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We present here two very well-known and elementary theorems in Eu-
clidean Geometry. The first one is a form of the result which says
that a rigid motion can be written as a composition of at most three
reflections and is usually proven at the beginning of a typical course
in Geometry. The second one is the Classification Theorem for rigid
motions of the plane, which is presented typically at the end of the
course.

In this article we show that with the tools we use to prove the first
theorem a proof of the second one follows almost immediately. This
shows that the Classification Theorem is of a much more elementary
nature than is usually thought and so it is a relevant example of a
comprehensive yet basic result. Thus, beyond a Geometry course, the
approach presented here might be used in an Introduction to Proofs
course or, perhaps, as a way of bringing in a geometric perspective
when reflections are treated in a basic Linear Algebra course.

We do not claim here originality: indeed, the interest lies in the
construction we give in the first proof, and in the way this construction
is used to derive the classification theorem (in a way not dissimilar to
[1], but simpler, we hope).

We recall that the classification theorem (often attributed to Michel
Chasles 1), states that every rigid motion of the plane different from
the identity is either a reflection in a line, a translation, defined as the
product of the reflections in two parallel lines, a rotation, the product
of the reflections in two intersecting lines 2, or a glide reflection, a
translation followed (or preceded) by a reflection in a line parallel to
the direction of the translation. It is perhaps worth mentioning that
the isometries in dimension 3 were classified much earlier by Euler.
Whereas in the plane a general “rigid body displacement” is hence a
translation or a rotation about a point, in space it may also be the
product of a translation along a line by a rotation about that line
(Mozzi-Chasles’ theorem).

Date: 19/06/2020.
1See e.g. Coolidge [2, p. 273], or Nikulin-Shafarevich [3, p. 72]. Michel Chasles

(1793 –1880) was a renowned French mathematician and geometer.
2Note that the rotation is a half turn if and only if the two lines are perpendic-

ular to each other.
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Our starting point is the elementary fact that, given two different
points A and B, and strictly positive numbers a, b such that a+b > ∣AB∣
(the distance between A and B), there exist exactly two points, X1 and

X2, located on opposite sides of the line through A and B, r =
←→
AB,

such that ∣AXi∣ = a and ∣BXi∣ = b, i = 1,2. Moreover, the points X1 and
X2 are interchanged by σr, the reflection in the line r, which is also the
perpendicular bisector of the segment determined by them.

A first obvious consequence is that any point in the plane is charac-
terised by its distances to three given noncollinear points. Therefore,
the images of any three noncollinear points characterise any isometry.
Another consequence is the following theorem, which can be proved
simply and elegantly.

Theorem 1. Given points A, A′, B and B′ in the plane such that
∣AB∣ = ∣A′B′∣ ≠ 0, there exist exactly 1 two rigid motions sending A to
A′ and B to B′. The first of these can be written as the composition
of two reflections. The second one is obtained composing the first one

with the reflection in the line
←Ð→
A′B′.

Our proof proceeds by defining i, the first rigid motion satisfying

i(A) = A′ and i(B) = B′. Then, the second motion will be j ∶= σ
←Ð→
A′B′ ○i ≠

i. In the general case, we define r = bisAA′ as the perpendicular
bisector of the segment AA′, so that A′ is the reflection on r of A,
A′ = σr(A), and we define s = bisB∗B′ where B∗ = σr(B). Finally, we
define i = σs ○ σr. Since

∣A′B∗∣ = ∣σr(A) σr(B)∣ = ∣AB∣ = ∣A′B′∣ ,

i(A) = A′ and, of course, i(B) = B′. Now, if A = A′ then we may

instead define r =
←→
AB. Also, if B′ = B∗ then we may define s =

←Ð→
A′B′.

In both cases, one still has i(A) = A′ and i(B) = B′. Note that if A = A′

and B = B′ then i is the identity. Here ends the proof.
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Now, the classification of the rigid motions of the plane is accom-
plished by the following corollary. The basic idea is that the first rigid

1The fact that there exist no third motion with the same properties follows
easily from the fact mentioned above that the images of any three noncollinear
points characterise any isometry.
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motion i from Theorem 1 can be identified by the three points A, i(A)
and i2(A) for a generic point A.

Corollary 2. Let i be a rigid motion of the plane.

(1) If there exists A such that B = i(A) is different from A and
such that i(B) = A, then i is either the reflection in a line or a
half turn.

(2) If there exists A such that A, B = i(A) and C = i(B) are all
three distinct and collinear, then i is either a translation or a
glide reflection

(3) If there exists A such that A, B = i(A) and C = i(B) are all
three distinct and not collinear, then i is either a rotation or a
glide reflection.

Proof. We define r and s as in the proof of Theorem 1. Since in all
three cases A′ = B ≠ A, r = bisAB and B∗ = A.

(1) In this case, B∗ = A = B′, and hence s =
←→
AB and r ⊥ s. Then

i = σs ○ σr is the half turn about the midpoint of AB. The
second motion is

j = σ
←Ð→
A′B′ ○ σ

←→
AB ○ σbisAB = σbisAB .

(2) Here, B∗ = A ≠ C = B′, s = bisAC and B ∈ s. Hence r ⊥
←→
AB =

←→
AC ⊥ s, thus i is a translation and j = σ

←→
AB ○ i is a glide

reflection.
(3) Now, again B∗ = A ≠ C = B′, s = bisAC and B ∈ s. But now

r Ù
←→
AC ⊥ s, so r and s meet 1 at a point O and i is a rotation

about O. It remains to see that j = σ
←Ð→
A′B′ ○ i is a glide reflection.

A

B C

M

N

O

lsr m

For this, let M and N be the midpoints of AB and BC,

respectively, and let m be the perpendicular to l =
←Ð→
MN , through

M . Then s ⊥ l, so k = σl ○σs○σm is a glide reflection. Moreover,
B = k(A) and C = k(B) so, in view of Theorem 1, we have
k = i or k = j. In order to exclude the case k = i, we recall
that the composition of reflections in two perpendicular lines

1This is the only place we use the Euclidean parallel axiom. In the hyperbolic
plane, alternatively, i could be a limit rotation or a translation, depending on the
relative position of r and s. Thus the argument presented here also gives the
classification of isometries in the hyperbolic plane (cf. [1]).
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is a half turn about their point of intersection and, therefore,
is independent of the order in which the reflections are taken.
Thus k = i would mean that σl ○ σs ○ σm = σs ○ σl ○ σm = σs ○ σr

and hence σl ○ σm = σr, which is impossible.
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