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Abstract 

 

Hybrid semi-parametric models consist of model structures that combine 

parametric and nonparametric submodels based on different knowledge 

sources. The development of a hybrid semi-parametric model can offer several 

advantages over traditional mechanistic or data-driven modeling, as reviewed 

in this paper. These advantages, such as broader knowledge base, transparency 

of the modeling approach and cost-effective model development, have been 

widely recognized, not only in academia but also in the industry. 

In this paper, the most common hybrid semi-parametric modeling and 

parameter identification techniques are revisited. Applications in the areas of 

(bio)chemical engineering for process monitoring, control, optimization, scale-

up and model-reduction are reviewed. It is outlined that the application    of 

hybrid semi-parametric techniques does not automatically lead into better 

results but that rational knowledge integration has potential to significantly 

improve model-based process operation and design. 

 

 

1. Introduction 

 

In process systems engineering process modeling takes a central role (Cameron 

& Hangos, 2001). In its essence, process modeling is an exercise of translation of 

knowledge about the process into an abstract mathematical representation 

(Cameron & Hangos, 2001). The nature of knowledge is diverse and thus 

modeling methods can naturally be segmented according to the nature of the 

knowledge. First-Principles, mechanistic or phenomenological models represent 

a broad class of more transparent (white box) models. In relation thereto, data-

driven modeling represents a less transparent (black-box) modeling framework 
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based exclusively on process data. 

A closely related mathematical classification can be done with respect to the 

form of model parameterization. Parametric models are determined a priori on 

the basis of knowledge about the process (Thompson & Kramer, 1994; Walter, 

Pronzato, & Norton, 1997). Their number of parameters is fixed and they might 

have a physical or empirical interpretation depending on the level of knowledge 

sophistication. White-box models naturally fall in the category of parametric 

models. On the contrary, nonparametric models are determined exclusively 

from data (Haerdle, Mueller, Sperlich, & Werwatz, 2004; Thompson & Kramer, 

1994). The term nonparametric is not meant to imply that these models 

completely lack parameters but that the number and nature of the parameters are 

flexible and not fixed in advance by knowledge. In between these two extremes 

lies hybrid semi-parametric modeling, which is the focus of this review (Fig. 1). 

Hybrid semi-parametric models can thus be defined as model structures that 

combine parametric and nonparametric submodels (Thompson & Kramer, 

1994). Their application to process modeling has evolved from the field of neural 

networks, being first reported in 1992 by Psichogios and Ungar (1992), Kramer, 

Thompson, and Bhagat (1992), Johansen and Foss (1992a), and Su, Bhat, 

Minderman, and McAvoy (1992). The central idea was to a priori structure the 

neural network model through the use of first- principle knowledge. The result 

was that, when trained with the same amount of process data, the hybrid semi-

parametric model was capable to predict the process states better, was able to 

interpolate and extrapolate mostly more accurately and was easier to interpret 

than models based solely on neural networks. 

Several other modeling methods exist that combine different types of 

knowledge or/and submodels. The term grey-box modeling appeared in the 

1990-s in systems and control theory describing the incorporation of prior 

information (mainly structural information derived from first-principles, i.e. 

white-box models) into empirical (black-box) models (Bohlin & Graebe, 1995; 

Jorgensen & Hangos, 1995; Tulleken, 1993). According to Braake, van Can, and 

Verbruggen (1998) a grey-box model is based on the same unstructured nature 

as a black-box model. The term has however evolved to designate all types of 

models that combine white-box and black-box submodels. For instance, the 

grey-box models in Akkari, Chevallier, and Boillereaux (2005), Estrada-Flores, 

Merts, De Ketelaere, and Lammertyn (2006), and Worden et al. (2007) combine 

first-principle based “white-box” models and empirical “black-box” models. In 

these cases both, white- and black-box models, are parametric models. According 

to the definition in this paper they are therefore not hybrid semi-parametric 

models. Hybrid semi-parametric models may however be viewed as a class of 

grey- box models in that the parametric and nonparametric submodels have 

different levels of transparency. 

Block oriented models are another class of separable models consisting of linear 



3 

dynamic and static nonlinear elements (Haber & Keviczky, 1999; Pearson & 

Pottmann, 2000), e.g. the Hammerstein model or the Wiener model (Haber & 

Keviczky, 1999). Block oriented models have some resemblance with hybrid semi-

parametric models in that the nonlinear element could e.g. be represented by a 

neural network with a standard linear time invariant form as the linear dynamic 

model, such as in Su and McAvoy (1993). However, block oriented models are not 

necessarily hybrid semi-parametric models if the blocks do not explicitly combine 

parametric and non- parametric  submodels. 

Multiscale models are also compositions of two or more sub models that 

describe phenomena at different scales (Ingram, Cameron, & Hangos, 2004). In 

the vast majority of cases multiscale models are mechanistic parametric models 

(Ingram et al., 2004). However, multiscale models could also be hybrid semi-

parametric models if parametric and nonparametric submodels target different 

scales (Teixeira, Alves, Alves, Carrondo, & Oliveira, 2007). 

It should be noted that the term “hybrid modeling” has been frequently used 

as an equivalent to “hybrid semi-parametric modeling” in the literature, which 

is however a rather ambiguous definition as it can embrace many other types of 

modeling methods such as grey-box, block-oriented or multiscale model- ing 

approaches referred to above. For coherence, we keep the term “hybrid semi-

parametric” throughout this review. 

 

1.1. Why hybrid semi-parametric modeling? What is the gain? 

 

Mechanistic modeling and data-driven modeling constitute two approaches 

which are different in their traits. While the development of a mechanistic model 

is many times cumber- some/laborious and requires detailed knowledge about the 

process, data-driven approaches are rather quickly applicable and require less 

knowledge. In comparison to mechanistic models, more data are necessary for 

the derivation of data-driven models and its descriptive quality is good only in 

the vicinity to those regions for which it was derived. Hybrid semi-parametric 

modeling can balance the advantages and disadvantages of strictly mechanistic 

and nonparametric modeling. In relation to those approaches it can award with 

several benefits, such as higher estimation/prediction accuracy, better calibration 

properties, enhanced extrapolation properties, more efficient model development or 

better interpretability (for details see – supplementary material – section 1). The 

main advantage is a higher benefit/cost ratio to solve complex problems, which is a 

key factor for process systems engineering. 

Problems in the application of hybrid semi-parametric models mostly concern 

the model implementation and especially the implementation of the algorithms 

for the parameter identification is error prone and laborious. However, once a 

general hybrid semi- parametric modeling tool is implemented, it can easily be 

reused. It should also be noted that the limitations of mechanistic or 
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nonparametric models may pertain if the hybrid semi-parametric model is not 

carefully developed or/and the experiments are not carefully designed. 

 

2. Hybrid semi-parametric modeling: the framework 

 

Hybrid semi-parametric models combine nonparametric and parametric 

models that are based on different types of knowledge. Questions about model 

configuration, integration of various knowledge types, representation of 

unknown parts and their identification, best model set-up and requirements on 

experimental data will be addressed in detail below. 

 

2.1. How to arrange the models? Hybrid semi-parametric model structures 

 

Two models can be arranged in three ways, see Fig. 2, where structure A is 

referred to as parallel and structures B and C are called serial, sequential, 

cascade or consecutive. These structures are theoretically addressed in Agarwal 

(1997) considering that the white box would represent mechanistic information, 

and the black box consists of a nonparametric model. However, in the serial case, 

the order of the black and the white model might not be inter- changeable. This 

is for instance the case when the white box in the serial structure B represents a 

material balance equation in which the kinetic rate term is an input variable that 

is always computed first by a nonparametric model (e.g. Psichogios & Ungar, 

1992). However, the information flow between two serial connected sub- models 

can be bidirectional. 

 

2.1.1. The  parallel structure 

The parallel structure A usually finds application if a process model (white box) 

is available, but its performance, due to whatever reasons (e.g. unmodeled 

effects, nonlinearities, dynamic behavior) is limited. The parallel arrangement of 

a nonparametric model can lead to significantly improved estimations. Of course 

the prediction power of the nonparametric model remains poor on input 

constellations that have not been trained. The parallel approach is especially 

interesting if certain effects in the system can be uncoupled (e.g. a static nonlinear 

and dynamic linear behavior as in block-oriented models) and thus each effect can 

be represented by a separate model (Abonyi, Chovan, Nagy, & Szeifert, 1999; 

Chen, Hontoir, Huang, Zhang, & Morris, 2004; Klimasauskas, 1998; Masri, 1994; 

Narendra & Parthasarathy, 1990; Potocnik & Grabec, 1999;  Su & McAvoy, 1993). 

There exist several possible manners to combine the outputs of the two models, 

as reviewed in more detail in Section 2.2.2. However, pure superposition is the 

most frequently applied, i.e. the summation of the outputs, in which case the 

nonparametric model predicts the residual between the white-box model and the 

experimental data (Su et al., 1992; Thompson & Kramer, 1994). 
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2.1.2. The  serial structure 

The most popular serial combination is structure B, Fig. 2. In this structure the 

white box usually represents a model derived from first-principles such as the 

conservation laws, namely material, momentum, impulse, population or energy 

balances derived for the process at hand. The black-box usually represents the 

under- lying kinetic or transport terms, because it is much more difficult to 

establish a generally valid model representation at an acceptable cost. 

This serial structure B is especially suitable when no precise knowledge about 

the underlying mechanisms is available, but sufficient process data exists to infer 

the unknown patterns. Also large data sets, rich in information about the process 

state but without direct physical interpretation, can be exploited by using this data 

as inputs to the nonparametric model, which might improve the estimations of 

the kinetics (Teixeira, Carinhas, et al., 2007; von Stosch, Oliveira, Peres, & Feyo de 

Azevedo, 2011a). 

The serial structure C can either be applied as an alternative to the parallel 

structure, i.e. the white-box model predictions are considered as inputs to the 

nonparametric model or to establish a link between the process state and certain 

process characterizing parameters (Aguiar & Filho, 2001; Hwang et al., 2009; 

Mahalec & Sanchez, 2012; Nascimento, Giudici, & Scherbakoff, 1999; Quiza, 

Lopez-Armas, & Davim, 2012; Schenker & Agarwal, 2000; Zhang, Pan, Quan, 

Chen, & Shi, 2006). In general, hybrid structure C models did not find much 

application in chemical or biochemical engineer- ing, but in mechanical 

engineering (Quiza et al., 2012). 

 

2.1.3. Parallel  or serial? 

Whether a serial or a parallel hybrid semi-parametric model structure is more 

suitable for a given application, depends strongly on the structure of the white-

box model, since it imposes an inductive bias on the final model (Psichogios & 

Ungar, 1992), i.e. the assumptions included in the white-box model constrain the 

possible solution space. When the structure of the white-box model is not 

accurate, the parallel arrangement can perform better than the serial one, since 

the parallel nonparametric model can partially compensate for the white-box 

model structural mismatch, as for instance in (Bhutani, Rangaiah, & Ray, 2006; 

Lee, Jeon, Park, & Chang, 2002). Due to the fact that extrapolation properties are 

mostly determined by the underlying model structure (Braake et al., 1998; Fiedler 

& Schuppert, 2008; Schuppert, 1999; van Can et al., 1998, 1999; van Can, Hellinga, 

Luyben, Heijnen, & Te Braake, 1996; van Can, te Braake, Hellinga, & Luyben, 

1997), the serial structure in such a case (structural mismatch) cannot be expected 

to perform well, i.e. a suitbale nonparametric model will probably perform 

better, e.g. Bhutani et al. (2006), and Lee et al. (2002). When the white-box model 

structure is accurate, then the prediction quality of the serial model can be 

expected to be considerably better than that of the parallel model, see e.g. Conlin, 
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Peel, and Montague (1997) and also the extrapolation properties of the serial 

model will be significantly better, see e.g. van Can et al. (1996). In Corazza, 

Calsavara, Moraes, Zanin, and Neitzel (2005), the fact that the serial model will 

perform best when the provided structure is close to the “true” underlying 

structure is used to infer mechanistic knowledge. 

 

2.1.4. One-step or multi-step ahead prediction 

The structure of dynamic hybrid semi-parametric models can either enable one-

step ahead or multi-step ahead prediction, Fig. 3, regardless whether the 

structure is serial or parallel. When measured quantities are used as inputs, then 

the structure is a one-step ahead predictor, while in case that the only inputs are 

the model outputs the structure is a multi-step ahead predictor. It depends on 

the nature of the problem and the availability of measurements which structure 

is to prefer or can at all be applied. In some cases both one-step and multi-step 

structures are feasible. In van Can et al. (1998) the hybrid semi-parametric 

models that are identified as one-step ahead predictors are applied as multi-step 

ahead predictors, as a rigorous model test. The different model properties that are 

associated with the structure being a one-step or multi-step ahead predictor are 

analyzed for a serial hybrid semi-parametric model in von Stosch et al. (2011a). 

They observed that those models that feedback the predictions provide, in 

general, enhanced predictions when compared to strict feed-forward models. 

 

2.2. What kind and in what way can information be integrated in hybrid semi-

parametric models? 

 

While the overall hybrid structure is usually assessed to categorize the hybrid 

approach into parallel or serial, the substructures can be versatile according to the 

nature of the incorporated knowledge. Additional knowledge can reduce and 

structure the space spanned by variables and the parameters of the 

nonparametric model (Fiedler & Schuppert, 2008; Thompson & Kramer, 1994). As 

a result, enhanced extrapolation properties, improved predictions and better 

calibration properties (i.e. less data are required for the calibration, the parameter 

identification converges faster and less variations in the optimal parameters) can 

be obtained for the hybrid semi-parametric model. 

 

2.2.1. Mechanistic knowledge incorporation 

Mechanistic knowledge inherits a high degree of knowledge abstraction. The 

domain in which this knowledge describes the system accurately is relatively large.  

Incorporation of mechanistic knowledge into hybrid semi-parametric models was 

observed to have the potential to improve model performance considerably (Al-

Yemni & Yang, 2005; Vande Wouwer, Renotte, & Bogaerts, 2004; von Stosch et al., 

2011a). A differentiation might be drawn between structuring knowledge, in the 

sense that the interplay between different components is decoupled, and forming 
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knowledge which describes the form of an interaction. However, such a 

differentiation is vague, since the effect that the incorporation of the knowledge 

has, might be indistinguishable. The following short example provides an intuitive 

understanding of this differentiation.  

In a biochemical fed-batch process, the concentration of biomass X usually 

increases along time while substrate S is taken up. For the modeling of the 

biomass growth, rBiomass, or of the substrate consumption, rSubstrate, biomass 

is taken to be a catalyst wherefore the rates are formulated as a product of the 

biomass concentration X with the specific growth rate µ or with the specific 

substrate uptake rate vs, i.e. rBiomass = X µ or rSubstrate=X vs, respectively. This 

type of integrated knowledge, which describes the interaction of two varying 

variables, is hereby classified as forming knowledge. The specific rates µ and vs 

can, in addition, be assumed to be coupled by the biomass yield on substrate Ysx, 

i.e. µ= Ysx vs. This type of knowledge, which describes the relationship of two 

variables, is hereby classified as structural knowledge. 

 

2.2.1.1. Forming knowledge. By the incorporation of forming knowledge into a 

hybrid semi-parametric model, the extrapolation properties can be shaped and 

the function that the nonparametric model has to learn might be simplified. In 

the example above, the incorporation of the assumption that biomass is a 

catalyst (e.g. Oliveira, 2004; Psichogios & Ungar, 1992; Schubert, Simutis, Dors, 

Havlik, & Luebbert, 1994a; Vande Wouwer et al., 2004) facilitates the learning of 

the rate functions µ or vs in relation to rBiomass or rSubstrate. Further, the 

impact of X on the rates is explicitly captured, which allows to predict the rates 

for X values beyond those which the model is trained on, i.e. extrapolation. 

Similarly, Reuter, Van Deventer, and Van Der Walt (1993), who proposed a 

general reaction schema for batch and continuous mineral and metallurgical 

processes, observed that the proposed schema could represent the reactor 

performance in various situations. More forming knowledge can also be 

incorporated using “standard” formulations of the kinetic rates, representing 

the contained kinetic parameters by nonparametric model expressions (Al-

Yemni, 2003; Bellos, Kallinikos, Gounaris, & Papayannakos, 2005; Kasprow, 2000; 

Mazutti et al., 2010). In addition, forming knowledge can also lead to Bounded 

Input Bounded Output (BIBO) stability properties of the model (Karama, 

Bernard, & Gouz, 2010; Oliveira, 2004), e.g. a reaction can only occur when all 

reactants are present. 

 

2.2.1.2. Structural knowledge. The incorporation of structural knowledge into a 

hybrid semi-parametric model can facilitate the identification of the parameters 

and it might reduce the number of rate expression which are modeled by 

nonparametric techniques. In the given example the number of rates could be 

reduced from two (µ and vs) to one (either µ or vs) by the incorporation of the 
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yield coefficient Ysx. In addition, the identification of the remaining rate is 

facilitated, since (i) less parameters have to be identified while the number of 

data points stays constant; and (ii) the redundancy of the nonparametric model 

structure, which generally poses a problem for identification (Bishop, 1995), is 

reduced. Further, as for instance demonstrated in Mogk, Mrziglod, and 

Schuppert (2002), the incorporation of structural information can improve the 

prediction and modeling accuracy. Stoichiometry or yield coefficients (Brendel & 

Marquardt, 2008; Chen, Bernard, Bastin, & Angelov, 2000; Georgieva & de 

Azevedo, 2009; Vande Wouwer et al., 2004) present structural information. For 

the identification or adaption of the stoichiometric coefficients a state 

transformation technique (Georgieva & de Azevedo, 2009; Vande Wouwer et 

al., 2004) or a target factor analysis (Brendel & Marquardt, 2008) can be applied. 

In contrast, the problem for the integration of metabolic networks into the 

hybrid semi-parametric model, is not the stoichiometry but the large number of 

under-determined reactions fluxes. Teixeira, Alves, et al. (2007) computed 

Elementary Flux Modes (EFM) for a simple metabolic network and integrated 

the gained structural information about the most important EFMs along with the 

stoichiometry into a hybrid semi-parametric model. Fiedler and Schuppert (2008) 

addressed the integration of knowledge into a tree-structured scalar hybrid semi-

parametric model, in which several parametric and nonparametric models can 

be integrated (Identifiability is also addressed). It is theoretically assessed that 

such a structure can avoid the curse of dimensionality of strictly nonparametric 

structures and that it can inherit better extrapolation capabilities. 

 

2.2.2. Combination of incorporated information 

Two general ways to fuse the model outputs are superposition, Fig. 4a, (as in 

most parallel structures) and multiplication, Fig. 4b, (as proposed in Oliveira, 

2004). If however the same quantity is predicted by two different techniques, 

Fig. 4c, then other fusion approaches must be considered. 

Weighting methods can be used, as e.g. for parallel structures (Fellner, 

Delgado, & Becker, 2003; Johansen & Foss, 1992a, 1992b; Klimasauskas, 1998; Su 

& McAvoy, 1993). Dors, Simutis, and Luebbert (1995, 1996) applied a weighting 

function in a serial hybrid semi-parametric model in order to coordinate the 

predictions of the kinetic rates by heuristic rules (the Monod model) and the ones 

by a nonparametric model. The kinetic rate predictions and the nonparametric 

predictions were weighted by a clustering approach (for details see also 

Galvanauskas, Simutis, & Luebbert, 2004), where more weight is given to the 

nonparametric model in regions where process data are available, while 

restricting it when extrapolating. This weighting method was also applied by 

Patnaik (2010), who however determined the weighting iteratively. As an 

extension to this the Mixture of Experts framework proposed by Peres, Oliveira, 

and Feyo de Azevedo (2001) can be understood. This framework consists of several 
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parallel submodels, whose contribution to the final prediction, is selected by a 

gating function. Note that the construct of the Mixture of Experts is similar to the 

structure of Fuzzy models, in which the gating function has its analogy in the 

rules (attendance part) and the submodel in the Fuzzy con- sequent part. 

However, the identification of the parameters in the mixture of experts approach 

is considerably more difficult than that of a Fuzzy model since the partitions (at 

which certain submodels are active) and the rules have to be learned from the 

data and are not given by the user, see e.g. Peres et al. (2001). Another option for 

weighting different predictions of the same quantity, Fig. 4c, is to use a 

nonparametric model, where all predictions are inputs to the nonparametric 

model and only the final prediction is the output (Bollas et al., 2003; Cao, Wang, 

Fujii, & Tobler, 2004). The options shown in Figs. 4d or e, which are somewhat 

similar to the parallel schema presented in Fellner et al. (2003) or in Su and 

McAvoy (1993), respectively, have so far not been applied for combining the 

submodels in serial hybrid semi-parametric models. However, the kinetic rate 

predictions of the nonparametric model may be constrained in order to pertain 

to physical limits. This combination could be interpreted to be the one shown in 

Fig. 4e. 

 

2.2.3. Operational knowledge – rule based information 

Fuzzy systems make use of a logic structure to describe certain rule-alike 

procedures, e.g. if glucose concentration is high, then biomass growth rate is 

high; else if glucose concentration is low, then biomass growth rate is low. The 

expressions (low or high) are associated to parameters that can either be 

determined manually, through the experience of an operator, or can be fitted to 

exper- imental data (Roubos, 2002; Roubos et al., 2000; Schubert et al., 1994a; van 

Lith, Betlem, & Roffel, 2002, 2003). 

One of the most popular Fuzzy models is the Takagi, Sugeno Kang type (Takagi 

& Sugeno, 1985), in which the consequent part of each rule consists of a linear 

equation, (van Lith et al., 2002). There- fore the approach could be interpreted as 

several parallel linear models, where the contribution of each submodel is chosen 

according to some specified rule. This makes this type of Fuzzy model suitable 

for the modeling of nonlinear relations, and therefore they can be used instead of 

e.g. neural networks. The biggest advantage of Fuzzy models, when compared to 

more data-driven techniques, is that they are interpretable, wherefore they can 

offer transparency in situations where physical models are difficult to derive (van 

Lith et al., 2002, 2003). However, for their derivation considerable more 

knowledge is required than for other data-driven models. 

The integration of Fuzzy models along with first-principles knowledge can, as 

before, be accomplished in parallel (Abonyi et al., 1999; Fu & Barford, 1995b) or in 

series (van Lith et al., 2002, 2003; Vieira, Dias, & Mota, 2005). Moreover they can 

be complementarily combined into an existing hybrid approach, e.g. in parallel to 
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a non- parametric model (Dors et al., 1995, 1996; Peres et al., 2001) where a gating 

function decides the degree of their involvement in the kinetic rate modeling; or 

in series as an input to the nonparametric model, providing a classification of the 

operational phase (Beluhan & Beluhan, 2000; Preusting, Noordover, Simutis, & 

Luebbert, 1996; Schubert et al., 1994a; Simutis, Havlik, Schneider, Dors, & 

Luebbert, 1995). 

While the determination of the Fuzzy model parameters in the parallel hybrid 

case can be accomplished with standard techniques, not all of those techniques 

can be directly used in the serial approach, see (Preusting et al., 1996; Roubos, 

2002; Roubos et al., 2000; Schubert et al., 1994a; Schubert, Simutis, Dors, Havlik, 

& Luebbert, 1994b; van Lith et al., 2003) for examples. 

 

2.3. How can unknown parts be represented? – Nonparametric models 

 

The structure of nonparametric models is not specified a priori, but is instead 

determined from data. It is the nonparametric model that gives the hybrid semi-

parametric model its flexibility, 

e.g. to model systems with partially unknown underlying effects. The most 

frequently applied nonparametric models, are the MultiLayer Perceptron (MLP) 

and the Radial Basis Function Network (RBFN) (see supplementary material 

Table 1). Both provide equally good predictions (in favor of the former (James, 

Legge, & Budman, 2002)), but due to differing standard training methods, the 

training takes considerably longer for MLPs than for RBFNs. The advantage of 

MLPs is that the outputs (model) do not need to be known explicitly for the 

training. This is especially important for the serial structure B, since e.g. the 

kinetic rates are not directly measured and their calculation from sparse, 

infrequent noisy concentration measurements is error prone. The advantage of 

RBFNs is that they have certain, inherent stability characteristics, which make 

them suitable for control and monitoring, (James et al., 2002). 

 

2.3.1. Nonparametric models for specific problems 

Different situations call for the incorporation of different non- parametric 

approaches into the hybrid semi-parametric model. Some  authors  proposed  to  

use  more  than  one nonparametric model. Tian, Zhang, and Morris (2001) used 

stacked neural net- works in a parallel hybrid structure and they found that 

those stacked networks provide better predictions than a single neural network. 

In a similar manner Bollas et al. (2003) used a stack of ANNs whose outputs 

(various predictions for the same residual) were combined by an additional 

ANN to obtain the final residual prediction. 

The concept of using more than one neural network was also explored in serial 

hybrid semi-parametric models (Cao et al., 2004; Gnoth, Jenzsch, Simutis, & 

Luebbert, 2008; Gupta et al., 1999; Patnaik, 2001, 2003, 2010; Piron, Latrille, & 

Rene, 1997; Preusting et al., 1996; Reuter et al., 1993; Silva, Cruz, Hokka, 
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Giordano, & Giordano, 2000, 2001). Preusting et al. (1996) used two ANNs in 

parallel to model separate phenomena, i.e. one ANN to model the kinetics 

another to model the viscosity. Gupta et al. (1999) applied two parallel ANNs, 

each of which inferring a variable value, in series with three other parallel ANNs, 

each of which estimating a quantity that enters as an input to the mechanistic 

model. In Gnoth et al. (2008), Silva et al. (2000, 2001) the prediction of one central 

kinetic rate (usually the specific biomass growth rate) by a first ANN, was used as 

an input (beside others) to another ANN, which in turn predicts another rate, e.g. 

the product formation rate. It was shown that by doing so, lag phases which can 

occur when e.g. the main substrate in a fermentation is changed, can be modeled. 

The modeling of each subtask in the hybrid semi-parametric model with one 

individual nonparametric model, as e.g. done by Patnaik (2001, 2003, 2010), 

Piron et al. (1997), Saraceno, Curcio, Calabro, and Iorio (2010) can help to make 

the model structure more transparent, and increase the accuracy of each 

predicted quantity. Differently Cao et al. (2004) applied two individual non- 

parametric models to predict the same quantity with each model relying on 

different phenomena, i.e. the inputs are different. The performance of various 

other nonparametric techniques has also been tested in hybrid semi-parametric 

models, as can be seen in Table 1 (supplementary material). 

 

2.3.2. Comparison of nonparametric models 

Comparisons between different nonparametric models that were embedded in 

the same hybrid semi-parametric model structure have been carried out (see 

supplementary material – section 2), but the findings are sometimes 

contradicting. This might be due to the fact that the performance of the 

nonparametric model is highly problem dependent (what kind of function 

should be approximated, how many data points are available, how many 

parameters does the nonparametric model have, what training algorithm is 

used, what are the properties of the in- and outputs, etc.) wherefore it is difficult to 

draw general conclusions. 

 

2.4. How can unknown parts be identified? – Methods for model identification 

 

The identification of the “unknown” parts of the hybrid semi- parametric model 

most times comprises only the identification of the nonparametric model (also 

referred to as training). This identification is accomplished by minimizing an 

objective function value through manipulation of the parameter values. The 

objective function usually consists of a part accounting for the fit of the model 

predictions to the experimental data. Additionally, the objective function can 

contain a regulation term  which  e.g.  can  enhance  the generalization capabilities 

of the model (Hu, Mao, He, & Yang, 2011; Kahrs & Marquardt, 2008; Vande Wouwer 

et al., 2004).  While, in principle the same identification schema can be applied when 

also other parameters are unknown, e.g. yield/stoichiometric coefficients, it might, 
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in this case, be beneficial to decompose the identification since e.g. the initial values 

of the parameters might be known, which can simplify the identification. 

Approaches explicitly dealing with this scenario are given in Vande Wouwer et al. 

(2004), Kahrs and Marquardt (2008), Yang, Martin, and Morris (2011) the latter is 

shortly presented in Section 2.4.2. 

In case of the serial structure C, Fig. 2, or the parallel structure A the 

identification of the nonparametric models can be carried out with standard 

techniques (e.g. back-propagation for MLPs (Werbos, 1974)). 

In case of the serial hybrid structure B, Fig. 2, the determination is slightly 

more difficult since e.g. the kinetic rates cannot be measured and their 

reconstruction from sparse, infrequent and noisy experimental data is prone to 

error (Oliveira, 2004; Schubert et al., 1994a). Nevertheless, the direct approach, 

in which their reconstruction is required, is frequently considered. Two 

alternative approaches are the indirect approach, which is based on the 

sensitivities equations and the incremental approach. 

 

2.4.1. The  direct approach 

For the direct approach at first the outputs e.g. the kinetic rates, are calculated 

from the experimentally measured state values. This can e.g. be applied through 

a Taylor-Series approximation (Tholudur & Ramirez, 1996) or through smoothing 

spline approx- imations (Schubert et al., 1994a). With these calculated outputs 

and the available inputs, standard techniques can be used for the parameter 

identification. However, a fact that has found little attention is the statistical 

optimality of the model state estimations with respect to the experimental data. 

This is interesting, since the identification is accomplished from kinetic data 

which were in turn calculated from the experimental data. The calculated kinetic 

data might be biased and when using these data for parameter identification, the 

bias might be passed on to the model. 

 

2.4.2. The  incremental approach 

The incremental approach, proposed by Kahrs and Marquardt (2008), is ideal 

for relatively large systems, since the identification problem is at first 

decomposed into four smaller problems which are solved sequentially, thereby 

reducing the curse of dimensionality. During this phase standard training 

techniques for the identification of the nonparametric model can be used. Once 

the four sub-identifications are accomplished, overall simultaneous parameter 

estimation is carried out in order to obtain predictions which are estimated in a 

statistically optimal sense. Theoretically, i.e. if the gradients with respect to the 

parameters can be analytically determined, the sensitivities approach can be 

utilized for the simultaneous identification step. The approach described in Chen 

et al. (2000) is similar, in that the problem is decomposed, but not to the entirety 

of the incremental approach. 
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2.4.3. The indirect approach – the sensitivities equations 

Right from the beginning of serial hybrid semi-parametric modeling, a method 

for the identification of the neural network weights was required. Psichogios and 

Ungar (1992) adapted the well- known error back-propagation technique 

(Werbos, 1974) using the sensitivities equations. Schubert et al. (1994a) and 

Oliveira (2004) compared this so-called sensitivities method to the direct 

identification approach. They noted that in the presence of few noisy 

measurement data the reliability of the calculated reaction rate in the direct 

approach suffers from the accurate determination of the time-derivative. The 

sensitivities approach can be used to train both one-step and multi-step ahead 

predictor models. Further, in case of a one-step ahead predictor structure, the 

number of input data that are used to establish the correlation between inputs 

and outputs can be significantly greater than with standard techniques, which 

can result in better noise rejection properties (von Stosch, Oliveira, Peres, & Feyo 

de Azevedo, 2011b). 

 

2.4.4. Other alternative approaches 

Gradient free parameter identification procedures, requiring only the model 

residual (between the data and model estimate) but in turn increasing the 

computational costs (Roubos et al., 2000), were applied (Madar, Abonyi, & 

Szeifert, 2004; McKay, Sanderson, Willis, Barford, & Barton, 1998; Roubos et al., 

2000). However, with the ever increasing computation power and the fact that 

several random initiation of the parameters might not be required, this is an 

attractive solution for relatively small systems. 

An approach seeking to identify the “optimal parameters” by removing data 

that are not rich in information from the sample space, was proposed for parallel 

structures by Potocnik and Grabec (1999). However, while the model fit might be 

good locally, e.g. for certain fermentation phases, the overall process 

representation might suffer. 

All above mentioned identification schema are batch-learning techniques, i.e. 

all training data are used at the same time to infer the parameter values. An 

alternative is incremental learning, which can be used to adapt the network 

weights on-line, given that   the state measurements become available on-line or 

are other- wise observable (Dochain, 2003). For closed-loop control, on-line 

parameter adaptation can increase the performance, due to bet- ter local 

approximations. However, for parameter identification on a entire process 

operation region, i.e. for global approximations, batch learning is usually 

preferred. 

 

2.4.5. General remarks about the identification 

Two well-known identification problems are over-fitting and local minima. The 

former is normally addressed with early- stopping, cross-validation or with the 
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above mentioned penalty term in the objective function. The latter is tackled by 

performing several identification runs for one structure starting from random 

parameters initializations, choosing the parameter set which performs best on 

additional data, which have not been used for parameter identification (Simutis 

& Luebbert, 1997; van Can et al., 1996, 1997; Vande Wouwer et al., 2004). 

Convergence and success of the identification depend on the initialized 

parameter values (Kahrs & Marquardt, 2008; von Stosch, Oliveira, Peres, & Feyo 

de Azevedo, 2012). Relatively small weight values are preferential (because 

generally inheriting better generalization capabilities), wherefore the 

initialization values of the parameters are usually constrained, e.g. smaller than 

one, greater than minus one. Additionally, in case that only few experimental 

values are available and a simple model of the kinetic rates is available, the 

model can be used to provide kinetic rate data for a pre-identification (before the 

identification relying on the experimental data is carried out) of the 

nonparametric model parameters 

(Galvanauskas et al., 2004; Graefe et al., 1999; Henriques, Costa, Alves, & Lima, 

1999; Tsen, Jang, Wong, & Joseph, 1996). 

Whenever the conservation laws are posed in the form of Ordi- nary Differential 

Equations (ODEs), then some boundary condition must be provided for the 

numerical integration, such as initial values. Since these initial values when 

taken from the experimental data most probably contain a certain amount of 

measurement noise, error propagation can occur (von Stosch et al., 2011a). It 

depends on the underlying set of ODEs whether the error is amplified or damped 

along time. In order to diminish the impact of such errors on the parameter 

identification Vande Wouwer et al. (2004) proposed to include the initial values 

into the set of parameters (after those have been optimized to a certain threshold) 

and to, thereafter, optimize all those values together. 

 

2.5. What model is performing best? – Model discrimination and extrapolation  

capabilities 

 

The model structure, its generalization and extrapolation capabilities are 

directly related. This not only concerns whether the structure is parallel or serial, 

but also concerns the structure of the nonparametric model, especially its 

dimension. 

 

2.5.1. Nonparametric model discrimination 

The discrimination of the nonparametric model structure (e.g. for MLP the number 

of hidden layers and the therein covered numbers of nodes, or in case of Partial Least 

Square/Projection to Latent Structures (PLS) the number of latent variables) can be 

addressed with the Akaike Information Criterion or Bayesian Information Criteria, 

the latter being more suitable for models with large numbers of parameters (Lee, 

Vanrolleghem, & Park, 2005; Peres, Oliveira,     & de Azevedo, 2008; von Stosch, 
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Peres, de Azevedo, & Oliveira, 2010). Also other statistical criteria can be applied 

(Bollas et al., 2003; Kim & Chang, 2000) to evaluate the estimations obtained with 

different sized nonparametric models. In general, the estimation quality must be 

balanced against the number of involved parameters and against the number of data 

(the data content) that are available for the identification. The number of parameters 

and the identified “optimal” parameter values impact on the quality of prediction, 

generalization and extrapolation. Integration of knowledge can significantly reduce 

the size of the nonparametric model, while enhancing the extrapolation properties 

Mogk et al. (2002).    In any case, it is advisable to manually assess at least the model 

properties of the best candidate structures (Braake et al., 1998). 

 

2.5.2. Hybrid semi-parametric model structures and extrapolation 

A systematic investigation on the hybrid semi-parametric model extrapolation 

properties was conducted by van Can et al. (1996, 1997, 1998, 1999), 

distinguishing between four scenarios, as shown in Fig. 5:  

• dimensional extrapolation (A variable, which was kept constant during 

identification, varies during the application of the model van Can et al., 1998), 

• range extrapolation (A variable is applied outside the range 

within which it was varied during identification van Can et al., 1998), 

• interpolation (A variable is constant during the identification and 

application of the model and its amplitude during application is between the 

highest and lowest amplitude during the identification van Can et al.,  1998) 

• and frequency extrapolation (A variable is used at a frequency 

that is lower or higher than the lowest or highest frequency in the identification 

experiments van Can et al., 1998). 

 

When testing serial and parallel hybrid semi-parametric models, through their 

incorporation into a model predictive control scheme, experimentally for their 

dimensional extrapolation properties, van Can et al. (1996) observed that the 

serial hybrid semi-parametric model showed good dimensional extrapolation 

properties. These properties were found to be due to the accurately known terms 

in the balances. The parallel hybrid semi-parametric models, in contrast, did not 

show any advantage compared to strictly nonparametric models. Studying 

different levels of incorporated mechanistic knowledge, van Can et al. (1998) 

found that due to the accurately known terms in the balances, good range, 

dimensional and reliable frequency extrapolation properties were yield; (ii) the 

unknown terms could relatively easily be identified from the available data; and 

(iii) in comparison to more data-driven models, the serial hybrid structures have 

better extrapolation properties. Thus with the same identification data, the 

model can be applied to a much wider range of conditions, which also means 

that a smaller domain of identification data is required for serial hybrid models, 

limiting the experimental effort. Ergo a strong connection between the model 



16 

properties and the identification data exists, which will be the subject of the 

experimental data section. 

 

2.5.3. Measures for model extrapolation 

The application of hybrid semi-parametric models to off-line process 

optimization or to off-line controller tuning can result in extrapolating situations, 

i.e. the nonparametric model is confronted with input values, which it has not 

been trained for. The risk of wrong predictions tends to rise the larger the 

distance between the current inputs and the set of inputs used for training. In 

such a case it is necessary to constrain the optimization by some measure to avoid 

false decisions. 

Klimasauskas (1998) proposed to apply some measure, i.e. a confidence 

module, to restrict the influence of the nonlinear model on the prediction when 

extrapolating (although the details are not provided). In Simutis et al. (1995) a 

clustering procedure is applied to the ANNs inputs, in order to determine the 

contribution of different ANNs to the rate predictions. In Teixeira et al. (2005) 

clustering of the nonparametric model inputs is carried out. Then, the 

optimization is constrained by a user defined risk (typically 25%) taking the 

minimal distance between the inputs obtained during the optimization and the 

closest cluster mean into account. Mahalec and Sanchez (2012) propose to 

constrain the optimization by two measures, one accounting for the distance of the 

current inputs to historical ones and a second ensuring that the residual and bias 

of the predictions in relation to the model plane do not exceed a certain threshold. 

Similarly, in Kahrs and Marquardt (2007) two complementary criteria to check 

the validity domain of hybrid semi-parametric models are proposed: (1) A 

convex-hull criteria to check whether each empirical model part only 

interpolates the data encountered during model identification; and (2) a 

confidence interval criterion with which the confidence intervals for the hybrid 

semi-parametric model are calculated. In comparison to the clustering 

technique, the convex-hull criteria has the advantage that it can be implemented 

as a set of linear constraints, while the clustering technique is a nonlinear 

constraint, but the convex- hull criteria might be too optimistic when the data 

distribution is strongly non-uniform, which is not the case for clustering. 

A shortcoming of all these criteria is their focus on the distribution of points in 

the space while they do not account for   the transient behavior (frequency 

extrapolation). Investigations in this respect are especially interesting in cases 

where the transient behavior is of importance such as for controller tuning (von 

Stosch et al., 2012). 

 

2.6. What is the influence of the data? – Experimental data and data pre-treatment 

 

Data are necessary to identify the structure and the parameters of the hybrid 

semi-parametric model and basically all model properties (prediction quality, 
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model operation range, interpolation capabilities) depend strongly not only on 

the quantity but also on the quality of the data. 

 

2.6.1. Design of experiments 

In industrial settings the attitude tellingly described by Sohlberg (2005), i.e. “you 

have to take what you can get” is dominant, but to yield high quality data the 

design of experiments should correspond to the objectives (Simutis, Oliveira, 

Manikowski, de Azevedo, & Luebbert, 1997). In van Can et al. (1996) it is outlined 

that the design of an identification experiment should be such that the unknown 

part of the model is almost completely discovered, though it is rather unrealistic 

to know these in advance. If no data at all, nor any knowledge about the system 

at hand, is available, then a systematic exploration of the process design space, 

through experimental design, can be highly valuable (Chang, Lu, & Chiu, 2007; 

Gupta et al., 1999; Saraceno et al., 2010; Thibault et al., 2000; Tholudur & Ramirez, 

1999; Tholudur, Ramirez, & McMillan, 2000). Another option, if at least some 

knowledge or data are available from which a first hybrid semi-parametric 

model can be derived, is to apply the coverage approach proposed by Brendel 

and Marquardt (2008), which proved to be better than a factorial design. 

A different strategy is iterative batch-to-batch optimization, where the 

experiments are performed in such a way, i.e. the degrees of freedom are 

controlled in such a manner, as to meet some objective, e.g. Doyle, Harrison, and 

Crowley (2003) and Teixeira, Clemente, Cunha, Carrondo, and Oliveira (2006) or 

Section 3.4). It is of course rational to take samples during the experiments at those 

instances of time at which the uncertainty about (the calculated risk of) the 

process trajectory is the highest (Teixeira et al., 2006). 

 

2.6.2. Experimental  data pretreatment 

Experimental data can enter into the hybrid semi-parametric model in two 

ways: (1) as inputs to the nonparametric submodel; and (2) also directly, e.g. as 

experimental data of the feeding rate or as concentration data considered in the 

semi-parametric model. It is for instance pointed out in Schubert et al. (1994a) and 

Chabbi, Taibi, and Khier (2008) that variances in the feeding concentration can 

cause big errors in the estimation of the respective substrate concentrations. 

Similar observations were made by von Stosch et al. (2011a). Studies on the impact 

of different levels of experimental noise on the identification results, performed 

by Yang et al. (2011), revealed that the variance of the identified model 

parameters increases with increasing level of noise. Thus pretreatment of the 

experimental data can be a valuable procedure to increase the model 

performance. Laursen, Webb, and Ramirez (2007), for instance, proposed to use 

a smoothing cubic spline function to account for the noise in the feeding rate 

data. There are, however, many techniques available to filter the noise, remove 

off-sets, etc. It depends on the kind of measurement device used and on the con- 
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text in which the measurement is performed, which pre-treatment technique is 

the most suitable. The pretreatment of those data that are inputs to the 

nonparametric model, was found to improve the nonparametric model 

performance (Bishop, 1995). In any case the nonparametric model input values 

should be scaled to a range between zero and one, e.g. by subtracting the mean 

and dividing by the standard deviation (Bishop, 1995). 

 

3. Application of hybrid semi-parametric modeling 

 

3.1. Modeling 

 

Modeling provides the ground for process operation and design, such as 

monitoring, control, optimization or scale-up. The focus in this section is on 

modeling applications that deal with experimental data rather than data from 

virtual, simulated experiments, because simulation cases are typically applied to 

validate a pro- posed methodology (methodologies have been discussed above), 

while experimental studies are much more practically oriented. It can be seen in 

Fig. 6 that about half of the applications in the area of chemical and biochemical 

engineering, which are the areas with the most applications, are built upon 

experimental data. According to the number of representations, the section is in 

the following divided into applications in chemical engineering and biochemical 

engineering. Applications on other areas (e.g. water treatment processes 

Anderson, McAvoy, & Hao, 2000; Conlin et al., 1997; Karama et al., 2010; Lee et al., 

2002, 2005 or food and beverages Simutis et al., 1995; Teissier, Perret, Latrille, 

Barillere, & Corrieu, 1997) can be found in the supplementary material, Tables 4–

6. Several applications exist also in mechanical engineering, e.g. Masri (1994), Cao 

et al. (2004) and Quiza et al. (2012), but those are out of the scope of this review. 

 

3.1.1. Chemical engineering 

Hybrid semi-parametric modeling applications in chemical engineering deal for 

instance  with  the  chemical  reactor  (Bellos  et al., 2005; Bollas et al., 2003; Gupta et 

al., 1999; Luo, Du, Ye, & Qian, 2012; Molga & Cherbanski, 1999; Porru, Aragonese, 

Baratti,   & Servida, 2000; Qi, Zhou, Liu, & Yuan, 1999; Simon, Fischer, & 

Hungerbuehler, 2006; Xiong & Jutan, 2002; Zahedi, Lohi, & Mahdi, 2011), 

polymerization processes (Bhutani et al., 2006; Feil et al., 2004; Fiedler & Schuppert, 

2008; Hinchliffe, Montague, Willis, & Burke, 2003; Mogk et al., 2002; Tian et al., 2001; 

Tsen et al., 1996; Vega, Lima, & Pinto, 2000), crystallization (Georgieva & de Azevedo, 

2009; Georgieva, Meireles, & Feyo de Azevedo, 2003; Lauret, Boyer, & Gatina, 2000), 

metallurgic processes (Hu et al., 2011; Jia, Mao, Chang, & Zhao, 2011; Reuter et al., 

1993; Sohlberg, 2005), distilla- tion columns (Chen et al., 2004; Mahalec & Sanchez, 

2012; Safavi, Nooraii, & Romagnoli, 1999), drying processes (Cubillos & Acuna, 

2007), thermal devices (Arahal, Cirre, & Berenguel, 2008), mechan- ical reactors 

(Nascimento et al., 1999) or milling (Aguiar & Filho, 2001; Kumar Akkisetty, Lee, 
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Reklaitis, & Venkatasubramanian, 2010), for more details and references see Table2 

– supplementary material. Since the number of applications is relatively large and 

most of which either use the standard serial approach consisting   of material and/or 

energy balances in which the kinetics are represented by a nonparametric model or 

a parallel approach, only some approaches are discussed here, namely those that 

present solutions of more complex  problems. 

Particle size distribution, which is of major interest in many processes, can be 

modeled with population balances, as for instance in crystallization (Georgieva et 

al., 2003; Hermanto, Braatz, & Chiu, 2011; Lauret et al., 2000; Zhang, Wang, He, 

& Jia, 2012), milling (Kumar Akkisetty et al., 2010) or polymerization (Doyle et al., 

2003). The application of a complementary nonparametric model, e.g. in order to 

enhance the prediction quality, can also be beneficial in this context. While a 

parallel set-up (Doyle et al., 2003; Hermanto et al., 2011; Zhang et al., 2012) is 

relatively easy to apply and might be sufficient in many cases, a serial approach 

can help to under- stand the complex interactions. For example, Georgieva et al. 

(2003) model the most uncertain parts in a set of material, energy and population 

balances, namely the agglomeration kernel, the nucleation and growth rate, 

through nonparametric techniques. Further, those elements of the model that 

due to variations in each batch are uncertain, can be linked to current process 

measurements, thus accounting for these variations (Kumar Akkisetty et al., 

2010). 

In certain situations it might be necessary or desired to account for gradients in 

the temperature or concentration distribution along a spatial component. In 

Gupta et al. (1999) the material balances are formulated for the phosphate 

particles along the height of a flotation column, resulting into Partial Differential 

Equations. The reaction rate parameters in those balances, namely the flotation 

rate constants, are modeled through ANNs. Similarly, temperature and 

concentration gradients along the reactor length are represented in the 

component mass and energy balance of solid and fluid phases, by Zahedi et al. 

(2011). In Dadhe, Rossmann, Durmus, and Engell (2001) the distillation column is 

divided into several stages, each of which assumed to be homogenous, wherefore 

the material and energy balances formulated for the liquid and vapor phases at 

each stage take the form of ODEs. The vapor–liquid equilibrium is in this approach 

described by a RBFN. Similar approaches are also pro- posed by Mahalec and 

Sanchez (2012), Hinchliffe et al. (2003) and Arahal et al. (2008), where Hinchliffe 

et al. (2003) divides the polymerization reactor into several stages whereas Arahal 

et al. (2008) uses discrete volume and wall segments. The difficulty in the just 

named approaches is that for the training of the nonparametric model, sufficient 

data must be available, and that a nonparametric model trained with global data 

might not perform well locally. However, it is for instance shown in Molga and 

Cherbanski (1999) that a complex heterogeneous reaction system can be well 

represented by a serial hybrid semi-parametric model based on overall material 
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and energy balances. Similar observations were also made by Qi et al. (1999) who 

compared hybrid semi-parametric models to detailed mechanistic two-

dimensional models, finding that the hybrid is simpler in model structure, has 

lower computational costs and provides about the same prediction quality. 

 

3.1.1. Biochemical  engineering 

Hybrid semi-parametric modeling is frequently applied in bio- chemical 

engineering, e.g. for the modeling of yeast fermentations (Beluhan & Beluhan, 

2000; Boareto, De Souza, Valero, & Valdman, 2007; Eslamloueyan & Setoodeh, 

2011; Mazutti et al., 2010; Peres et al., 2001; Saraceno et al., 2010; Saxen & Saxen, 

1996; Schubert  et al., 1994a, 1994b), for modeling of fungi cultivations (Chen et 

al., 2000; Ignova et al., 2002; Preusting et al., 1996; Silva et al., 2000, 2001; 

Thibault et al., 2000; van Can et al., 1997, 1998; Wang,  Chen, Liu, & Pan, 2010), for 

modeling of bacteria cultivations (Costa, Alves, Henriques, Filho, & Lima, 1998; 

Gnoth et al., 2008; Henneke, Hagedorn, Budman, & Legge, 2005; Henriques et al., 

1999; James et al., 2002; Jenzsch, Gnoth, Kleinschmidt, Simutis, & Luebbert, 2007; 

Laursen et al., 2007; Roubos et al., 2000; Simutis & Luebbert, 1997; Thibault et al., 

2000; Tholudur & Ramirez, 1999; Zuo, Cheng, Wu, & Wu, 2006; Zuo & Wu, 2000), 

for modeling of mammalian cell cultivations (Dors et al., 1995, 1996; Simutis et 

al., 1997; Teixeira, Alves, et al., 2007; Teixeira et al., 2005; Vande Wouwer et al., 

2004), for modeling of insect cell cultivations (Carinhas et al., 2011), for modeling 

of hybridoma cell cultivations (Fu & Barford, 1995a, 1995b) or for modeling the 

counter-ion fluxes across an ion-exchange membrane in a membrane-supported 

biofilm reactor (Ricardo, Oliveira, Velizarov, Reis, & Crespo, 2012); more details 

on these models can be found in Table 3 – supplementary mate- rial. Most of 

these approaches follow the original approaches of (Psichogios & Ungar, 1992; 

Schubert et al., 1994a). The under- lying biological system – the cell, which 

houses highly complex chemical reaction networks and transport mechanisms, 

is usually modeled assuming lumped kinetics. Along with these, biomass is 

considered to be a catalyst to the reactions and then either specific kinetic rates 

are directly modeled by nonparametric techniques or after some knowledge has 

been incorporated only the “miss- ing” parts are represented by nonparametric 

models (Al-Yemni, 2003; Corazza et al., 2005; Fu & Barford, 1995a; Kasprow, 

2000; Mazutti et al., 2010). The incorporation of additional knowledge can, as 

described above, improve the model properties, especially when the knowledge 

structures the model such as stoichiometric coefficients, wherefore current efforts 

reach out to integrate knowledge from systems biology (Teixeira, Alves, et al., 

2007). However, besides the modeling of the reactor system with ODEs also 

other approaches can be found. 

A crossflow microfiltration process of a suspensions of baker’s yeast using a 

serial hybrid semi-parametric model is considered in Piron et al. (1997). They 

derived a physical model for the microfiltration process, wherein those 
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parameters that are unknown (cake resistance, cake diffusion interface and the 

concentration gradient) are represented by ANNs. 

In Thibault et al. (2000) the spatial distribution of filamentous fungi is 

considered by the derivation of the material balance for the surface apex density. 

This results into a two-dimensional propagation model for the fungus, wherein 

the diffusion coefficient is represented by a FNN. 

The production process of bacterial cellulose with a pilot scale airlift reactor is, 

in Zuo et al. (2006), decomposed into two models, which are separately identified. 

The first is a standard serial hybrid semi-parametric ODE model accounting for 

the biological part of the process. The second is a modified tanks-in-series model 

of the airlift reactor with wire-mesh draft tubes, taking into consideration the 

hydrodynamic effects. Good results are obtained with both models and so the 

whole airlift reactor cultivation is appropriately represented. 

 

3.2. Monitoring 

 

For monitoring hybrid semi-parametric modeling has been applied in two 

ways, as schematically depicted in Fig. 7. One way is to predict certain quantities 

from available on-line measurements and/or model’s own predictions, which is 

referred to as Predictor or Soft-sensor. The other way applies the hybrid semi-

parametric model along with a corrector method to correct the state predictions 

and eventually to adapt the model parameters (Corrector). 

 

3.2.1. Soft-sensor – predictor method 

The application of a model to estimate a certain quantity based on at-time 

available measurement is referred to as soft-sensor. The application of hybrid 

semi-parametric models in form of a soft- senor is very attractive for monitoring 

and both parallel (Lee et al., 2005) and serial (Boareto et al., 2007; Gnoth et al., 

2008; Henneke et al., 2005; James et al., 2002; Jenzsch et al., 2007; Psichogios & 

Ungar, 1992; Schubert et al., 1994a; Silva et al., 2000, 2001; von Stosch et al., 

2011b) hybrid semi-parametric models find application. It was shown that the 

performance of a model in which the states and parameters were estimated by 

Nonlinear Programming (NLP) optimization or Extended Kalman Filter (EKF) 

approaches was inferior to the performance of a model in which the variable 

parameters were estimated using neural networks (Psichogios & Ungar, 1992), 

namely a hybrid semi-parametric model. Similar to modeling applications, the 

hybrid semi-parametric model might outperform Linear models, FNNs or 

RBFNs for monitoring (James et al., 2002). In addition the hybrid semi-

parametric model might not only be used to monitor the process, but also to 

derive the set- points for the control (Jenzsch et al., 2007). The requirements for 

the application of hybrid semi-parametric models that are based on the dynamic 

formulation of material or energy balances are that (i) the sampling rate of the at-

time available measurements is more or less constant (a requirement that stems 
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from the numerical integration); (ii) that the sampling is carried out frequently 

enough (also due to the numerical integration); and (iii) that all inputs are 

available at the same time, eventually some kind of interpolation method is 

required. When these requirements are met then a hybrid semi-parametric model 

can in principle provide better pre- dictions than other models, since (a) either 

fewer parameters are required to achieve similar prediction qualities (when 

compared to strictly nonparametric models) which reduces the statistical 

uncertainty or, when compared to strictly mechanistic models, the model can 

benefit from the actual process conditions, reflected through sets of at-time 

available measurements; and (b) the hybrid semi- parametric model has better 

calibration properties. For the serial hybrid semi-parametric model it can further 

be stated that (c) the numerical integration of the state variables leads to a 

smoothing effect which diminishes the influence of noisy measurements on the 

quality of the predictions (von Stosch et al., 2011b); and (d) in the case that the 

sensitivities method is applied for nonparametric model training, more input 

data are used for the training (than e.g. for the direct approach), reducing the 

hybrid semi-parametric models’ sensitivity to noise, (von Stosch et al., 2011b). 

Table 7, supplementary material, comprises a list of hybrid semi- parametric soft-

sensor applications. 

 

3.2.2. Corrector scheme 

The corrector scheme finds application when the state variables (which are 

considered in the material or energy balances) are measured at some instances 

during the process, since the predictions can be corrected and/or the model 

parameters can be adapted. However, the corrector method is subject to certain 

restrictions regarding the state observability (Dochain, 2003). The underlying 

hybrid semi-parametric model can either rely on other at-time available 

measurements or solely on its own predictions (Multi- step ahead predictor), 

such as in Saxen and Saxen (1996). In case that the hybrid semi-parametric model 

is serial and uses at-time available measurements the same requirements 

formulated above for the soft-sensor case hold. 

Standard corrector schema that found application comprise the EKF (Porru et 

al., 2000; van Lith et al., 2002; Wilson & Zorzetto, 1997) or a DDI filter (Feil et al., 

2004). For a certain class of serial hybrid semi-parametric models, a state 

transformation technique can be applied for (i) inference of unmeasured states, 

(ii) on-line state correction and (iii) ANN weight adaptation (Georgieva & de 

Azevedo, 2009). 

The correction of the hybrid semi-parametric model (consisting of a material 

balance based model in parallel to a block-wise PLS scheme) predictions 

applying a rectification method, which can utilize the off-line, time-lagged 

measured samples, was proposed by Jia et al. (2011). They state that the 

predictions of this adaptive hybrid semi-parametric model are more accurate and 
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efficient than the same model without adaption or a recursive PLS model. 

 

3.3. Control 

 

Since hybrid semi-parametric models can accurately capture the process 

dynamics and nonlinearities, their application for process control is very 

promising. Various open- and closed-loop applications are reported, the former 

will be discussed in the section on optimization. 

For closed-loop control, there are two possible ways to exploit the hybrid 

process model (von Stosch et al., 2012), namely (i) by employing a control 

structure that directly uses the hybrid process model equations for the 

calculation of the control action; or 

(i) by the application of the hybrid semi-parametric model for the controller 

tuning. 

 

3.3.1. Hybrid semi-parametric model based controller structures 

The way in which the control inputs appear in the hybrid semi- parametric 

model equations determines which control methods can find application. 

Whenever the process model equations are invertible, i.e. an analytical explicit 

expression can be obtained through manipulation, direct Feedback Linearizing 

Control (FLC) (Bazaei & Majd, 2003), Generic Model Control (Abonyi, Madar, & 

Szeifert, 2007; von Stosch et al., 2012; Xiong & Jutan, 2002) or Model (Adaptive) 

Reference Control (von Stosch et al., 2012) schema can be applied. These methods 

can account for nonlinearities and are relatively computationally inexpensive. In 

case that the process model equations are not invertible, FLC (Bazaei & Majd, 

2003; Hussain, Ho, & Allwright, 2001; Madar, Abonyi, & Szeifert, 2005), sliding 

mode control (Hussain & Ho, 2004), Model Predictive Con- trol (MPC) (Abonyi et 

al., 1999; Cubillos, Callejas, Lima, & Vega, 2001; Hermanto et al., 2011; Ibrehem, 

Hussain, & Ghasem, 2011; Klimasauskas, 1998; Tsen et al., 1996; van Can et al., 

1996; Vega et al., 2000; Vega, Lima, & Pinto, 1997), predictive or optimal control 

(Anderson et al., 2000; Costa et al., 1998; Costa, Henriques, Alves, Maciel Filho, & 

Lima, 1999; Cubillos & Lima, 1997, 1998; Schenker & Agarwal, 2000; Vieira et al., 

2005) schema can be employed, where FLC and sliding mode control are 

computational less expensive while MPC or optimal control may provide better 

performance. 

When comparing the performances of control schema that utilize hybrid semi-

parametric models to those using either traditional control methods (such as a 

self-tuning PID (Xiong & Jutan, 2002), a generalized minimum variance controller 

(Xiong & Jutan, 2002), a FLC based on a linear model (Hussain et al., 2001) or a 

MPC based on a linearized model (Anderson et al., 2000)) or to non- parametric 

model based controllers (Cubillos et al., 2001; Hussain et al., 2001; Ibrehem et al., 

2011; Schenker & Agarwal, 2000), it was mostly observed that the hybrid semi-

parametric model based control schema performed significantly better. However, 
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the controller performance depends on the limitations of the underlying model. 

For instance, Anderson et al. (2000) observed that the control performance 

utilizing the parallel hybrid semi-parametric model was inferior to the one using 

a linearized model, because the control situation considered had an 

extrapolative character. That parallel hybrid structures can have poor 

extrapolation properties, if not restricted by some measure (Klimasauskas, 1998), 

was already reported in van Can et al. (1996). However, given that the model 

estimates can be compared to measurements at-time, the model parameters, i.e. 

mainly the network weights, might be adapted, thus reducing or eliminating the 

model-plant mismatch (Costa et al., 1998, 1999; Cubillos & Acuna, 2007; Cubillos 

& Lima, 1997, 1998; Hermanto et al., 2011). In such a case, it might be argued that 

hybrid semi-parametric models bear no advantage over non- parametric models, 

since those can be adapted in the same way, but (i) the hybrid semi-parametric 

model is easier to interpret, wherefore the control action can be scrutinized and 

(ii) the hybrid semi-parametric model might be easier to adapt, e.g. if the number 

of parameters is lower (Cubillos et al., 2001). 

A list of hybrid semi-parametric model based control applications can be found 

in Table 8 – supplementary material. 

 

3.3.2. Hybrid semi-parametric model based controller tuning 

The hybrid process model can also be exploited to tune any kind of standard 

controller both, prior to application (off-line) (Georgieva & de Azevedo, 2009; 

Georgieva & Feyo de Azevedo, 2007; Schubert et al., 1994a; von Stosch et al., 

2012); and under control (on-line) (Andrasik, Meszaros, & de Azevedo, 2004; 

Chen et al., 2004; Patnaik, 2003, 2004, 2008, 2010; Schubert et al., 1994a; Wei, 

Hussain, & Wahab, 2007; Zhang et al., 2006). The utilization of a hybrid semi-

parametric model for controller tuning bears some advantages, because (i) the 

hybrid semi-parametric model might be identified from standard operational 

data, but the controllers can be tuned considering set-point changes and load 

disturbances, both scenarios in which the model might have to extrapolate (von 

Stosch et al., 2012); and (ii) the coupling of different control inputs and/or 

variables can be captured with little effort by the hybrid semi-parametric model 

and subsequently considered during the tuning (multivariate control) (von 

Stosch et al., 2012). Controllers which are tuned in such a way comprise, for 

instance, neural net- work controllers (Patnaik, 2003, 2004, 2008, 2010; Schubert 

et al., 1994a; von Stosch et al., 2012; Zhang et al., 2006), the ANN models in a MPC 

schema (Georgieva & de Azevedo, 2009; Georgieva & Feyo de Azevedo, 2007) or 

hybrid controllers (Andrasik et al., 2004; Ng & Hussain, 2004; von Stosch et al., 

2012; Wei et al., 2007), where the term hybrid semi-parametric controllers is an 

analogy to hybrid semi-parametric models. Frequently applied standard 

approaches which incorporate hybrid semi-parametric models comprise Internal 

Model Control (IMC) (Chen et al., 2004; Schubert et al., 1994a; Wei et al., 2007; 
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Zhang et al., 2006) and Inverse Model Control (IVMC) (Ng & Hussain, 2004; Wei 

et al., 2007), see supplementary material – Table 9. In comparison to standard 

PID control (Ng & Hussain, 2004; Schubert et al., 1994a; Wei et al., 2007) or  in 

comparison to I(V)MC schema which utilize a neural network process model 

(Ng & Hussain, 2004; Wei et al., 2007), the hybrid semi-parametric model based 

approaches were reported to per- form better. For an industrial reactive 

distillation column Chen  et al. (2004) show that the application of a hybrid semi-

parametric model based closed-loop IMC schema can reduce the process 

variability significantly in comparison to an open-loop schema. 

 

3.4. Optimization 

 

Hybrid semi-parametric models have been used to optimize the control policy 

either to maximize some quantity (Dors et al., 1995; Eslamloueyan & Setoodeh, 

2011; Henriques et al., 1999; Ignova  et al., 2002; Kahrs & Marquardt, 2007; 

Mahalec & Sanchez, 2012; Preusting et al., 1996; Psichogios & Ungar, 1992; 

Schubert et al., 1994a; Teixeira, Alves, et al., 2007; Teixeira et al., 2005, 2006; 

Tholudur & Ramirez, 1996, 1999; Zuo & Wu, 2000) or to meet specific quality 

specifications (Doyle et al., 2003; Hermanto et al., 2011; Safavi et al., 1999; Tian et 

al., 2001; Zhang et al., 2012) (see Table 10 – supplementary material for a complete 

list). Theoretically, the control policy can be optimized off-line or on-line. On-

line optimization, which essentially devolves to closed-loop (sub)optimal 

control, can be expected to achieve better performance than off- line 

optimization (implemented as open-loop control) (Hermanto et al., 2011), since 

e.g. process variations can be taken into account. However, on-line optimization 

is not always feasible due to the lack of reliable at-time available measurements or 

due to high computational costs of the optimization. In order to flee from these 

problems, a possible strategy is to perform an off-line optimization of the control 

inputs followed by an on-line re-optimization whenever new state 

measurements become available (Ignova et al., 2002; Zuo & Wu, 2000) or to adapt 

the pre-optimized control inputs at each sampling instance aiming to achieve the 

quality specifications (Hermanto et al., 2011). Nevertheless, most processes are 

run in open-loop, subject to optimized control policies, as e.g. in pharmaceutical 

industry where “approved process recipes” is tightly followed. 

Hybrid semi-parametric modeling provides a valuable alternative for process 

optimization, because operational variables that impact on the product can 

easily be incorporated into the model (due to the nonparametric model) and yet 

good model extrapolation properties can be yield (due to the parametric model), 

which is essential for the identification of optima beyond the conditions covered 

in the data (Mogk et al., 2002). However, the quality of the model predictions 

will deteriorate when the non- parametric model is confronted with input 

constellations which it had not been trained on, wherefore measures have been 
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pro- posed to constrain the optimization (Kahrs & Marquardt, 2007; Mahalec & 

Sanchez, 2012; Teixeira et al., 2006), see Section 2.5.3. The optimized predictions 

can also be assessed with the calculated confidence interval (Kahrs & Marquardt, 

2007; Tian et al., 2001). It is obvious  that  due  to  these  restrictions  the  optimal 

solution will usually not be encountered during the first optimization. Hence, 

batch-to-batch methodologies have been pro- posed for quantity maximization 

(Teixeira, Alves, et al., 2007; Teixeira et al.,  2006)  or  to  meet  quality  

specifications  (Doyle et al., 2003; Hermanto et al., 2011; Zhang et al., 2012). It 

was observed that the predicted performance and the one experimentally 

obtained converged with increasing number of experiments (Hermanto et al., 

2011; Teixeira et al., 2006), where the convergence rate was improved when pre-

optimized control inputs were on-line adapted (Hermanto et al., 2011). Even 

though the mechanistic knowledge impact considerably on the optimization 

results (Teixeira et al., 2005) (via extrapolation) it is important to design the 

excitation experiments (the data of which are utilized for the nonparametric 

model identification) in such a manner that the process region of interest is 

covered, see Section 2.6.1. It would be interesting to study whether it is generally 

better to explore the design space first and to perform an optimization then or 

whether iterative batch-to-batch optimization might converge faster to the 

optimal conditions. Maybe the best strategy is even a mixture of both. 

 

3.5. Model-reduction 

 

Real processes are many times overwhelmingly complex. In order to derive a 

workable model, simplifications in form of assumptions are usually made. 

Simplifications might also be made in order to facilitate the analysis or to obtain 

a computational inexpensive solution e.g. for control purposes. In this respect 

hybrid semi-parametric modeling can be applied to correct for the unconsidered 

or simplified phenomena therefore maintaining a high degree of accuracy, while 

still being computationally efficient (Chen et al., 2004; Eslamloueyan & 

Setoodeh, 2011; Madar et al., 2005; Qi et al., 1999; Safavi et al., 1999; Vega et al., 

1997). Similarly, after the reduction of a set of equations through e.g. singular 

perturbation (Chen et al., 2004), residualization (Hahn, Lextrait, & Edgar, 2002) 

or orthogonal decomposition (Romijn, Ozkan, Weiland, Ludlage, & Marquardt, 

2008), it might be desirable to approximate a subset of equations by 

nonparametric models, whereby a hybrid semi-parametric model is yielded. A 

solution can be obtained in a computationally efficient way while most of the 

properties of the original system of equations can be retained. 

 

3.6. Scale-up 

 

A model developed on small scale, e.g. a pilot plant, cannot necessarily 

describe the same process on larger scale, since the dominating effects might 
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differ with the scale. Despite this fact, scale-up confronts the model developed 

on the small scale, with process conditions on larger scale that the model has not 

been developed on i.e. extrapolation. As outlined above, the model 

extrapolation properties are determined by the incorporated mechanistic 

knowledge. Ergo the application of strictly nonparametric models, which have 

very limited extrapolation properties, is not expedient, a frotiori considering that 

the data used for their determination on small scale might contain scale specific 

information. Hybrid semi-parametric models can have good extrapolation 

properties, while at the same time being less laborious to develop than strictly 

mechanistic models. Thus, hybrid semi-parametric modeling presents a very 

efficient approach for scale-up (Braake et al., 1998). The probably most efficient 

way is to aim from the beginning at the development of a hybrid semi-parametric 

model, because it can be tented to develop the model in such a way that good 

inter- and extrapolation properties are yielded with a small number of 

specifically designed experiments at both scales, e.g. Braake et al. (1998). Another 

strategy (Bollas et al., 2003; Simon et al., 2006)    is to complement a mechanistic 

model, developed at small-scale, with nonparametric techniques that represent 

specific parts of the model on the large-scale. In this case, the nonparametric 

techniques account for the scale-up factors (Bollas et al., 2003; Simon et al., 2006) 

or other assumptions incorporated into the small scale mechanistic model, which 

do not hold true on the larger scale (Simon et al., 2006). Similarly, Bellos et al. 

(2005) show that a mechanistic model developed on the industrial scale while 

supported by non- parametric models for modeling of specific parts, allows to 

estimate the effect of the feed quality on the catalyst reactivity and the cat- alyst 

activity level, using only few laboratory and unit operation data. In fact, the 

lower requirements on data from both scales is, besides the extrapolation 

properties, the major advantage of hybrid semi-parametric models over nonlinear 

nonparametric techniques (Braake et al., 1998). Comparisons of the predictions 

and extrapolation capabilities of several hybrid semi-parametric models to those 

of the pilot plant mechanistic model and to a nonparametric model by Bollas et al. 

(2003) show that the best performances, reaching the limitations of the 

experimental error, are obtained by the hybrid semi-parametric models. 

 

4. Concluding remarks and outlook 

 

The hybrid semi-parametric modeling framework is reviewed covering the 

most critical aspects for structure definition, identification and their impact on 

model performance. Various applications of hybrid semi-parametric modeling in 

different areas were reviewed such as process monitoring, control, optimization, 

scale-up and model reduction. From this revision the following main points can 

be highlighted: 
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(i) Hybrid semi-parametric modeling found considerable attention during the 

last 20 years and the advantages of this approach are significant. 

(ii) Throughout the applications, hybrid semi-parametric models are 

compared to nonparametric models or mechanistic models. In almost all cases it 

was reported that the hybrid semi-parametric models performed better than 

either  of the other. For control or optimization, the better model performance 

translated usually into improved control and optimization results. 

(iii) The interlinking of different knowledge sources into a hybrid semi-

parametric modeling approach can, although not necessarily, result into better 

system descriptions, than when compared to models that are based on a single 

source of knowledge. This means that the application of hybrid semi- parametric 

approaches does not automatically result into improved models but that a 

differentiated view has to be kept and an analysis of the reason for eventual 

models shortcomings must be applied. 

(iv) The incorporation of additional mechanistic/phenomenological knowledge 

was discussed, and it was concluded that the model performance can be enhanced 

when the incorporated structure is accurate. On the other hand it was stated that in 

cases of inaccurate model structure the application of parallel approaches is, in 

general, to prefer. A rigorous comparison of the parallel structure to a serial 

structure C is still lacking. 

(v) The utilization of several nonparametric models in hybrid approaches has 

been reported. In this respect it can be stated that the decision on which 

nonparametric model is the best to be applied is problem-dependent. 

(vi) Different identification procedures of the nonparametric models have been 

reviewed suggesting that the incremental approach together with the 

sensitivities approach are the best identification methods. 

(vii) Measures for extrapolative situations have been discussed and it was 

concluded that those methods mostly take the range or the dimensional 

extrapolation into account, while frequency extrapolation (the dynamics) is not 

considered. However, in cases of control the transient behavior is an important 

factor and should be taken into account. This could for instance be accomplished 

by augmenting the inputs of the extrapolation measures by the derivatives. 

It was shown that hybrid semi-parametric models can be used for experimental 

design. The question whether it is better to systematically explore the process 

operational space by using e.g. a coverage approach or whether an iterative 

batch-to- batch optimization is used to plan the next experiment might depend on 

the case and the pursued objectives. 

 

In future, hybrid semi-parametric models can be expected    to consist of several 

parametric and nonparametric sub-models. Besides the challenges that arise 

when incorporating e.g. different time scales, especially structuring the models, 

model discrimination and parameter identification for these complex, large-
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scale systems will be challenging. Novel methods will probably seek to 

overcome those by decomposing the system into sub-systems (similar to the 

incremental approach Kahrs & Marquardt, 2008) and/or by employing tailored 

design of experiments. Also semi- quantitative data and qualitative information 

might be increasingly incorporated for this purpose. The calculation of confidence 

intervals for each of the sub-models is another challenge. 

Perspectively, the application of hybrid semi-parametric models seems promising 

in several areas. Recently, the value added by hybrid semi-parametric modeling to 

the PAT initiative was outlined by Gernaey and Gani (2010) and Glassey et al. (2011). 

Interestingly, the requirements on the “PAT tools” reads as the list of hybrid semi- 

parametric model properties. The pharmaceutical industry could profit immensely 

from the adaptation of hybrid semi-parametric modeling methodologies at several 

development stages of pharmaceutical processes (Gernaey, Cervera-Padrell, & 

Woodley, 2012). 

Another emerging area for the application of hybrid semi- parametric models 

is systems biology see for instances (Carinhas et al., 2011; von Stosch et al., 2010). 

Hybrid semi-parametric modeling is attractive in this area since it can help to 

link the different scales of cell modeling and can account for unknown or 

uncertain parts. In systems biology middle-out approaches, which seek to 

combine top-down and bottom-up approaches, are expected to find increasing 

application in future (Rollie, Mangold, & Sundmacher, 2012). Hybrid semi-

parametric modeling is especially suited for the development of middle-out 

approaches, since it can support the bridging of top-down (data-driven) and 

bottom-up (mechanism- driven) approaches. 

Hybrid semi-parametric modeling also appears promising for (bio)medical 

research, where challenges are multi-scale ranging from the sub-cellular level up 

to patients response and where the integration of data from several scales along 

with mechanistic models seems necessary in order to provide affordable 

modeling solutions that support rational drug development (Schuppert, 2011). 

Likewise, in synthetic biology rational design of biological sys- tems could be 

enabled through hybrid semi-parametric modeling as opposed to current 

designs, which mostly are based on trial- and-error. In particular, hybrid 

modular parts could be created that integrate standard mathematical 

formulations describing biological parts (e.g. Cooling et al., 2010; Rodrigo, 

Carrera, & Jaramillo, 2007) with nonparametric approaches that model the 

contained coefficients based on e.g. the DNA sequence. The combination of 

various hybrid modular parts can subsequently be used to either describe given 

systems or to design synthetic systems. For the design an iterative schema 

could be applied, in which the model is used to gradually improve the 

performance of the system and in which the experimental data are used 

alongside to improve the model. With this it should be feasible to reduce the 

experimental load and therefore to enable much more efficient development of 
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synthetic biologic systems. 

The integration of hybrid semi-parametric models into complex flowsheets for 

(bio)chemical processes and the resulting overall representation of the plant, is 

envisaged as a consequence of the publications by Fiedler and Schuppert (2008), 

Schweiger, Sayyar- Rodsari, Bartee, and Axelrud (2010). An integrated plant-

wide modeling approach provides several advantages, such as the possibility to 

plant-wide optimize the set-points or the opportunity to achieve better closed-

loop control performance. 

All in all, this paper shows that the application of hybrid semi-parametric 

models can provide significant advantages in several areas. Hybrid semi-

parametric modeling ultimately enables a rational management of multiple 

knowledge sources and there- with improves decision-making. In order to 

further close the gap between theory and practice, software tools should be 

developed that enable flexible integration of different sources of knowledge into 

hybrid semi-parametric model structures. 
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Fig. 1. Parametric, nonparametric and hybrid semi-parametric modeling 

and the types of knowledge they are based on. 

 

 

 
 

 

Fig. 2. Schematic sketch of the three ways to combine two models 

(represented by a white and a black box). A shows a parallel configuration. 

B and C present serial structures. 

 

 
 

Fig. 3. Schematic sketches of the model structure for one-step and multi-

step ahead predictors. 
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Fig. 4. Schematic representation of white box and black box model 

combination schema. (a) Superposition; (b) multiplication; (c) weighting of 

the predictions of the same quantity by using either a black or a white box 

model; (d) weighting of the white box model predictions using a black box 

model; (e) weighting of the black box model predictions using a white box 

model. 

 

 
 

Fig. 5. Schematic sketches for dimensional extrapolation, range 

extrapolation, interpolation and frequency extrapolation, adapted from van 

Can et al. (1998). 

 

 
 

Fig. 6. Number of publications on hybrid semi-parametric modeling over 

the area of applications and with respect to the type of data used from 1992 

to 2012. 
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Fig. 7. Diagram of two possibilities to use hybrid semi-parametric modeling 

for monitoring. 

 


