .

Similarly, if one has g′ : X0 → E defined on the 0-skeleton of X such that p ◦ g = f |X0

(obviously, this is always possible), then there is an obstruction 1-cochain

(3.3) c1(g′) ∈ C1
Z[π1X](X̃, π0Fα0

)

analogously defined, with α0 : π1X
f∗
−→ π1Y −→ Aut(π0F ) defined analogously to α1. Again,

it vanishes precisely when g′ extends to a partial lift g : X1 → E of f . In particular, this holds
if F is connected.
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3.2. Obstruction to the existence of vertical homotopies. As usual, write I = [0, 1].

Definition 3.2. Let p : E → Y be a fibration and f : X → Y a map. Two lifts f0, f1 : X → E
of f are vertically homotopic if there is a vertical homotopy between them, i.e., a homotopy
K : X × I → E between f0 and f1 such that p ◦K : X × I → Y is the constant homotopy of f .

In other words, the homotopy K preserves the fibres of p. This is a stronger relation than
simply being homotopic: two lifts of f may be homotopic but not vertically homotopic.

Let f0 and f1 be two lifts of f : X → Y and let K1 be a vertical homotopy between them
on X1, that is between their restrictions f0|X1

and f1|X1
. We can ask whether f0 and f1 are

vertically homotopic, i.e., if we can extend K1 to a vertical homotopy on X. There is indeed
an obstruction to the existence of such a vertical homotopy K, called the difference 2-cochain

(3.4) d2(f0,K1, f1) ∈ C2
Z[π1X](X̃, π2Fα2

),

where

(3.5) α2 : π1X
f∗
−→ π1Y −→ Aut(π2F ),

is defined as α1 in (3.1). d2(f0,K1, f1) is nothing but a slight modification (an increase of
dimension) of the obstruction 2-cochain defined in (3.2), since it is an obstruction cochain to
extend to X × I the map on the 2-skeleton of X × I

T = f0 ∪K1 ∪ f1 : X × {0} ∪X1 × I ∪X × {1} −→ E

lifting the constant homotopy Hf : X × I → Y , Hf (x, t) = f(x).
To define d2(f0,K1, f1) more explicitly, take any 2-cell e2i of X, so that e2i × I is a 3-cell of

X×I. Consider a cell ẽ2i ×I of X̃×I mapping to e2i ×I by the covering map π×1 : X̃×I → X×I,

and take the corresponding attaching ϕi : S
2 → X̃ × {0} ∪ X̃1 × I ∪ X̃ × {1} be the attaching

map. Then

(3.6) d2(f0,K1, f1)(e
2
i ) = c3(T )(ẽ2i × I) = [T ◦ (π × 1) ◦ ϕi] ∈ π2Fα2

where c3(T ) is the obstruction cochain analogous to (3.2) but in dimension 3. We then have
that the partial vertical homotopy T extends to a vertical homotopy X × I → E if and only if
the 2-cochain d2(f0,K1, f1) vanishes.

Note finally that, since X has dimension 2, d2(f0,K1, f1) is actually a cocycle, therefore
defines cohomology class

(3.7) δ2(f0,K1, f1) ∈ H2(X,π2Fα2
).

Again, there is also a similar difference 1-cochain in dimension 1,

(3.8) d1(f ′

0,K0, f
′

1) ∈ C1
Z[π1X](X̃, π1Fα1

)

which is the obstruction to the existence of vertical homotopies of lifts f ′

0, f
′

1 : X1 → E of f |X1
,

when we are given a partial homotopy, over the 0-skeleton X0 of X, K0 : X0 × I → E between
f ′

0|X0
and f ′

1|X0
. So d1(f ′

0,K0, f
′

1) = 0 if and only if T ′ = f ′

0 ∪K0 ∪ f ′

1 : X ×{0} ∪X0 × I ∪X ×
{1} −→ E can be extended to a vertical homotopy X1 × I → E between f ′

0, f
′

1. In particular,
this is always possible if F is simply-connected.

4. A reminder of Postnikov sections

The material in this section is also well-known. We provide references in due course.

4.1. Universal fibrations of Eilenberg-Maclane spaces. We work within the category of
compactly generated based spaces. Let A be an abelian group and, for n > 1, let K(A,n) be
the corresponding Eilenberg-MacLane space.

There is a specific model forK(A,n) which is a topological abelian group. It is constructed by
taking the geometrical realization of the simplicial abelian group associated, via the Dold-Kan
correspondence [6], to the chain complex A[−n] which has A in dimension n and 0 elsewhere.
In all that follows we use this model for K(A,n) and we choose for base point the zero of its
group structure.
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Consider the space Map(X,K(A,n)) of all continuous maps from X to K(A,n), with the
topology determined by the compact-open topology, and so that Map(X,K(A,n)) is com-
pactly generated (see Definition 6.2 and Section 6.1.3 of [4]). For the given model of K(A,n),
Map(X,K(A,n)) is a topological abelian group.

A group-like monoid is a topological monoid such that the monoid of its path connected
components is a group (the difference from a topological group is the possible non-existence of
inverses).

Let Auth(K(A,n)) denote the group-like monoid of all self-homotopy equivalences ofK(A,n).
The model of K(A,n) is functorial, thus a group homomorphism A → B induces a continuous
mapK(A,n) → K(B,n) which is also a group homomorphism. It follows that an automorphism
of A induces an automorphism of the topological abelian group K(A,n). Hence Aut(A) acts on
K(A,n) by group automorphisms, so we can take their semidirect product Aut(A) ⋉K(A,n).
This produces an inclusion

(4.1) Aut(A) ⊂ Auth(K(A,n))

given by the composite Aut(A) →֒ Aut(A)⋉K(A,n) →֒ Auth(K(A,n)) where the second map
is the inclusion

(4.2) ν : Aut(A)⋉K(A,n) →֒ Auth(K(A,n)), ν(ϕ, x)(z) = ϕ(z) + x,

with + denoting the group operation in A. It turns out that the inclusion (4.2) is a weak
homotopy equivalence.

Now, there exists [19, 11] a unique (up to homotopy equivalence) CW-complex BAuth(K(A,n))
which is a classifying space for fibre homotopy equivalence classes of fibrations over X, with
fibre homotopically equivalent to K(A,n). So there is a corresponding universal fibration
Auth(K(A,n)) → EAuth(K(A,n)) → BAuth(K(A,n)), which has similar properties to the
classifying space BG and to the universal G-bundle EG → BG, for a topological group G.
In particular, the set of equivalence classes of the above mentioned fibrations is in bijection
with the set of free (i.e. non-based) homotopy classes of maps X → BAuth(K(A,n)), i.e.,
[X,BAuth(K(A,n))].

Since (4.2) is a weak homotopy equivalence, and since both BAuth(K(A,n)) and B(Aut(A)⋉
K(A,n)) are CW-complexes, it follows that BAuth(K(A,n)) is homotopically equivalent to
B(Aut(A)⋉K(A,n)). In other words, B(Aut(A)⋉K(A,n)) is a model for BAuth(K(A,n)).

4.2. Postnikov sections. Write

PkBG

for the kth Postnikov section of BG. By definition (see for example [7] Chapter 4) these CW-
complexes fit in a commutative diagram as below, called the Postnikov tower of BG

...

��
P2BG

��
BG

EE
✡
✡
✡
✡
✡
✡
✡
✡
✡
✡
✡
✡
✡
✡
✡
✡
✡

;;
✇
✇
✇
✇
✇
✇
✇
✇
✇

// P1BG

where the vertical maps are fibrations and such that the maps BG → PkBG induce isomor-
phisms πiBG ∼= πiPkBG if i 6 k and, for i > k, πiPkBG = 0. For each k, the homotopy fibre
of the fibrations PkBG → Pk−1BG is the Eilenberg-Maclane space K(πk−1G, k).

Again, each Postnikov section PkBG is unique up to homotopy equivalence, hence so is the
Postnikov tower. In particular, P1BG = Bπ0G = K(π0G, 1).

Regarding the second Postnikov section P2BG, there is [16] a model for P2BG → Bπ0G
which is a fibre bundle with structure group π0G. To briefly see this, consider the group-like
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monoid Auth(K(π1G, 2)) of self-homotopy equivalences of K(π1G, 2). Consider the universal
fibration

Auth(K(π1G, 2)) −→ EAuth(K(π1G, 2)) −→ BAuth(K(π1G, 2))

as defined in the previous section. Recall that B(Aut(π1G) ⋉ K(π1G, 2)) is a model for the
classifying space BAuth(K(π1G, 2)). Let

(4.3) U = EAuth(K(π1G, 2)) ×Auth(K(π1G,2)) K(π1G, 2) −→ B(Aut(π1G)⋉K(π1G, 2))

be the K(π1G, 2)-fibration obtained from the above universal fibration.
The splitting

Aut(π1G) → Aut(π1G)⋉K(π1G, 2), ϕ 7→ (ϕ, 0)

of the exact sequence K(π1G, 2) →֒ Aut(π1G)⋉K(π1G, 2) → Aut(π1G) yields a section

e : BAut(π1G) → B(Aut(π1G) ⋉K(π1G, 2))

of the fibration B(Aut(π1G)⋉K(π1G, 2)) → BAut(π1G) induced by the above exact sequence.
Hence the pullback of U in (4.3) under the composition

Bπ0G → BAut(π1G)
e

−−→ B(Aut(π1G)⋉K(π1G, 2))

is the fibre bundle
Eπ0G×π0G K(π1G, 2) → Bπ0G,

with fibre K(π1G, 2), structure group π0G and where Eπ0G → Bπ0G is the universal π0G-
principal bundle. Here π0G acts on the K(π1G, 2)-factor via the composition

(4.4) π0G
Ψ(−)∗
−−−−→ Aut(π1G) →֒ Auth(K(π1G, 2)).

Thus, we use the functorial construction of the Eilenberg-Maclane space K(π1G, 2) explained
in the preceding section. On the other hand, the π0G-action on the Eπ0G-factor is by the
monodromy action of π0G = π1(Bπ0G) (based on the base point of Bπ0G = K(π0G, 1)). So,
if γ : S1 → Bπ0G is a loop representing a class in π0G and v ∈ Eπ0G, then γ · v = v + γ̃(1)
where γ̃ is the lift of γ through v and + is the group operation on Eπ0G (recall that Eπ0G is
an abelian group because Bπ0G is so).

Concluding, using (4.4), if [a, b] ∈ Eπ0G×π0GK(π1G, 2) and g = γ ∈ π0G = π1(Bπ0G), then

(4.5) [a, b] = [a+ γ̃(1),Ψ∗(−g)(b)].

This is the model for P2BG we will use:

(4.6) P2BG = Eπ0G×π0G K(π1G, 2) → Bπ0G.

5. The proof

Now that we have provided the necessary background, we prove the classification Theorem
2.2. This will be done by a sequence of lemmas.

5.1. Replacement of BG by P2BG. Note that the map BG → P1BG = Bπ0G is p0,∗ as
defined in (2.1). The homotopy fibre of the fibration P2BG → P1BG is K(π1G, 2), i.e., we
obtain the fibration

(5.1) K(π1G, 2) −→ P2BG
p

−→ Bπ0G

and the commutative diagram

K(π1G, 2)

��
P2BG

p

��
BG

99
s
s
s
s
s
s
s
s
s
s p0,∗

// Bπ0G.

Since the second homotopy group of any Lie group vanishes (cf. [12] Chapter VI, Theorem
4.17), we have π3BG = 0 = π3P2BG so actually the map BG → P2BG induces isomorphisms
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πiBG ∼= πiP2BG, for i 6 3, i.e., it is a 3-equivalence. Since dimX = 2 < 3, we conclude by
[22], Chapter IV, Theorem 7.16, that BG → P2BG induces a bijection

(5.2) [X,BG] ≃ [X,P2BG].

Hence in order to classify G-bundles over X, it suffices to consider the set

[X,P2BG]

instead of [X,BG].
As we have seen above, obtaining the classification of G-bundles with fixed invariant µ1 ∈

[X,Bπ0G] is equivalent to describing the fibre over µ1 of the map χ : [X,BG] → [X,Bπ0G]
defined in (2.1).

Now, consider the map induced by the fibration p in (5.1)

(5.3) χ′ : [X,P2BG] −→ [X,Bπ0G], χ′([h]) = [p ◦ h].

From (5.2) and the previous diagram, we have the commutative diagram

[X,P2BG]

χ′

��
[X,BG]

88
q
qq

q
q
q
q
q
q
q

χ
// [X,Bπ0G]

so the next lemma follows immediately.

Lemma 5.1. There is a bijection between the set of isomorphism classes of continuous principal
G-bundles over X with invariant µ1 ∈ [X,Bπ0G] and the fibre over µ1 of χ′.

Let us now begin applying the obstruction theory sketched in Section 3 to our situation, thus
to the fibration (5.1) and to the next diagram

K(π1G, 2)

��
P2BG

p

��
X

::
t

t

t

t

t f
// Bπ0G

where f is a representative of a class µ1 ∈ [X,Bπ0G].
We want to analyse the fibre χ′−1(µ1) and a first question is if it is non-empty. Being non-

empty means that we can lift f to P2BG. To see this, first notice that, since K(π1G, 2) is
connected, we can always find a partial lift f ′ of f over the 1-skeleton, i.e. a lift of f |X1

,
because (3.3) vanishes. In addition, as K(π1G, 2) is simply-connected, then the obstruction
2-cochain (3.2) is again zero and hence we can lift f to a map X → P2BG. So:

Lemma 5.2. The map χ′ is surjective.

5.2. Homotopy classes of lifts and vertical homotopy classes of lifts. Our next task is
then to describe the fibre of χ′ over the class µ1 ∈ [X,Bπ0G]. This fibre is in general just a set,
namely the set of homotopy classes in [X,Bπ0G] which project to a representative of the class
µ1, hence to a map homotopic to f : X → Bπ0G. We will describe all such homotopy classes
of lifts of f in terms of vertical homotopy classes of lifts of f . Denote the latter set by

[X,P2BG]f .

First note that if g : X → Bπ0G is another representative of the class µ1, then by lifting
a homotopy between f and g we obtain a bijection [X,P2BG]f ∼= [X,P2BG]g. So we loose
nothing by choosing any representative f of µ1.

Consider the fundamental group π1(Map(X,Bπ0G), f), which we regard as the group of
homotopy classes of self-homotopies of f . It acts on [X,P2BG]f also by lifting these self-
homotopies, that is, if f0 ∈ [X,P2BG]f is a lift of f , and H ∈ π1(Map(X,Bπ0G), f) is a
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self-homotopy of f , then H acts on f0 as H ·f0 = H̃(−, 1), where H̃ : X× I → P2BG is a lift of

H such that H̃(−, 0) = f0. If another lift H̃
′ of H is taken so that H̃ ′(−, 0) = f0, then H̃ ′(−, 1)

is vertically homotopic to H̃(−, 1) so the action is well-defined.
Since π0G is abelian, Bπ0G = K(π0G, 1) is a topological abelian group, hence so is Map(X,Bπ0G).

It follows that π1(Map(X,Bπ0G), f) is also independent of f .
So the orbit space

[X,P2BG]f/π1(Map(X,Bπ0G), f)

is independent on the choice of the representative f of µ1.

Lemma 5.3. Given µ1 ∈ [X,Bπ0G], there is a bijection of sets

χ′−1(µ1) ∼= [X,P2BG]f/π1(Map(X,Bπ0G), f),

with f : X → Bπ0G representing µ1.

Proof. By definition, χ′−1(µ1) ⊂ [X,P2BG]. Consider the natural map

[X,P2BG]f → χ′−1(µ1)

which sends a vertical homotopy class of a lift g : X → P2BG of f to its (not necessarily
vertical) homotopy class. This is clearly surjective.

Take two homotopic lifts f0 and f1 of f , hence representing the same point in χ′−1(µ1).
Projecting the homotopy through p : P2BG → Bπ0G, yields a self-homotopy of f , which
lifts to the homotopy between f0 and f1 we started with. Hence f0 and f1 represent classes
in [X,P2BG]f which lie in the same orbit of π1(Map(X,Bπ0G), f); note that f0 and f1 are
vertically homotopic precisely if the induced self homotopy is homotopically trivial. Conversely,
by the definition of the action of π1(Map(X,Bπ0G), f) by lifting self-homotopies of f , we identify
the lifts of f which are homotopic. This shows that the above map induces an injective map

[X,P2BG]f/π1(Map(X,Bπ0G), f) → χ′−1(µ1).

Since [X,P2BG]f → χ′−1(µ1) is surjective, then so is the induced map, and we are done. �

Now we use the model (4.6) for P2BG, so that we have the next diagram

(5.4) K(π1G, 2)

��
Eπ0G×π0G K(π1G, 2)

p

��
X

66♥
♥

♥
♥

♥
♥

♥ f
// Bπ0G.

The remaining part of the paper will always refer to the above diagram.
Let π0G = π1(Bπ0G) act on the set [X,Eπ0G×π0GK(π1G, 2)]f of vertical homotopy classes of

lifts of f as in (4.4), so via the inclusion Aut(π1G) ⊂ Aut(K(π1G, 2)). More precisely, a lift f0 of
f representing a class in [X,Eπ0G×π0G K(π1G, 2)]f can be written as f0(x) = [h1(x), h2(x)] ∈
Eπ0G ×π0G K(π1G, 2), where the hi are defined up to the simultaneous π0G-action on both
factors as in (4.5). Then g ∈ π0G acts on the representative f0 as

(5.5) (g · f0)(x) = [h1(x),Ψ(g)∗(h2(x))]

for x ∈ X and this induces an action on the homotopy classes of lifts of f . Indeed g · f0 is
another lift of f since [h1(x),Ψ(g)∗(h2(x))] and [h1(x), h2(x)] lie in the same fibre of p.

The next lemma shows that the fibre that we are studying is in bijection with the quotient
set for the action (5.5).

Lemma 5.4. Let [X,Eπ0G×π0GK(π1G, 2)]f denote the set of vertical homotopy classes of lifts
of f in diagram (5.4), together with the π0G-action (5.5). Then there is a bijection

χ′−1(µ1) ≃ [X,Eπ0G×π0G K(π1G, 2)]f/π0G.
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Proof. Using our model P2BG = Eπ0G×π0G K(π1G, 2), we know from Lemma 5.3 that

(5.6) χ′−1(µ1) ≃ [X,Eπ0G×π0G K(π1G, 2)]f/π1(Map(X,Bπ0G), f),

where the group π1(Map(X,Bπ0G), f) acts by lifting self-homotopies of f in (5.4).
Now we compute π1(Map(X,Bπ0G), f). As we said before, this is independent of f , because

Map(X,Bπ0G) is a topological abelian group. So we compute π1Map(X,Bπ0G) taking for base
point the constant map

const ∈ Map(X,Bπ0G)

equal to the base point of Bπ0G = K(π0G, 1). In this case,

π1(Map(X,Bπ0G), const) = [(X × S1)/(X × 1), Bπ0G]

= [SX ∨ S1, Bπ0G]

= [S1, Bπ0G]

= π0G.

(5.7)

Here, SX = (X × I)/(X × 0 ∪ X × 1) is the unreduced suspension of X, which is simply
connected because X is connected, and ∨ is the wedge sum. Notice that in (5.7) is not relevant
to distinguish classes of based or unbased maps because Bπ0G is a simple space (it is 1-simple
since π0G is abelian). Moreover, the third equality holds since a homotopy class of a (based) map
f : SX ∨S1 → Bπ0G is defined by two homotopy classes of (based) maps f1 : SX → Bπ0G and
f2 : S

1 → Bπ0G, but [SX,Bπ0G] = [SX,K(π0G, 1)] = H1(SX, π0G) = 0 because π1SX = 0.
Denote by + the group operation on Bπ0G = K(π0G, 1) and let

g ∈ π0G ∼= π1(Bπ0G).

If we represent g by a loop
γ : S1 −→ Bπ0G

then the self-homotopy of f associated to g is H : X × S1 → Bπ0G defined by

(5.8) H(x, t) = f(x) + γ(t).

Here, the operation of summing f is the homeomorphism which identifies the component of the
constant map const : X → Bπ0G in Map(X,Bπ0G) with that of f . Now we use diagram (5.4).
The element g ∈ π0G acts on the class of f1 by lifting the self-homotopy H of f given in (5.8)
to Eπ0G×π0G K(π1G, 2) and taking its final value. As Bπ0G is an abelian group, then Eπ0G
is also an abelian group and we denote again the operation by +. A lift of H is given by

H̃(x, t) = [h1(x) + γ̃(t), h2(x)]

where γ̃ is a lift of γ. So, by (4.5),

H̃(x, 1) = [h1(x) + γ̃(1), h2(x)] = [h1(x),Ψ(g)∗(h2(x))].

Hence the action of π1(Map(X,Bπ0G), f) by lifting self-homotopies is compatible with the ac-
tion (5.5) of π0G and with the identification π1(Map(X,Bπ0G), f) ∼= π1(Map(X,Bπ0G), const) ∼=
π0G in (5.7). This, together with (5.6), completes the proof of the lemma. �

5.3. Bijection with twisted cohomology. Consider the fibration p in (5.4). The correspond-
ing difference cochain (3.8) is zero so there are always vertical homotopies between lifts of f on
X1. Thus, given two lifts f0 and f1 of f , we can suppose that f0|X1

= f1|X1
and that K1 is the

constant homotopy between them. We will hence write

δ2(f0, f1)

instead of δ2(f0,K1, f1) for the cocycle (3.7) determined by the difference cochain (3.4). More-
over, the action α2 defined in (3.5) becomes

α2 : π1X
f∗
−→ π1Bπ0G −→ Aut(π2(K(π1G, 2))),

that is

α2 : π1X
f∗
−→ π0G −→ Aut(π1G).
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But p is a fibre bundle with π0G as the structure group, with π0G acting on the fibre K(π1G, 2)
as in (4.4), so via Ψ(−)∗. Hence the action α2 coincides with Ψ(−)∗ ◦ µ1∗ in (2.3). Hence we
have that

δ2(f0, f1) ∈ H2(X,π1Gµ1
)

with π1Gµ1
being the local system determined by (2.3).

The following result (Corollary 6.16 of Chapter VI of [22]) shows that there is a close relation
between [X,Eπ0G×π0G K(π1G, 2)]f and H2(X,π1Gµ1

).

Proposition 5.5. Let f0 : X → Eπ0G×π0G K(π1G, 2) be any lift of f : X → Bπ0G. Then the
map

φ : [X,Eπ0G×π0G K(π1G, 2)]f −→ H2(X,π1Gµ1
), φ(f1) = δ2(f0, f1)

is a bijection.

Now we want to see the π0G-quotient of Lemma 5.4 on the side of twisted cohomology
H2(X,π1Gµ1

), via the correspondence of the previous proposition and via the action of π0G in

H2(X,π1Gµ1
) induced from the action in C2

Z[π1X](X̃, π1G) defined in (2.4).

This is the content of the next and final lemma in the proof of Theorem 2.2.

Lemma 5.6. The bijection between [X,Eπ0G ×π0G K(π1G, 2)]f and H2(X,π1Gµ1
) is π0G-

equivariant with respect to (5.5) and (2.4), respectively. Hence it induces a bijection on the sets
of π0G-orbits:

[X,Eπ0G×π0G K(π1G, 2)]f /π0G ≃ H2(X,π1Gµ1
)/π0G.

Proof. Recall that we are always dealing with the situation represented by diagram (5.4). For
the correspondence in Proposition 5.5, one has a choice of a lift f0 of f and the natural one is
to choose the zero map, that is, f0(x) = [g1(x), 0], with g1(x) such that p([g1(x), 0]) = f(x).

Given another lift f1 of f , we have already seen that we can suppose that f1|X1
= f0|X1

= 0.
With these choices, the cocycle δ2(f0, f1) is given by (3.4) and (3.6), with T = f1, because f0
is the zero map and f1|X1

= f0|X1
= 0 (so K1 is the constant homotopy equal to zero), so that

we can collapse ∂ẽ2i × I ∪ ẽ2i × 0 to one point:

δ2(f1)(e
2
i ) = [f1 ◦ π ◦ ϕi] ∈ π2K(π1G, 2) ∼= π1G.

On the other hand, by the definition of the action of π0G in C2
Z[π1X](X̃, π1G) in (2.4), we have

that, for g ∈ π0G,

(5.9) (g · δ2(f1))(e
2
i ) = Ψ(g)∗([f1 ◦ π ◦ ϕi]) ∈ π1G ∼= π2(K(π1G, 2)).

But by (4.4), if we write f1(x) = [h1(x), h2(x)], we conclude that

(5.10) Ψ(g)∗([f1 ◦ π ◦ ϕi]) = [f ′

1 ◦ π ◦ ϕi]

where f ′

1(x) = [h1(x),Ψ(g)∗(h2(x))].
By (5.5), (5.9) and (5.10), we have that

g · δ2(f1) = δ2(g · f1).

We conclude that the bijection stated in Proposition 5.5 is π0G-equivariant and this completes
the proof. �

Finally, the proof Theorem 2.2 follows from Lemmas 5.1, 5.2, 5.4 and 5.6.
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Centro de Matemática da Universidade do Porto, CMUP
Faculdade de Ciências, Universidade do Porto
Rua do Campo Alegre 687, 4169-007 Porto, Portugal
www.fc.up.pt

email: andre.oliveira@fc.up.pt
https://sites.google.com/view/aoliveira

On leave from:
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