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Abstract

Liver cancer is the second most dangerous cancer in the world. Most liver segmentations of
Computer Tomography scans are still manually done by medical experts, contributing for longer
periods of analysis. Automatic segmentation of the liver and hepatic lesions is an important step
towards computer-aided decision support systems. This type of application can produce earlier
and more systematic clinical diagnosis, helping medical experts in their decision making, and thus
resulting in patients getting earlier prognostics.

As an emerging Computer Vision field, Deep Learning helped define Medical Image Seg-
mentation and Classification, outperforming most other algorithms in many medical challenges,
especially with the rise of Convolutional Neural Networks (CNNs). Also, preprocessing a dataset
before training is not a trivial step, albeit a very important one when accounting for final results.

In this dissertation, a detailed review on Neural Networks applied to Computer Vision is pro-
vided. Also, Volumetric Convolutional Neural Networks are introduced, and proper dataset pre-
processing is discussed. Finally, a 3D CNN architecture, V-Net, is implemented and its results
analyzed.
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Chapter 1

Introduction

In this chapter, the thesis "3D Convolutional Neural Network for Liver Tumor Segmentation" is

introduced.

In section 1.1, liver tumor segmentation is contextualized. In section 1.2, the methodology to

tackle this problem is presented as this thesis structure. In section 1.3, the fundamental questions

for this thesis are raised.

1.1 Problem Specification

Liver cancer has the second largest mortality rate of any cancer, as is the sixth most common

worldwide [10, 32]. Despite this fact, manual measurement is still the most frequent practice in

determining tumor shape and size in clinical practice. Thus, accurate automatic liver and lesion

segmentation can assist doctors evaluate and plan treatment, while removing a time-consuming

process that may increase the patients quality of life.

Computer Vision is a field that has tremendous value in tumor detection. However, tradi-

tional methods in liver segmentation have not achieved the same accuracy when compared to

other modalities. This is due to liver not being homogeneous in size, shape, and position from

subject to subject. Also, in a Computer Tomography scan, contrast between liver and neighboring

organs is very poor, and radiologists usually use an injection protocol to enhance tumor visibility,

as seen in figure 1.1. This may increase the overall noise in the liver region, and make analysis

more complex [24]. Still, computer based approaches make prediction methods fast, repeatable

and deterministic. This removes human subjectivity, which helps doctors and researchers compare

and discuss results.

Liver Tumor Segmentation is a difficult problem of Computer Tomography (CT) [20]. Seg-

mentation is the process of identifying clusters of information in an image and successfully sep-

arate it from the remaining data. There are several algorithms to achieve it, and until recent

years, most focused on either using data augmentation to filter noise and enhance image fea-

tures [38], or analyzing an image part by part using windowing methods [21], and ultimately

merging both [2, 29].
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2 Introduction

Figure 1.1: CT Volume.

Figure 1.2: Left, Middle: Abdominal liver scan example. Right: Liver/lesion segmentation.
(adapted from [31])

When a successful segmentation is made, the segmented area is called a Region of Interest

(ROI), as seen in figure 1.2, which for the purpose of this work will be both the liver, in red, and

its respective tumor in blue. The resulting segmentations combined output a 3D model of the liver

and its affected tissue, which are undeniably helpful for medical professionals.

1.2 Methodology

In recent years, interest in image segmentation and classification algorithms has risen, as well as

the technology to compute them. Nonetheless, another approach to this problem has had a revo-

lutionary impact in the development of Computer Vision solutions: Deep Learning [17]. Either in

commercial applications (music preference prediction [34], self driving vehicles [14]), or research
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(real time humane pose estimation [5], natural language processing [7]), it has proven itself as a

versatile and efficient technology in any context.

In the medical field, deep learning has already achieved surprising results [19, 33]. However,

not much has been done for liver tumor segmentation. Current state of the art is attributed to 2D

Convolution Neural Networks (CNNs). These are known to ignore volumetric information along

the third dimension, as they process Computer Tomographies (CTs) scan slice by slice, essentially

meshing individual 2D segmentations together. This project aims to implement a state of the

art V-Net based architecture [23], which was extensively used in the Multimodal Brain Tumor

Segmentation Challenge 2017 (BRaTS) [22] with good results, and adapt it for liver lesions.

The development process of this dissertation is as follows:

1. Overview on Computer Vision (see chapter 2)

In this chapter, all the necessary research for this work is presented, including Computer

Vision, Medical Image Segmentation, and Convolutional Neural Networks, with a detailed

NN design analysis. A review of the State of the Art is also provided.

2. 3D Implementation of a UNET Based CNN (see chapter 3)

In this chapter, the CNN foundations will be built upon. It is explained how to extrapolate

conventional 2D implementation into 3D. Also present is a description the dataset used, and

its preprocessing methods, with correspondent results.

1.3 Research Questions and Thesis

• How can data be preprocessed to improve final results?

• What design choices should be considered when implementing a 3D CNN?

• What is the compromise between 2D and 3D architectures?

• Can 3D CNNs improve performance in Liver Segmentation?

Thesis: 3D Convolutional neural networks outperform 2D counterparts.
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Chapter 2

Overview on Computer Vision

In section 2.1 of this chapter, an introduction on Neural Networks is provided, along with how

they influenced Image Segmentation in the past decade. In section 2.2, further explanation on

how Convolutional Neural Networks became a good alternative to older Vision algorithms can be

seen. A description of the Tools being used in this work will also be represented (section 2.3),

concluding on a Review of this chapter (section 2.4).

2.1 Neural Network Fundamentals

2.1.1 Deep Learning

For decades, Computer Vision’s state of the art was mostly attributed to scripted algorithms [35,

39]. Most focused on human intervention, such as Beasley’s work in Semiautonomous Seeded

Edge Detection [3], that required a specialist to point out areas of interest, which the algorithm then

fine-tunes. Others tried to go one step beyond, removing human intervention altogether, using, for

example, genetic algorithms which are based on biological evolutionary patterns [26]. Even

though they achieved good results, these were not suitable for generalization problems, as these

types of algorithms were computationally heavy, and usually were too fine-tuned for a specific

problem. The answer lied within Deep Learning.

Many attempts were made in the past to use Deep Learning technics as a fully autonomous

answer for Image Classification. The first used Multilayer Perceptrons, also known as the original

form of Neural Networks (NN), were first introduced in 1956 [15]. This type of network, inspired

in neural communication, has individual "neurons", arranged in layers, and connected to every

neuron in the previous layer (figure 2.1). Every neuron has a weight associated to every connection

wi, and a bias b. After receiving the outputs, x, from the previous layer, it computes a new value

according equation 2.1, where K is an activation function designed to induce non-linearity in the

system, further improving the expected results results for complex problems.

f (x) = K

(
∑

i
wixi +b

)
(2.1)

5



6 Overview on Computer Vision

Figure 2.1: General Regression Neural Network. (adapted from [30])

The final step needed was to find a way for this NN to improve its results autonomously, instead

of fine-tuning the weights manually, a time consuming approach which was only feasible for very

small networks. This development became a reality with Werbos’ model for regression [36]. By

computing the error in the output of the network, it was possible to adjust each individual weight

layer by layer in order to minimize a loss function. Thus, these algorithms could "learn" from

previous events and predict future ones [30].

2.1.2 Implementation problems

. Despite Deep Learning’s immense potential, two major factors may be responsible for its late

adoption:

• Lack of proper Datasets - Proper datasets are one of the most important factors in deep

learning techniques [17]. For image segmentation, pictures have to be properly sized, con-

tain enough variation among them so that the model being trained does not overfit [12],

and be in sizable numbers to be a representative sample. Also, for many years storage was

limited, and the Internet was not prepared for large data transfers, which made it difficult

for researchers to share datasets. Digital cameras were not common either, neither did they

produce pictures with sufficient quality for proper feature extraction.

• Slow Hardware Development - Because general regression is an intensive process, full

image analysis using Deep Learning remained difficult to implement until recently. Lack of



2.2 Convolutional Neural Networks 7

significant GPU and CPU improvements favored traditional methods of image processing,

which demanded far less computational power. Also, low dedicated memory further in-

creased the amount of data processed at each time, which resulted in longer training times.

These were also useful for their parallel processing capabilities, which further enhanced the seg-

mentation processing time, after being properly trained through hundreds of iterations.

2.2 Convolutional Neural Networks

As discussed above, large datasets were hard to come by. In 2009, ImageNet [8] was presented as

a solution to this problem. This project aimed to help the scientific community have a centralized

dataset which could be a benchmark for new Computer Vision applications. It contained 3.2

million full resolution images, subdivided in multiple trees, and could be used for a variety of

problems, including image classification, object detection and group clustering. With this new

dataset, an annual classification challenge accompanied it. Many different approaches were taken,

until, in 2012, a Convolutional Neural Network (CNN) called AlexNet [16] won by a significant

lead.

Figure 2.2: ImageNet dataset sample of mammal and vehicle subtrees. (adapted from [8])

In traditional Computer Vision, most of the work consists on hand-engineering filters which,

when applied to an image, can extract its features [11]. The more features can be extracted, the

more accurate a prediction is. A major setback in this approach is that each feature must be

manually engineered in the design process, which makes scaling these types of algorithms hard.

Convolutional Neural Networks work in the opposite way. Instead, one chooses how many features

the CNN will extract, and during its training, it will automatically extract them [18]. These can be

extremely abstract to the human eye, as seen in figure 2.3, but very accurate in these circumstances,

which is one of the main advantages of CNN architectures.
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Figure 2.3: Feature visualization from an ImageNet trained CNN. (adapted from [40])

2.3 Implementation Tools

For this project, a computer equipped with two Nvidia GeForce GTX 1080 GPUs, and one Nvidia

Titan X was used. As for software, all code was written in Python, using the following tools:

• CUDA - CUDA is a parallel computing platform, were developers can increase computing

applications by having full control of a Nvidia GPU’s power [25]. While the sequential

part of the workload runs on a CPU, multi-threaded operations are instead computed on

thousands of GPU cores in parallel, optimizing workflow.

• Tensorflow - TensorFlow is an open source software library for high performance numerical

computation, which offers strong support not only for deep learning, but also many other

scientific domains, with its flexible numerical computation core [1].

• Keras - Keras is a high-level Neural Networks API, written in Python, and capable of run-

ning on top of Tensorflow. It features an user friendly, modular, high level approach to

writing code for NNs, thus being the reason it was chosen for this project. [6]

• Nibabel - Nibabel is a Python package which can read Nifti files and convert them to data

arrays. [4].

2.4 Literature Review on Convolutional Neural Networks

2.4.1 Design Considerations in a CNN

Nowadays, most NNs core code is already written and optimized in libraries like Theano, Cof-

fee, or Tensorflow. Improvements in performance are, in essence, dependent on two factors: the

architecture’s design, and the hardware it is implemented in. Design is usually restricted by it’s

performance cost, and restricted by lack of memory, or computing power. A description of such

compromises will be presented in this subsection.
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2.4.1.1 Architectural Configuration

There is a certain debate of which is better regarding performance: a wider, or a deeper network?

• Depth - Zagoruyko and Komodakis [37] suggest a wide enough "shallow" network can

learn any function given enough data, while performing faster then traditional methods.

They also claim that deepening a NN by increasing the number of layers has diminishing

returns, whereas performance gains with wide NNs are more linear. However, these types

of networks are better at memorizing, and thus, generalization is a problem.

• Width - He et al. [13] have a different understanding on this matter. Their findings point out

that although diminishing returns are expected when going deeper and increasing the num-

ber of layers, by reducing the width of each layer and using a residual model, these models

avoid degradation issues, and can outperform their peers. Also, Elden and Shamir [9] have

mathematically proven that going deeper has less complexity while exponentially more per-

formance gains for NNs.

Ultimately, even though there are certain configurations that outperform their counterparts, it

comes down to the problem in hand. Different NN’s have different applications to extract their

full potential, and there is still much progress made through empirical evidence.
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Chapter 3

3D Implementation of a UNET Based
CNN

In section 3.1, this project’s architecture is presented. Then, in section 3.2 the is introduced, and

an explanation of how it was preprocessed is provided. Finally, in section 3.3, the results are

discussed.

3.1 Network Architecture

This project aims to implement a 3D CNN for liver tumor segmentation, and compare its results

with a 2D approach. As such, U-Net is used as a 2D CNN benchmark (see subsection 3.1.1), and

a V-Net implementation is used for a volumetric approach (see subsection 3.1.2).

3.1.1 U-Net

Image segmentation using traditional sliding-window CNNs require huge amounts of data to

achieve proper results. In medical research, datasets are hard to obtain, and they are not always

uniform. Ronneberger et al. designed a CNN to adress this very issue: U-Net [27].

U-Net is the most popular CNN architecture for medical image analysis, optimized for data

augmentation in order to predict segmentation masks without requiring a large amount of training

data. This is especially useful, as medical data is hard to obtain. Many medical applications have

used U-Net based architectures to perform modality segmentation, achieving very good results.

As seen in figure 3.1, the U-Net architecture features a contracting path of 2D convolutions

to extract context, and a symmetric expanding path which performs deconvolution to retrieve

the abstract information and rescale it to the input’s size. Its output shape matches the input’s,

returning a mask that segments the original image. In the case of medical images, each slice is

used as a 2D input one by one until the entire volume has been cycled through.

11



12 3D Implementation of a UNET Based CNN

Figure 3.1: U-Net: Each blue box corresponds to a multi-channel feature map. The number of
channels is denoted on top of the box. The x-y-size is provided at the lower left edge of the box.
(adapted from [27])

3.1.2 V-Net

U-Net based CNNs have already proven to be a good solution for liver tumor segmentation. De-

spite this, they have a fundamental design flaw: the lack of volumetric context, as they ignore

differences along the z axis. This essentially means that each slice is segmented as an individual

image, which could make it harder to segment smaller patches, like a tumor, and reduce perfor-

mance. Özgün et al. address this issue with V-Net [23]. V-Net is an architecture based on U-Net,

where instead of using an image as input, it expects a volumetric shape.

3.1.3 Implementation

This thesis used a V-Net based CNN with the following parameters: Input shapes should be in

powers of 2, which are better handled by the algebra optimization libraries. A 128× 128× 128

input shape was the biggest our computer could handle without using all available memory. 5

layers were used for depth. 16 base filters for feature extraction were used in the first layer, which

are doubled for each layer of convolution they pass through. An initial learning rate = 0.0005

was used. A batch size = 1 was the only option, as when compared to U-Net, we are using

128 different slices with resized resolution 128×128 as input, instead of one with full resolution

512× 512 previously used for LiTS (almost tenfold as many pixels). Adam optimizer and Dice

loss were also present, and the network trained for a maximum of 500 epochs.
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Figure 3.2: V-Net (adapted from [23])

3.2 Dataset

3.2.1 LiTS Dataset

The ISBI 2017 Liver Tumor Segmentation Challenge Challenge1 (LiTS) dataset was used for

this project. It comprises 200 contrast-enhanced abdomen CT scans in the Nifti format, from 6

medical centers, with 130 meant for training, and 70 for further testing. Each scan, represented

by a volume, has a correspondent segmentation file as ground truth, containing a rough liver

segmentation as Label 1, and a correspondent expert’s lesion segmentation as Label 2, as seen in

figure 3.3.

Every CT scan is also three-dimensional, each with a fixed 512x512 pixel resolution in the

(x, y) plane. However, the z plane, associated to the number of layers, varies from scan to scan,

some having as low as 75 layers, while others can surpass 800. This and other problems must be

accounted before using this dataset as input to the CNN architecture.

3.2.2 Preprocessing

Although CNNs require significantly less image preprocessing than traditional methods, this is

still an essential task that can improve training results. Bellow is an ordered description of each

method used during this phase.

1https://competitions.codalab.org/competitions/17094
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Figure 3.3: Left: CT Volume. Right: Liver segmentation with two lesions (right)

Figure 3.4: Slices of an original CT along the z axis.

3.2.2.1 Cropping

When a dataset is rescaled it is usually compressed, due to memory limitations while training.

To prevent significant loss of liver and tumor information, slices which did not contain any seg-

mentation were cropped. This ensures that segmentation data after rescaling will be as dense as

possible.
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3.2.2.2 Noise Filtering

These volumes are comprised of the raw data of each medical center, and as such, may contain

noise. To filter such undesirable information, two technics are used:

• CT Windowing

Windowing is an important procedure in a CT scan. Pixel intensity, mesured in Hounsfield

Units (HU), is a function of the radiodensity, µ , of a substance, as seen in equation 3.1.

HU = 1000× µ −µwater

µwater −µair
(3.1)

Raw data from the original CT scan has a pixel intensity range around the thousands of

HU. However, the value of the "Liver Window" [-62, 238], as given by Sahi et al. [28], is

significantly lower. As such, the CT scans range was set based on this new range, less 100

HU to account for all the liver lesions which have lower values, with a final value of [-160,

240].

Figure 3.5: Left: Original CT. Right: "Windowed CT".

In figure 3.5, we can already see significant results. The image became more defined, and

the liver and its lesions got highlighted and are more easily identified, as it enhances contrast

in soft tissue.

• Normalization

When training a NN, weights are multiplied and biases are added to the initial inputs, which

are then used for backpropagation. In order to prevent large fluctuations in gradient calcu-

lation during this phase, it is advisable to normalize data in preprocessing. To do so, the

dataset’s mean was subtracted, and its standard deviation was divided. In a statistical sense,

normalization removes variation that is believed to be non-causal in prediction of the output.

Thus, this variation cannot be used as a predictor by the NN.
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3.2.2.3 Rescaling

Each CT scan has a different number of slices by default. A CNN needs a fixed input shape, and

so there is a need for rescaling the data. The volumes were resized to (128, 128, 128) shape. Two

methods of interpolation were used for this step. Also, the data was rotated 90o in the x-y plane to

facilitate viewing.

• Volumes - Bilinear interpolation was used, as it is fast to compute and outputs good results

(figure 3.6)

Figure 3.6: Left: Three raw slices. Right: Interpolated result.

• Segmentations - Nearest neighbor interpolation is the only option, as no other preserves

the original images pixel values. This ensures that no segmentation slice has non integer

values, in this case, 0 for background, 1 for liver, and 2 for lesion (figure 3.7).

Figure 3.7: Left: Three raw segmentation slices. Right: Interpolated result.

3.3 Results

Tridimensional processing of a CT scan is very computationally expensive. Because the largest we

could rescale the dataset without running out of memory was 128×128×128 pixels, a quarter of

the original resolution, many details were lost. This unfortunatelly means that Volumentric CNNs
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still can not compete with a normal 2D approach, assuming they use full resolution volumes.

Nonetheless when comparing results with 2D CNNs using the same downscaled dataset, 3D CNNs

outperform them. This is evidence of the importance of the z axis when segmenting CT scans.

3.4 Summary

Plain and Tridimensional CNN architectures are compared, and it can be inferred that while cur-

rently 2D methods have the best results, while being faster and more efficient, 3D CNNs can be

even more powerful once the hardware necessary to run them at higher resolutions is available.
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Chapter 4

Conclusion

In this chapter, this project’s contributions are in section 4.1, and future work in section 4.2.

4.1 Contributions

In this dissertation, a new approach to the hepatic segmentation was discussed. Someone un-

familiar with the problem in hand, medical image segmentation, can grasp its roots, as well as

understand how research evolved around it and what may be done in the future using 3D CNNs.

This includes:

• Understand the Medical Image Segmentation problem

• Learning Neural Network fundamentals, and what and how a CNN is designed

• Learning important preprocessing techniques regarding medical datasets

Also, for researchers of this field, Volumetric CNNs are introduced and empirical evidence

in their favor is shown, hopefully helping this unorthodox method of Deep Learning get more

deserved attention.

4.2 Future Work

In the future, 3D Convolutional Neural Networks may gain an advantage once hardware gets more

powerful. For now, optimization is key to better run this types of algorithms. Once reliable, 3D

CNN’s can help many fields, even outside the medical realm.

19
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