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Abstract

Considering tobacco smoke as one of the most health relevant indoor sources, the aim
of this work was to further understand its negative impacts on human health. The
specific objectives of this work were to evaluate the levels of particulate—bound PAHs
in smoking and non-smoking homes and to assess the risks associated with inhalation
exposure to these compounds. The developed work concerned the application of the
toxicity equivalency factors (TEF) approach (including the estimation of the lifetime
lung cancer risks, WHO) and the methodology established by USEPA (considering 3
different age categories) to 18 PAHs detected in inhalable (PMyo) and fine (PM25s)
particles at two homes. The total concentrations of 18 PAHS (Zpans) Was 17.1 and
16.6 ng m™> in PMy, and fine PM, 5 at smoking home and 7.60 and 7.16 ng m™ in
PMy and fine PM,5 at non-smoking one. Compounds with 5 and 6 rings composed
the majority of the particulate PAHs content (i.e. 73% and 78% of XZpaps at the
smoking and non-smoking home, respectively). Target carcinogenic risks exceeded
USEPA health-based guideline at smoking home for 2 different age categories.
Estimated values of lifetime lung cancer risks largely exceeded (68-200 times) the
health—based guideline levels at both homes thus demonstrating that long—term
exposure to PAHSs at the respective levels would eventually cause risk of developing
cancer. The high determined values of cancer risks in the absence of smoking were

probably caused by contribution of PAHs from outdoor sources.

Keywords: Polycyclic aromatic hydrocarbons (PAHS); indoor air; tobacco smoke;

PMio; PMs s risk assessment;
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1. Introduction

It is well known that tobacco smoking is associated with various diseases of
lung and heart as well as with cancers of various organ systems (IARC 2004, 2010).
Tobacco smoke is certainly one of the greatest sources of the indoor pollution not
only for the smokers but also for all those who are somehow exposed to it. The
scientific research has shown that exposure to second-hand smoke, also referred as
environmental tobacco smoke (ETS), is associated with various adverse health
outcomes including increased risk of lung cancer, acute coronary syndromes and
stroke, an increased prevalence of respiratory symptoms and inflammatory reactions
(Adlkofer 2001; Barnoya and Glantz 2005; Bhalla et al. 2009; Cesaroni et al. 2008;
Dransfield et al. 2007; Hoffmann and Hoffmann 1997; Madureira et al. 2012;
Raupach et al. 2008). Thus US Environmental Protection Agency (USEPA) and
International Agency for Research on Cancer (IARC) have classified exposure to
tobacco smoke as Class A and 1 human carcinogen, respectively (IARC 2004;
USEPA 1993). Considering the negative health impacts, USA and a number of
European countries have ban smoking in public places (McNabola and Gill 2009) in
order to ensure smoke-free environments and to protect public health (Madureira et al.
2012; Pacheco et al. 2012; WHO 2009). However for individuals that spent large
amount of their time at homes (seniors, infants) the exposure to tobacco smoke in the
respective ambiences are relevant. Young children in particular are in great risks; it
was estimated that four out of ten children (approximately 700 million children
globally) have at least one parent who currently smokes (IARC 2012), thus
predisposing them to exposure to second-hand tobacco smoke at their homes. In
Europe, the prevalence of children exposure to tobacco smoke at homes is particularly

high (78%) being the highest of all geographical regions (WHO 2009). In order to
3
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protect the public health, it is thus necessary to continue with scientific and regulatory
efforts to reduce tobacco-related pollution.

From the chemical point of view, tobacco smoke is a complex mixture of
gaseous components and particles of different sizes. Up to 5200 components,
including heavy metals, aromatic amines and N-nitrosamines have been identified in
tobacco smoke (Rodgman and Perfetti 2008), as well as 549 polycyclic aromatic
hydrocarbons (PAHs; Thielen et al. 2008). PAHs are a large group of organic
compounds with two or more fused aromatic rings that are produced during
incomplete combustion of organic matter. Indoors tobacco smoke is considered
among their most significant source (Ball and Truskewycz 2013). PAHSs are cytotoxic
and mutagenic compounds, some of them being considered as carcinogens to humans
(WHO 1998). In air PAHSs are distributed between gas phase and particles, but the
especially harmful compounds (with 5-6 aromatic rings) are predominantly found in
particulates, mostly due to their high molecular weights and low volatility (Liu et al.
2001; Lu and Chen 2008; Slezakova et al. 2011). Because of their hazardous
properties there have been efforts to regulate PAHs in air. Current European
legislation on ambient air (Directive 2004/107/EC) sets annual target value of 1 ngm-
% for carcinogenic PAHs in PMy, (particulate matter with aerodynamic diameter below
10 um) using benzo[a]pyrene as indicator of carcinogenic PAHs. Benzo[a]pyrene is
probably the most studied carcinogenic compound and is often used as a surrogate for
other carcinogenic PAHs in studies estimating human cancer risks. However, the
suitability of this approach started to be questioned (Pufulete et al. 2004) by new
findings on the presence of more potent PAHSs, such as dibenzo[a,l]pyrene or

dibenz[a,h]anthracene (Okona—Mensah et al. 2005).
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Considering tobacco smoke among the most health relevant indoor emission
sources, this work aims to evaluate the associated health risks regarding particulate—
bound PAHs. The developed work concerns the application of the toxicity
equivalency factors (Bostrom et al. 2002) approach (including the estimation of the
lifetime lung cancer risks; WHO 1987, 2000) and the methodology established by
USEPA (USEPA 2013) to 18 PAHSs detected in inhalable (PMyg) and fine (PM;5s)
particles at one home influenced by smoking and one non-smoking home. The
determined compounds were the 16 PAHs considered by USEPA as priority
pollutants, dibenzo[a,l]pyrene, and benzo[j]fluoranthene (the latter recommended by

EU Directive 2004/107/EC).

2. Materials and methods
2.1 Sample Collection

Particulate—bound PAHSs were collected for a period of 19 consecutive days in
January 2009 at two homes situated in Oporto, Portugal: one influenced by smoking
and one non-smoking home accordingly with Castro et al. (2011). Both homes were
located in Paranhos district. To avoid dissimilar influence of outdoor air both homes
were located in the same block of flats and on the same floor (4™). The characteristics
of both homes were similar (i.e. area, cleaning and cooking activities, number of
inhabitants) and are shown in Table 1S of the Supplementary materials. During the
whole period the occupants of both homes kept detailed reports of the performed
activities including frequency of ventilation that was provided by opened windows (as
occupants thought necessary).

The samples were collected daily for a period of 24 hours by constant flow

samplers (Bravo H2, TCR TECORA, ltaly) that were combined with PM EN LVS
5
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sampling heads (in compliance with norm EN12341 for PMj, and EN14907 for
PM,s). The air flow rate was 2.3 m* h™* which corresponded to less than 5% of the
room volume sampled per 1 hour (in agreement with available guidelines on indoor
air sampling; 1SO 16000-1:2004). Inlets were placed 1.5 m above the floor (in order
to simulate human breathing zone) and minimally 1 m from the walls, without
obstructing the normal usage of the rooms. Different fractions of particles, i.e. PMy
and PM,s, were collected on polytetrafluoroethylene (PTFE) membrane filters with
polymethylpentene support ring (2 um porosity, @47 mm, SKC Ltd., UK).

During the sampling period, the levels of outdoor air pollutants (PMyy, NO3,
NOx, Oz, SO, and CO) were registered (Table 2S of the Supplementary material) as
well as meteorological conditions (Table 3S); the respective station was situated

approximately 350 m east from the homes.

2.2 Gravimetric mass determination

PMy and PM,s masses were determined gravimetrically as described
previously in detail by Slezakova et al. (2010, 2013). The PM5.1o fraction (i.e. coarse
fraction with particles of aerodynamic diameter between 2.5 and 10 pm) was
determined as difference (by subtraction) between PM;o and PMs.

For the gravimetric mass determination, the filters (76 samples) were stored in
Petri dishes and the same analytical balance (Mettler Toledo AG245 analytical
balance weighing with accuracy of 10 pg) was always used. The steps of gravimetric
mass determinations were the following: 24 hours to equilibrate filters (temperature
22.5 £ 1.0 °C, relative humidity 42 + 6%) in a desiccator before weighing, followed

by weighing during the following 24-48 hours. After sampling, filters were
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immediately weighed, stored in Petri dishes covered in parafilm, and kept in freezer (-

18 °C) until they were further analysed.

2.3 Extraction and quantification of PAHs

Dibenzo[a,l]pyrene (D[a,l]P), benzol[j]fluoranthene (B[j]F) and more 16 PAHs
identified as priority pollutants by USEPA were determined in the collected
particulate samples: naphthalene (Nap), acenaphthylene (Acy), acenaphthene (Acp),
fluorene (FIr), phenanthrene (Phe), anthracene (Ant), fluoranthene (FIt), pyrene (Pyr),
benz[a]anthracene (B[a]A), chrysene (Chr), benzo[b]fluoranthene (B[b]F),
benzo[K]fluoranthene (B[k]F), benzo[a]pyrene (B[a]P), dibenz[a,h]anthracene
(D[a,h]A), benzo[ghi]perylene (B[ghi]P), indeno[1,2,3—cd]pyrene (InP); B[j]F and
B[b]F (determined as sum B[j+b]F). The extraction of PAHs from particles (i.e. from
PM;jo and PM,5) was performed by MAE (MARS—X 1500 W Microwave Accelerated
Reaction System for Extraction and Digestion, CEM, Mathews, NC, USA) for 20 min
at 110 °C using 30 mL of acetonitrile (Sigmal-Aldrich) (Castro et al. 2009a, 2009b;
Ramalhosa et al. 2012). Extracts were carefully filtered through a PTFE membrane
filter (0.45 pum) and reduced to a small volume using a rotary evaporator (Buchi
Rotavapor, R—200) at 20 °C. A gentle stream of nitrogen was used to dry the extracts
under low temperature; the residue was then re—dissolved in 1000 pL of acetonitrile
immediately before analysis.

Extracts were analysed using a Shimadzu LC system (Shimadzu Corporation,
Kyoto, Japan) equipped with a LC-20AD pump, DGU-20AS degasser and
photodiode array SPD-M20A (PAD) and fluorescence RF-10AXL (FLD) detectors
on line. Separation of the compounds was performed in a C18 column (CC 150/4

Nucleosil 100-5 C18 PAH, 150 x 4.0 mm; 5 um particle size; Macherey-Nagel,
7
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Duren, Germany); the injected volume was 15.0 pL. A mixture of water (ultra—pure
grade; prepared by a Milli-Q simplicity 185 system, Millipore, Molsheim, France)
and acetonitrile (Lichrosol for gradient elution, Carlo Erba, Rodano, Italy, purity >
99.9%) was used as the mobile phase. The initial composition of the mobile phase
was 50% of acetonitrile and 50% ultra-pure water, and a linear gradient to 100% of
acetonitrile was programmed in 15 min, with a final hold of 13 min. Initial conditions
were reached in 1 min and maintained for 6 min before next run. The total run time
was 40 min with a flow rate of 0.8 mL min™’. Fluorescence wavelength programming
was used to perform better sensitivity and minimal interference. Each compound was
detected at its optimum excitation/emission wavelength pair: 260/315 nm
(naphthalene, acenaphthene and fluorene), 260/366 nm (phenanthrene), 260/430 nm
(anthracene, fluoranthene, pyrene, benz[a]anthracene, chrysene,
benzo[b+j]fluoranthene, benzo[k]fluoranthene, benzo[a]pyrene,
dibenz[a,h]anthracene, benzo[ghi]perylene and dibenzo[a,l]pyrene), and 290/505 nm
(indeno[1,2,3-cd]pyrene). Acenaphthylene, which does not show fluorescence, was
analysed at 254 nm in PAD. Each analysis was performed at least in triplicate.
Calibration curves obtained using six mixed matrix matched standards
containing all the PAHs showed good linearity over the entire range of concentrations
with correlation coefficients always higher than 0.999 for all PAHs. Limits of
detection (LODs) and limits of quantification (LOQs) were calculated and expressed
as PAH concentration in air samples (Castro et al. 2009b). LODs between 0.0016
ng m~® for benz[a]anthracene and 0.027 ng m™ for naphthalene were obtained, with

corresponding LOQs in the range 0.0054-0.089 ng m™>.

2.4 Health risk analysis
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The risks associated with inhalation exposure to all 18 PAHs were assessed by
toxicity equivalency factors (TEF) using values estimated by Muller, 1997 (Bostrom
et al. 2002). Consequently, the lifetime lung cancer risks were estimated (WHO 1987,
2000).

The carcinogenic risks were assessed according to the methodology provided by
USEPA Region Ill Risk—based Concentration Table (USEPA 2013). The risks were
estimated as the incremental probability of an individual to develop cancer, over a
lifetime, as a result of inhalation exposure to that potential carcinogen (i.e.
incremental or excess individual lifetime cancer risk; USEPA 1989). Acceptable risk
levels for carcinogens range from 10™ (risk of developing cancer over a human
lifetime is 1 in 10 000) to 10°° (risk of developing cancer over a human lifetime is 1 in
1 000 000). The carcinogenic risks were calculated using the following equation:

TR = [(EFr x ED x ET x IUR x C) / AT] (1)

where TR is target carcinogenic risk (dimensionless); EFr is the exposure frequency
(350 days per year); ED is the exposure duration (years); ET is indoor air exposure
time (0.80, i.e. 19.2 h per day); IUR is the chronic inhalation unit risk (ug m=)"
(USEPA 2013); C is the concentration of PAH (ug m>); and AT is the number of
days over which the exposure is averaged (25 500 days, i.e. 70 years x 365 days per
year). The carcinogenic risks were estimated only for PAHs for which IUR values are
available (USEPA 2013), namely: naphthalene (IUR of 3.4x107° (ug m?3)™");
chrysene (1.1x10° (ug m>)™); benz[a]anthracene, benzo[b]fluoranthene,
benzo[k]fluoranthene and indeno[1,2,3—cd]pyrene (IUR of 1.1x107™* (ug m=>™);
benzo[a]pyrene (IUR of 1.1x107° (bg m™>)™): and dibenz[a,h]anthracene (1.2><10‘3
(kg m3)™). In this work three different age—categories (USEPA 2008; Vieira et al.

2011) were used for the estimation of the target risks using the following ED values
9
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(in brackets): children 1-3 years (1 year), adults 25-54 years (25 years), and seniors
>65 years (65 years). The lowest possible ED was chosen for each age category in
order not to over—estimate the respective cancer risks. The detailed examples of TR

calculations are shown in Table 4S of the Supplementary material.

2.5 Statistical analysis
For the data treatment, the Student’s t-test was applied to determine the
statistical significance (p<0.05, two tailed) of the differences between the determined

means.

3. Results
3.1 PM;o and PM_ 5 masses

The means and statistical parameters of PMjy and PMjs concentrations
measured at two homes are summarized in Fig. 1. The statistical analysis of the results
indicated that at smoking home PM;o and PM, s were significantly higher (p<0.05)
than at non-smoking one. In addition, at both homes PMj;, means were not
significantly different (p<0.05) from PM2s. No significant differences (p<0.05) were
observed between PM levels during weekdays and weekends. PM;o concentrations
were well correlated with PM, 5 with correlation coefficients of 0.976 and 0.954 at
smoking and non-smoking home, respectively.

In order to study the relationship between different PM fractions, mass
concentration ratios were also analyzed. The PM,s/PMy, ratios were calculated from
each measurement. The mean of PM,s/PMy, ratios was significantly higher at
smoking home (0.86) where values ranged from 0.81 to 0.97 whereas it was between

0.70 and 0.97 at non-smoking home (mean of 0.79).
10
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3.2 PAHs

The means and concentration range of PAHs in PMjo and PM 5 at two homes
are summarised in Table 1, with concentrations presented as sums of individual
compounds (according to the number of rings, i.e. groups with 2, 3, 4, 5 and 6 rings,
respectively). An increase in PAH molecular weight globally corresponds to an
increase of compound toxicity; PAHs with 5 and 6 rings are among the most harmful
ones. At both homes compounds with five rings that comprised of
benzo[b+j]fluoranthene, benzo[k]fluoranthene, benzo[a]pyrene, and
dibenz[a,h]anthracene were the most abundant groups of PAHs in both PMj, and
PM,s. These PAHs accounted for 54% and 59% of total PAH content (i.e. Zpans) at
smoking and non-smoking home, respectively. The highest concentrations were
observed for dibenz[a,h]antracene that reached at the non-smoking home means of
2.25 and 2.11 ng m™ in PMyg and PM, respectively; at smoking home its obtained
levels were approximately twice higher. Compounds with 6 rings were the second
most abundant group of PAHs and accounted for 19% and 20% of Xpans at smoking
and non-smoking home, respectively. This group comprised of benzo[g,h,i]perylene,
indeno[1,2,3-cd]pyrene, and dibenzo[a,l]pyrene that was the least abundant compound
of all PAHs. At non-smoking home, dibenzo[a,l]pyrene reached mean concentration
of 68.9x10° and 61.7x10° ng m® in PMy and PM,s, respectively being
approximately 3.5 times lower than at the smoking home. Compounds with 4 rings
(fluoranthene, pyrene, benz[a]anthracene, and chrysene) accounted for 16 % of Zpaps
in both PM at both homes, whereas it was 11% and 6-7% of Zpaps for compounds

with 3 rings (fluorene, phenanthrene, anthracene, acenaphthylene, and acenaphthene)
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at smoking and non-smoking home, respectively. Finally, PAHs with 2 rings that
included naphthalene accounted at smoking home for 1% of Zpaps in both PM; at non-

smoking home these compounds were not found.

3.3 Health risks assessment

In order to estimate the carcinogenic risks for humans, the benzo[a]pyrene
equivalent carcinogenicity were evaluated by multiplying concentration of each PAH
with their TEF value. The results of TEF adjusted concentration for 18 PAHSs at
smoking and non-smoking home are presented in Table 2. As expected the higher
risks were found for smoking home, where total TEF-adjusted concentration of all
PAHS (Stee-pans) Was 29.0x10° pg m~ in PMyo and 27.4x10% pg m ™ in PM,s, being
approximately 200% higher than at non-smoking home. The values of Ztgrpaps at
both homes were then used to estimate the corresponding lifetime lung cancer risks.

The means and range of target carcinogenic risks associated with inhalation
exposure to PAHSs that were estimated by USEPA methodology are presented in Table
3. The obtained results demonstrate that: i) for both PM fractions significantly higher
risks were observed at the smoking home than at the non-smoking one (Fig. 2); ii) at
both homes higher risks (2-11%) were found for PMjo than PM;s; iii) for all
compounds the highest carcinogenic risks were observed for the age group of seniors
(>65 years); and iv) for all three age—groups the highest risk were found for
dibenz[a,h]anthracene. Considering the above mentioned, the highest cancer risks
were observed for dibenz[a,h]anthracene which in PMy, at smoking home reached for

seniors a value of 3.86 x 10°°.
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4. Discussion

The health risks associated with PAHs bound in PMj, and PMjs were
evaluated at two homes with and without smoking. The obtained results showed
significantly (p<0.05) higher levels of both PMj, and PM,s at the home with
smoking. Previously, Wallace et al. (2003) estimated an increase of 37 pg m° for
indoor particles (range 0.6 - 5 um) due to smoking in a study conducted in USA.
BeruBé et al. (2004) reported PMj, concentration in UK homes with smokers
approximately 10 to 44 pug m > greater (depending upon the number of smokers) than
in those without smokers. Data obtained within this study were similar. Specifically,
the increase between smoking and non-smoking home was 47 pg m™ for PMyo and 42
ng m for PM,s. The average indoor/outdoor PMyq ratio was 0.65 at the non-smoking
home, which suggests that outdoor air was the major contributor to indoor PM levels
(outdoor PM 5 data were not available for comparison). At smoking home the average
value of PMy, indoor/outdoor ratio was 2.31 thus indicating the contribution from
indoor sources (i.e. tobacco smoke). It is however necessary to point that both homes
were situated in the multiunit building. Therefore, infiltration of the second-hand
smoke emissions from other units might potentially contribute to indoor PM measured
at both (smoking and smoke-free) homes (Dacunto et al. 2013a, King et al. 2013).
Finally, cooking activities were performed at both homes (Table 1S) and could
account for some of the measured PM (Dacunto et al. 2013b).

The ratios between indoor PM, 5 and PM1g concentrations that were obtained
within this work were in general similar to those previously reported for indoor
environments in Portugal (0.87 for smoking home and 0.74 non-smoking one;

Slezakova et al. 2009), being considerably higher than those found outdoors in the
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same district area (0.68-0.72; Slezakova et al. 2010, 2011, 2013). High values of
PM,s/PMyy ratios indicate that indoor PMj, were mostly composed of fine particles.
These findings are health-relevant because fine particles especially represent a serious
risk to human health (Pope et al. 2002; WHO 2006). In addition, at the smoking home
PM, s concentrations were very high (increase of 280%) but PM, .19 concentrations
were rather low. The significantly higher PM,s/PM;, ratio and the much higher PM3 5
concentrations at smoking home thus corroborate the previous findings that indoor
combustion sources, namely tobacco smoke had the determinant influence on the
presence of fine particles (Klepeis et al. 2003; Dacunto et al. 2013b).

Considering the protection of public health, it is important to enhance that at
both homes compounds with 5 and 6 rings composed the majority of the particulate
PAH content (i.e. 73% and 78% of Zpaps at the smoking and non-smoking home,
respectively). With exception to benzo[ghi]perylene, all studied 5 and 6-rings PAHs
are probable and possible human carcinogens (IARC 2010) and include also
benzo[a]pyrene, a class 1 human carcinogen. The total concentration of ten (out of 18)
carcinogenic PAHSs (i.e. Zcacpans) Was approximately 120% higher when influenced
by tobacco smoke; the carcinogenic PAHs were predominantly associated with fine
particles (93-96% of Zcarcpans). Thus in order to protect public health it is necessary to
develop strategies to reduce exposure to PM; s, mainly related to carcinogenic PAHSs.

When the health risks associated with inhalation exposure are evaluated by
TEF method, typically TEF values estimated by Nisbet and La Goy (1992) are used
(Bari et al. 2010; Halek et al. 2008; Mugica et al. 2010; Ohura et al. 2004). However,
Nisbet and La Goy did not refer TEF value for dibenzo[a,l]pyrene. As this PAH is

considered relevant for the respective evaluation, in this work TEF reported by Muller
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1997 (that included TEF for dibenzo[a,l]pyrene; Bostrom et al. 2002) were used to
calculate the TEF-adjusted concentrations. Dibenzo[a,l]pyrene was previously the
least abundant PAH in both PM at both homes. Due to its TEF of 100,
dibenzo[a,l]pyrene became the largest contributor to Xter pans (80% and 70% of Zrer-
pans at smoking and non-smoking home, respectively) and its TEF-adjusted
concentration was 240% higher when influenced by tobacco smoke. This PAH is not
commonly assessed when evaluating particulate—-bound PAHSs, although its relative
contribution to carcinogenic potential is very strong, even at very low concentrations
as demonstrated within this study. Dibenz[a,h]anthracene (the most abundant PAH in
both PM at both homes) was the second largest contributor to Xter pans With 14% and
21% of Zter pans at smoking and non-smoking home, respectively. In general these
results confirm and emphasize the importance of the analysis and evaluation of these
two potent carcinogens that are being currently discussed as possible surrogate
compounds for PAH mixtures from various environments (Okona—Mensah et al.
2005). Finally, benzo[a]pyrene was the third most abundant PAH (5% and 6% of
Y1er_pans at smoking and non-smoking home, respectively) with levels 130% higher
when influenced by smoking. Overall the obtained results allow concluding that
analysis of all three PAHSs is relevant in relation to tobacco smoke; the common
approach of using benzo[a]pyrene as an indicator might lead to underestimating the
potential carcinogenic potency of PAHSs in air.

Regarding the lung cancer risk via the inhalation route, the World Health
Organization suggested the unit risk of 8.7x10> (ng m>)™* for lifetime (70 years)
PAH exposure (Ohura et al. 2004). Taking into the consideration that people spend

indoors approximately 80% of their time, the estimated lifetime lung cancer risks at
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379

the smoking home were 2.0x10° for PAHSs in PMs, being about 18 times lower for
coarse fraction (i.e. 1.1x10 . At the non-smoking home, the corresponding values of
lifetime lung cancer risks were lower, with figures of 6.8x10~* for PAHs in PM, 5 and
6.2x10° for PM.5.10; PAHSs in fine fraction exhibited risks about 11 times higher than
In PM25 10. It is important to point out that at both homes risks estimated for both fine
and coarse fractions exceeded the health-based guideline level of 10~ (Bostrom et al.
2002). The exceedances were especially considerable for PM;s with values 200 and
68 times higher than health—based guideline at smoking home and non-smoking
home, respectively. These results thus demonstrate that particulate—bound PAHSs, and
especially those from tobacco smoke represent a serious health risk.

When evaluating carcinogenic risks associated with inhalation exposure to
PAHs by USEPA methodology, dibenzo[a,l]pyrene was not considered as its chronic
inhalation unit risk value is not available; therefore settling IUR value for
dibenzo[a,l]pyrene is important for the respective risk analysis once this compound is
a potent carcinogen (Okona—Mensah et al. 2005). For carcinogens, USEPA set a risk
level of 10°® for individual compounds and pathways with the understanding that it
will generally cause negligible cancer risks. However, caution is recommended to
ensure that cumulative cancer risks of all potential carcinogenic components do not
have residual cancer risk exceeding 10*. At smoking home (Fig. 2) target
carcinogenic risks exceeded in both PM the USEPA health—based guideline level for
2 different age categories: adults with 25-54 years and seniors (> 65 years). These
results confirm that tobacco smoke considerably increases the carcinogenic risks.
Furthermore, the exposure to tobacco smoke combined with certain life style (such as
diet or regimen) may result in even increased cancer risks related to these pollutants

(Slezakova et al. 2011). At non-smoking home, target carcinogenic risks were
16
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approximately twice lower than at smoking home. USEPA health-based guideline
was exceeded for one age category, namely seniors, which suggest that long-term
exposure to PAHSs at levels found at non-smoking home can eventually cause risks for
developing cancer. The high values of cancer risks in the absence of smoking indicate
a significant contribution of PAHs from another source. The values of PM
indoor/outdoor ratios (lower than 1), indicate that outdoor emissions can be a
significant contributor to indoor levels (Castro et al. 2010). Therefore, Fig. 3 shows
comparison between compositional profiles of particulate-bound PAHs collected
indoors at non-smoking home and in ambient (outdoor) air. The abundances of PAHs
in ambient air were retrieved from Slezakova et al. (2011) and corresponded to
sampling period of 40 days during November — December 2008 (i.e. previous months
to the indoor measurements). Despite the existing limitations between both studies
(different sampling period, outdoor data collected at ground level, distance between
both sampling sites) composition profiles of PAHs at non-smoking home were rather
similar to those of ambient air. In addition, Slezakova et al. (2013) has shown that
vehicular road emissions are the major source of ambient PAHSs in the respective area
of Oporto. In a view of these findings, traffic emissions thus can be a significant
source of indoor PAHSs. This is especially relevant for homes in close vicinity to major
roads where vehicular emissions can be the major contributor of indoor health—
relevant pollutants; the risks associated with the elevated concentrations in those

indoor environments could be significantly higher than those calculated in this work.

Conclusions
At the smoking home, the mean total concentrations of 18 PAHs was 17.1 and

16.6 ng m™ in PMy, and PM, respectively. The corresponding concentrations were
17
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2.3 times lower at non-smoking home, with means of 7.60 ng m™ in PM;, and 7.16 ng
m™ in PM,s. PAHs with 5 and 6 rings composed the majority of the particulate PAH
content (i.e. 73% and 78% of Zpans at the smoking and non-smoking home,
respectively). Target carcinogenic risks exceeded USEPA health—based guideline at
smoking home for 2 different age categories demonstrating that tobacco smoke
considerably increases the carcinogenic risks. The estimated values of lifetime lung
cancer risks largely exceeded (68-200 times) the health—based guideline levels at both
homes thus demonstrating that long—term exposure to PAHSs at the respective levels
would eventually cause risk of developing cancer. In the absence of smoking the high
achieved values of cancer risks suggests a significant contribution of PAHs from

outdoors.
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Fig 1 PMy, and PM;5 concentrations at two homes: means, minima and maxima

values, and 25" and 75" percentiles.
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Fig 2 Carcinogenic risks of PAHs in PMyy and PM,5s at two homes. The values

represents sum of target carcinogenic risks of eight individual PAHs (naphthalene

chrysene, benz[a]anthracene, benzo[b]fluoranthene, benzo[k]fluoranthene,

indeno[1,2,3—cd]pyrene, benzo[a]pyrene, and dibenz[a,h]anthracene); the horizontal

black line represents USEPA health—based guideline level (10°°).
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Fig 3 Compositional profiles of 18 PAH in PM;o and PM, 5 obtained at indoor none-
smoking home and in ambient air. The abundances of PAHs in ambient air were

retrieved from Slezakova et al. (2011).
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Table 1

Table 1

Mean concentrations of PAHs in PMyo and PM, 5 at smoking and non-smoking homes (ng m™)

PAHSs Smoking home Non-smoking home

PMyg (n=19) PM,s (n=19) PMq (n:19) PM; s (n:19)
Number of rings mean range mean range mean range mean range
2-rings 0.126 n.d.— 0.402 0.115 n.d.—0.373 n.d. n.d. n.d. n.d.
3-rings 1.81 0.506-4.76 1.77 0.441-4.63 0.467 0.168-0.788 0.478 0.167-0.738
4-rings 2.66 1.57-4.84 2.64 1.53-4.40 1.18 0.355-2.64 1.12 0.365-2.24
5-rings 9.30 2.21-15.6 8.94 2.12-145 4.45 1.03-12.0 4.15 1.01-10.5
6-rings 3.21 0.570-5.4 3.13 0.515-5.20 1.50 0.361-3.98 1.41 0.327-3.49
YpAHs 17.1 5.07-27.8 16.6 5.05-26.5 7.60 1.91-194 7.16 1.87-17.0

n.d. — not detected
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Table 2

Table 2

TEF-adjusted mean concentrations of PAHs in PM;q and PM, at two homes (pg m™)

Smoking home

Non-smoking home

TEF? PM3g PM,5 PMyo PM, 5
Naphthalene n.a - - - -
Fluorene n.a — — — —
Acenapthylene n.a - - - -
Acenapthene n.a - - - —
Phenanthrene 0.00064 0.365 0.336 0.251 0.253
Anthracene n.a — — — —
Fluoranthene n.a - - - -
Pyrene 0 — — — —
Benz[a]anthracene 0.014 5.26 4.83 4.09 3.84
Chrysene 0.026 22.7 23.9 6.92 6.23
Benzo[b]fluoranthene® 0.11 319 309 146 134
Benzo[k]fluoranthene 0.037 20.3 20.0 9.77 9.10
Benzo[a]pyrene 1 1400 1330 610 573
Dibenz[a,h]anthracene 0.89 3960 3800 2010 1880
Dibenzo[a,l]pyrene 100 23 200 21 800 6 890 6170
Benzo[ghi]perylene 0.012 19.9 19.2 9.84 9.23
Indeno[1,2,3-cd]pyrene 0.067 89.8 88.1 40.7 38.5
> pAHs — 29 000 27 400 9720 8 830

 TEF estimated by Muller, 1997 (Bostrom et al., 2002)
bQuantified as benzo[b+j]fluoranthene

n.a. — not available
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Table 3

Table 3

Estimated target carcinogenic risks of PAHs in PM3, and PM; 5 at two homes

Age group®  Target carcinogenic risk
Smoking home
PMyo
Nap B[a]A Chr B[b]F B[K]F B[a]P D[a,h]A InP
Children 471x10" 453x 10" 1.05x 107 350x10° 6.61x 10" 1.69 x 10°® 585x10° 1.62x 107
1-3 years (na—150x10"%) (2.85-7.32x10") (0.47-254x10"%)  (0.92-559x10°)  (1.50-12.4x10"%) (057-2.67x10°%) (2.32-10.5x10% (0.38-2.67x107)
Adults 1.18 x 10°° 1.13x 108 263x10° 8.75x10° 1.65x 108 422 x 107 1.46 x 10°° 404x10°®
2554 years (na—3.74x10°) (0.64-1.83x10°% (1.18-6.36x10°%  (2.29-14.0x10®%  (0.38-3.09x10°%  (1.43-6.68x10") (0.58-2.61x10°) (0.95-6.68x10°)
Seniors 311x10° 299 x 10 6.93x10° 231x107 436 x10° 1.11x10°° 3.86x10° 1.07 x 107
>65 years (na-9.88x10° (1.70-4.83x10°) (3.12-16.8x10°)  (0.61-3.69x10")  (0.99-8.17x10°%  (0.38-1.76x10°) (1.53-6.90x10°) (0.25-1.76x10")
PM;s
Nap B[a]A Chr B[b]F B[K]F B[a]P D[a,h]A InP
Children 428x 10" 416x 107 1.11x107° 338x10° 6.50 x 107 1.61x10° 561x10° 159 x 10°°
1-3years  (na-1.39x10"") (258-6.94x10"%) (047-1.91x10"%)  (0.92-5.16x10°)  (1.50-10.9x10"%) (0.57-2.62x10°) (2.32-9.86x10°) (0.38-2.53x10°)
Adults 1.07x10° 1.04x 108 277x10° 8.45x10°® 1.63x10°® 402 %107 1.40 x 10° 396x10°®
2554 years (na-3.48x10°) (0.64-1.73x10°%) (1.18-4.77x10°)  (2.29-12.9x10°)  (0.38-2.73x10°)  (1.43-656x10") (0.58-2.47x10°) (0.95-6.32x10°®)
Seniors 2.83x 107 275%x10° 7.30x 107 223x 10" 429x10° 1.06 x 10° 370x10° 1.05x 10"
>65 years (na-9.18x10° (1.70-458x10°) (3.12-12.6x10°)  (0.61-3.40x10")  (0.99-7.21x10°%  (0.38-1.73x10°)  (1.53-65x10°) (0.25-1.67x107)
Non-smoking home
PMy
Nap B[a]A Chr B[b]F B[K]F B[a]P D[a,h]A InP
Children - 352x10%° 321 x 101 1.60 x 107 318x10%° 7.35x10° 296x10° 732x107°
1-3 years (0.81-8.29x10™%) (0.88-9.23x10™)  (0.384.22x10°)  (0.71-8.73x10™)  (1.72-20.7x10°%)  (0.67-7.92x10°%) (1.51-21.0x10"°)
Adults - 8.80 x 10° 8.02x 10 400x10°® 7.96 x 10° 1.84 x 107 7.41x 107 1.83x10°
25-54 years (2.03-2.07x10°%) (2.21-2.31x10"%)  (0.95-10.6x10°)  (1.76-21.8x10°  (0.43-5.18x107) (1.68-19.8x107) (0.38-5.25x10°)
Seniors - 232x10°8 212x10° 1.06 x 10 210x10°® 485x 107 1.96x10° 483x10°

31



>65 years (054-547x10°% (058-6.09x10°)  (0.25-2.89x10")  (047-5.76x10°) (1.13-13.7x10") (0.44-5.23x10°) (1.01-13.9x10°®)

PM,5
Nap B[a]A Chr B[b]F B[K]F B[a]P Dl[a,h]A InP
Children — 331x10" 2.89x 10 147 x107 296 x 10" 6.91x10° 2.78x10° 6.92x 10"
1-3 years (0.92-7.14x10") (1.09-7.17x10")  (0.32-3.67x10°)  (0.71-7.66x107"%) (1.57-18.2x10°) (0.72-6.98x10°°) (1.43-18.6x10 ™)
Adults - 8.27x10° 7.23x10™% 368x10° 741x10° 1.73%x 10”7 6.94 x 107 1.73x 10
25-54 years (229-17.8x10°%) (2.71-17.9x10%%)  (0.81-9.18x10°)  (1.78-19.2x10°) (0.39-4.56x10") (1.81-17.5x10") (0.36-4.66x10°)
Seniors - 2.18x10° 1.91x 107 9.72x10° 1.96 x10° 456x 10" 1.83x10° 457x10°
>65 years (060-4.71x10%)  (0.72-4.73x10°)  (214-242x10%  (047-5.06x10% (1.04-12.0x10") (0.48-4.61x10°) (0.95-12.3x10°®)

% According to the USEPA document EPA/600/R-06/096F (USEPA, 2008)

n.a. — not available
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