

MESTRADO INTEGRADO EM MEDICINA ARTIGO DE REVISÃO BIBLIOGRÁFICA

The mechanisms of seizures in eclampsia

Daniela Moura Guedes Santana

2020

The mechanisms of seizures in eclampsia

Artigo de revisão bibliográfica

Estudante:

Daniela Moura Guedes Santana

Correio eletrónico: danielaguedes.santana@gmail.com Mestrado Integrado em Medicina Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto

Orientador:

Professor Doutor Luís Guedes-Martins

Professor Auxiliar Convidado do Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, 4050-313 Porto, Portugal.

Assistente Hospitalar do Centro Hospitalar do Porto EPE, Centro Materno Infantil do Norte, Departamento da Mulher e da Medicina Reprodutiva, Largo Prof. Abel Salazar, 4099-001 Porto, Portugal.

Unidade de Investigação e Formação – Centro Materno Infantil do Norte, 4099-001 Porto, Portugal Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-319 Portugal.

Coorientador:

Dra. Cristiana Moreira

Centro Hospitalar do Porto EPE, Centro Materno Infantil do Norte, Departamento da Mulher e da Medicina Reprodutiva, Largo Prof. Abel Salazar, 4099-001 Porto, Portugal.

Title: The mechanisms of seizures in eclampsia.

Authors:

D. Santana¹, C. Moreira², *L. Guedes-Martins^{1,2,3,4}

Affiliations:

¹Instituto de Ciências Biomédicas Abel Salazar, University of Porto, 4050-313 Porto, Portugal ²Centro Hospitalar Universitário do Porto EPE, Centro Materno Infantil do Norte, Departamento da Mulher e da Medicina Reprodutiva, Largo Prof. Abel Salazar, 4099-001 Porto, Portugal

³Unidade de Investigação e Formação – Centro Materno Infantil do Norte, 4099-001 Porto, Portugal

⁴Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-319 Portugal

* Corresponding author's e-mail: luis.guedes.martins@gmail.com (Tel: +351965130529)

Running head: Seizures in eclampsia.

Conflicts of interest: None declared.

Manuscript word, table and figure count: 7247 Words of body text and 5 Figures.

The mechanisms of seizures in eclampsia

Artigo de revisão bibliográfica

Assinatura do Estudante:

(Daniela Santana)

Assinatura do Orientador:

Curs Gudes Martins

Cristiana Moreira

(Luís Guedes-Martins)

Assinatura do Coorientador:

(Cristiana Moreira)

AGRADECIMENTOS

A realização da presente dissertação contou com apoios diretos e indiretos de múltiplas pessoas e instituições às quais estou profundamente grata.

Agradeço primeiramente ao orientador desta dissertação, Professor Doutor Luís Guedes-Martins, por toda a ajuda e disponibilidade concedida ao longo deste último ano. A sua orientação e paciência permitiu manter a motivação e interesse durante todo o processo de elaboração deste trabalho.

Não posso deixar de referir o imenso apoio que me foi concedido pela minha coorientadora, Dra. Cristiana Moreira. A sua compreensão e amabilidade foram constantes e a sua ajuda fulcral para a elaboração desta dissertação com qualidade.

Aos meus pais e irmãos que me apoiaram e motivaram em qualquer situação, relembrando-me dos meus objetivos sempre que assim o necessitava.

A todos os amigos e colegas que, de alguma forma, contribuíram para a finalização desta etapa; À Susana, pela sua amizade incondicional e apoio durante todos os anos deste curso.

RESUMO

A eclâmpsia é uma doença com alta morbimortalidade e impacto considerável a longo prazo na saúde das mulheres.

Pouco ainda se sabe sobre os mecanismos inerentes às convulsões eclâmpticas. Deste modo, o nosso objetivo é rever a literatura disponível sobre o assunto, expondo as teorias formuladas sobre esse tema e possibilitando a reflexão sobre possíveis estratégias terapêuticas.

Verificou-se que o comprometimento da autoregulação do FSC (fluxo sanguíneo cerebral) e a interrupção da BHE (barreira hematoencefálica) desempenham um papel essencial no desenvolvimento de convulsões na eclâmpsia. Vários fatores parecem afetar esses dois mecanismos, como a sobreexpressão de aquaporinas, libertação de citocinas pró-inflamatórias e a hipomagnesemia. Além disso, apesar de ser amplamente utilizado, o efeito do sulfato de magnésio é de facto pouco compreendido e a real contribuição da hipertensão para a patogénese da doença continua por determinar.

Várias questões ainda carecem de respostas e estudos de alta qualidade sobre este tema são escassos. É necessária uma investigação mais aprofundada para alcançar uma compreensão profunda desta doença perigosa, de modo a desenvolver estratégias terapêuticas adequadas.

Palavras-chave

Eclâmpsia; Gravidez; Convulsão; Encefalopatia; Sulfato de magnésio; Vasodilatação, Barreira hematoencefálica.

ABSTRACT

Eclampsia is a disease with high morbidity and mortality and a long-term impact on women's

health.

Little is known about the mechanisms of eclamptic seizures. We aim to review the literature

available on this subject, exposing the theories formulated regarding this theme and enabling

reflection about possible therapeutic strategies.

CBF autoregulation impairment and BBB disruption have been found to play an essential role in

development of seizures in eclampsia. Several factors seem to affect these two mechanisms,

such as overexpression of aquaporins, release of pro-inflammatory cytokines and

hypomagnesemia. Additionally, despite being widely used, the effect of magnesium sulfate is in

fact poorly understood and real contribution of hypertension for disease pathogenesis remains

to be determined.

Multiple questions remain to be answered and high quality studies on this theme are scarse.

Further investigation is needed to achieve a profound understanding of this dangerous disease

and to develop adequate therapeutic strategies.

KEYWORDS

Eclampsia; Pregnancy; Seizure; Encephalopathy; Magnesium sulfate; Vasodilation, Blood-brain

barrier

iii.

ABBREVIATIONS

ACA – Anterior middle artery
AR – Autoregulation
BBB – Blood brain barrier
BHE – Barreira hematoencefálica
CBF – Cerebral blood flow
CH – Chronic hypertension
CVR – Cerebrovascular resistance
FSC – Fluxo sanguíneo cerebral
GHT – Gestational hypertension
MAP – Mean arterial pressure
MCA – Middle cerebral artery
MCAvmean – Mean velocity middle cerebral artery
NO – Nitric oxide
PCA – Posterior cerebral artery
PE – Preeclampsia
SiPE – Superimposed pre-eclampsia
SVR – Systemic vascular resistance

Index

AGRA	DECIMENTOS	i.	
RESUI	МО	ii.	
Pala	avras-chave	ii.	
ABSTF	RACT	iii.	
KEYW	ORDS	iii.	
ABBR	EVIATIONS	iv.	
LIST C	OF FIGURES	V.	
INTRO	DDUCTION	1	
METH	IODS	2	
EFFEC	T OF PREGNANCY ON CEREBRAL BLOOD FLOW	2	
I.	General considerations about Cerebral Blood Flow (CBF)	2	
II.	Global physiologic adaptations in pregnancy	4	
III.	CBF in Pregnancy	6	
REGULATION OF CEREBRAL BLOOD FLOW IN PREECLAMPSIA AND ECLAMPSIA			
I.	CBF in Hypertensive Disorders: Non-pregnant state	7	
II.	CBF in Hypertensive Disorders: Pregnancy	7	
III.	CBF behaviour in different hypertensive disorders of pregnancy	8	
IV.	Transient and long term consequences of CBF changes for the hypertensive mother	9	
٧.	Animal models and findings	10	
MECHANISM OF SEIZURE IN ECLAMPSIA			
I.	Blood brain barrier	12	
II.	Immunogenic/cytotoxic theory	12	
III.	The role of aquaporins in brain edema	14	
IV.	PRES theories	14	
٧.	Hypomagnesemia	16	
DISCU	JSSION	17	
ETHIC	S COMMITTEE APPROVAL	18	
PEER-	REVIEW	18	
AUTH	AUTHOR CONTRIBUTIONS		
CONF	CONFLICTS OF INTEREST		
FINAN	INANCIAL DISCLOSURE		
DEEED	AFFEDENICES		

LIST OF FIGURES

- Figure 1 Poiseulle's law
- Figure 2 Consequences of loss of cerebral blood flow autoregulation
- Figure 3 The impact of external and internal factors on the seizure threshold of a normal brain
- Figure 4 Cytotoxic theory
- Figure 5 Hyperperfusion and Hypoperfusion theories on the development of PR

INTRODUCTION

Eclampsia is a serious multisystem hypertensive disorder of pregnancy and a major cause of maternal morbidity and mortality [1-4]. In the last decades, there has been a marked increase in hypertensive disorders of pregnancy, being responsible for 10% of all maternal deaths. However, the incidence of eclampsia has been decreasing and is, in fact, a rare complication of preeclampsia [3, 4]. On the other hand, it accounts for approximately 50% of maternal mortality in poor and underdeveloped countries [4-10] due to underdiagnosis of hipertensive disorders and inadequate antenatal care [6, 7, 11]. In fact, most deaths can be prevented with timely treatment of the condition and early delivery in high-risk women [12, 13].

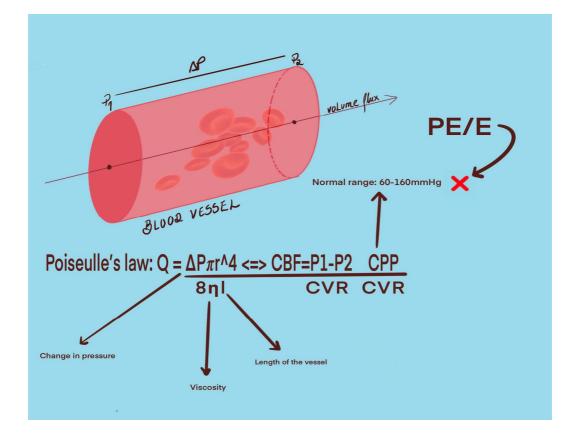
Eclampsia is characterized by new on-set generalized tonic-clonic seizures in a pregnant woman with preeclapmsia, with no other cause identifiable [4, 5, 7, 9, 12, 14]. It is related with encephalopathy caused by underperfusion of the brain [2, 12]. Severe headaches and other neurological impairments as cortical blindness and haemorrhagic stroke may also be present. It is considered an obstetric emergency and prompt delivery is the only definitive treatment [3, 7, 15-17]. Because a considerable percentage of patients develop this disorder in the post-partum period, these women should be under close monitoring after delivery. [6, 8] Prophylactic perfusion with magnesium sulfate is a common practice and it seems to be an efficient way to prevent major eclamptic adverse outcomes from happening. However, there is a lot of controversy about this topic in literature [2, 4, 6-9, 12]. In fact, either its preventive role, neither the mechanism of seizure in eclampsia are completely understood [5, 6, 8, 9, 12].

The pathophysiology of eclampsia is controversial and discussed since its was first diagnosed. Some pathophysiological mechanisms of pre-eclampsia are well established, such as the role of ischemia and endothelial dysfunction in end-organ disease. These changes contribute to an irreversible cardiovascular dysfunction and, therefore, for the high risk of cardiovascular disease, such as stroke, ischaemic heart disease and chronic hypertension in these women later in life [3, 4, 14, 18].

To accurately prevent eclampsia, it is imperative to understand its mechanisms. This systematic review pretends to highlight the facts already known about this clinical entity, and to collect useful knowledge and evidence in literature, that might be used to prevent this serious disorder, that still has negative impact all over the world.

METHODS

To compose this review, thorough literature searches were repeatedly conducted in PubMed and Medline with a limitation of articles written in the English language. The search terms used were Doppler, placenta, umbilical artery, fetal surveillance, and placental insufficiency. Additionally, the references of all analysed studies were searched to obtain necessary information.


EFFECT OF PREGNANCY ON CEREBRAL BLOOD FLOW

I. General considerations about Cerebral Blood Flow (CBF)

Brain is a novel organ, with a high metabolic demand, accounting for about 20% of the total body energy consumption in a normal adult at rest [19, 20]. Cerebral blood flow (CBF), defined as the blood supply to the brain at every given time is, therefore, of the outmost importance for brain viability and function [21].

CBF autoregulation (AR) allows blood flow to be constant despite considerable changes in the perfusion characteristics over time [12, 22]. In normotensive adults, CBF is maintained at a practically constant value of around 50mL/100g/min, with cerebral perfusion pressure (CPP) between 60 and 160mmHg [23]. When out of these limits, autoregulation can be completely threatened and the CBF is then totally dependent on mean arterial pressure (MAP) [24, 25].

In order to understand how CBF is shapped, Poiseuille's law must first be noticed, whose representation is in the image below (Figure 1):

Figure 1. Poiseulle's law: adapting this law specifically to CBF, driving pressure will be cerebral perfusion pressure (CPP) and resistance represented by cerebrovascular resistance (CVR). The latter will vary according to angiogenic changes in the entire cerebral vascular system. Those who contribute most to it are small arteries and pial arterioles, which have the ability to regulate their lumen, by regulating its radius (r), through vasoconstriction or vasodilation. Finally, CPP can be defined as the difference between mean arterial pressure (MAP) and intracranial pressure (ICP), while ICP refers to the pressure of the cerebrospinal fluid (CSF) in the subarachnoid space.

Four types of CBF regulatory responses are recognized: myogenic, metabolic, neurogenic and endothelial [20, 26].

Myogenic control regulates the smooth muscle contraction, altering vessels diameter according to blood pressure changes, a phenomenon called cerebral autoregulation (AR). Metabolic control is trigerred by chances in CO2, O2 and protons: hypercapnia increases CBF due to vessel dilation whereas hypocapnia causes the opposite effect; hypoxia modulates cerebral perfusion only when below ≈50mmHg; hemodilution and anaemia, which are common during pregnancy, are known to increase CBF [20, 21]; nitrite, a product of NO metabolism, seems to have the vasodilator capacity [27]. Neurogenic control, also known as functional hyperemia or neurovascular coupling, refers to the alterations in local perfusion that occur in response to neuronal activation, throw dilation or contraction of the microvessels coupled to neurons [20, 28-30]. At last, endothelial regulation occurs in response to a number of substances produced

by the endothelial cells, which may be vasodilators (nitric oxide) or vasoconstrictors (endothelin-1) [26].

CBF can be assessed by transcranial Doppler ultrasound (TCD) giving a non-invasive global index of CBF in static and dynamic conditions. TCD measures blood velocity rather than blood flow. Blood velocity is indeed representative of blood flow when vessel diameter is constant. However, because CBF in under regulation of four different mechanisms acting independently, TCD should be interpreted with caution.

II. Global physiologic adaptations in pregnancy

Most adaptations occurring during pregnancy, aim to create a favorable environment to the development of the fetus and occur in various body systems [20]. These adaptations may affect CBF regulation during pregnancy.

Maternal blood volume increases by around 50%, increasing cardiac output [20, 29, 31] and leading to cardiac remodeling by the end of pregnancy. Despite the increased cardiac output, mean arterial pressure (MAP) decreases over the second trimester, returning to normal at the end of pregnancy [20, 31]. This MAP behavior reflects a number of cardiovascular physiologic adaptations. Changes in the proportion of vasoconstrictors and vasodilators in plasma and alterations in vascular response to them mediate structural and physical changes in blood vessels. There is a significant reduction in systemic vascular resistance (SVR) and, therefore in cerebral vascular resistance (CVR) [29], due to a reduced response to vasoconstrictor factors [20, 32], and an increased release of NO, causing general vasodilatation [20, 32, 33]. Thus, at the end of pregnancy vasoconstriction, namely in cerebral territory, will be impaired due to the remodeling that will have occurred throughout pregnancy [33]. Consequently, a deregulation of CBF may occur in the presence of an insult [26], as seen in Figure 2.

Other maternal adaptation of pregnancy influencing CBF is the higher sensitivity to CO2 caused by progesterone, decreasing the threshold of the ventilator chemoreflex response, which results in a net decrease in PaCo2 and an increase in PaO2 and eventually in an altered CBF metabolic regulation.

Finally, although an increase in circulating permeability and vasoactive factors occurs in pregnancy, the blood-brain barrier does not seem to be affected by these changes.

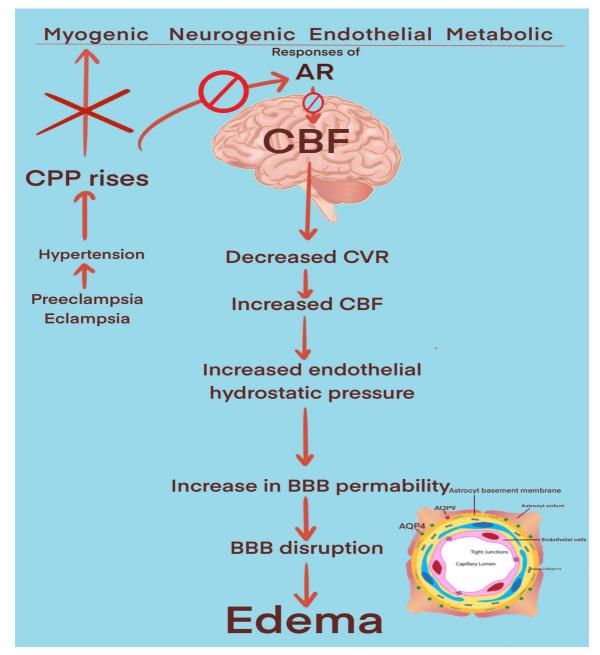


Figure 2. Consequences of loss of cerebral blood flow autoregulation

III. CBF in Pregnancy

During pregnancy, physiologic changes in cardiac output, blood pressure and blood gases influence in CBF regulation mechanisms. In normal circunstances, CBF velocity decreases, CBF volume increases and vascular resistance decreases. Those mechanisms are altered by hypertensive disorders and CBF may eventually be compromised due to loss of autoregulation capacity, although this alterations remain poorly understood [21, 26, 32].

Myogenic control is essentially triggered by changes in CO2 concentration, through a NO-mediated dilation of cerebral blood vessels. [20] Despite being one of the fastest mechanisms of CBF regulation, this reaction appears to be delayed in pregnancy, which means that vasoconstriction only occurs at higher blood pressures compared with non-pregnant women [30]. However, studies evaluating cerebral auto-regulation and cerebrovascular reactivity in CO2 in pregnancy are scarce.

Despite controversial finding regarding neurogenic control, in fact, during pregnancy, a fastest response is recorded in the 2nd and 3rd trimesters by visual stimulation. However, there are no significant differences between pregnant and non-pregnant women regarding MCAvmean [29]. In severe preeclampsia there is an increased latency of visually evoked potentials, which solves in the postpartum period [29, 30].

Some studies found that mean velocities in medial cerebral artery (MCA) and posterior cerebral artery (PCA) are significantly lower in the last two trimesters, at rest, when compared with non-pregnant women. However, while MCA velocity decreases linearly throughout pregnancy, PCA velocity returns to normal at term [20]. Different mechanisms may regulate blood flow in these two main arteries evolved in the regulation of CBF. Such differences may result in an increase in CBF in early pregnancy, with subsequent involution at term [20].

REGULATION OF CEREBRAL BLOOD FLOW IN PREECLAMPSIA AND ECLAMPSIA

The effects of pre-eclampsia and eclampsia on CBF remain a matter of debate. In fact, evidence in literature is controversial [26, 34].

I. CBF in Hypertensive Disorders: Non-pregnant state

In non-pregnant women, arterial hypertension leads to important vascular remodeling, significantly reducing vascular diameter and increasing their stiffness and thickness [35]. Such alterations aim to protect cerebral blood vessels from sudden increases in blood flow. However, cerebral vasculature auto-regulation capacity becomes impaired at lower blood pressures and ischemia may occur and on a long term basis, dementia and cognitive impairment arise.

II. CBF in Hypertensive Disorders: Pregnancy

While pregnancy itself is expected to increase CBF in consequence of systemic a local physiologic alterations, conditions such as hypertensive disorders are thought to disrupt this adaptations and contribute to a net reduction in CBF. In fact, Van Veen et al. concluded a case-control study in women with preeclampsia and found an impairment in CBF auto-regulation, reporting higher resistance index and increased CPP than in healthy pregnant women, and impaired cerebrovascular reactivity to CO2. Furthermore, these findings seem to be even deeper in women with superimposed preeclampsia [12, 36].

In non-pregnant women, vascular remodeling caused by arterial hypertension leads to significantly reduced vascular diameters. Due to maternal hemodynamic adaptations these changes occur in an opposite direction during pregnancy. When hypertensive disorders occur in pregnant state, CBF is impaired at a degree determined by type and magnitude of hypertensive disorder and pre-existence of a hypertensive state before pregnancy. In any case, brain vascularity becomes susceptible to great elevation in blood pressure [35].

In hypertensive episodes of pregnancy, there is an increase in CBF and potentially, cerebral edema. An increase in BBB permeability has also been documented, with BBB leakage and

micro-bleeds when acute hypertension occurs. Such an insult activates and recruits glial cells and a process of neuroinflammation is initiated, with long-term consequences and possibly major clinical deficits [12, 26, 30, 37-40]. These may be some of the phenomena beside eclampsia [20, 26]. However, not only hypertension and BBB disruption are responsible for cerebral edema in eclampsia, since severe cases of eclampsia have also been reported in women without significant elevation of their blood pressure [1, 3, 8, 36, 41, 42]. Several studies in animal models used to study eclampsia, found that only pregnant rats have edema when acute hypertension occurs. Thus, it appears that brain in pregnancy is prone to injuries caused by variations in blood pressure [39, 43].

An increase in sympathetic activity above expected in hypertensive diseases is well documented [44, 45]. However, its impact on hypertension in pregnancy is questionable, since sympathetic activity declines after delivery but blood pressure only registers such a decrease in hypertensive women [45].

III. CBF behaviour in different hypertensive disorders of pregnancy

Although most hypertensive diseases of pregnancy share a common pathogenic origin and are often interconnected, some important differences concerning CBF regulation arise [26, 36].

Four different scenarios of hypertensive disorders in pregnancy must be considered: chronic hypertension (CH); pre-eclampsia (PE), gestational hypertension (GHT) and superimposed pre-eclampsia (SiPE).

Evidence shows that significantly impaired CBF regulation is seen in PE, siPE and CHT when compared with healthy pregnant women, while autoregulation in GHT seems to be spared. GHT and CHT have the closest to normal index of autoregulation (AR) [42]. On the other hand, women with SiPE show the lowest AR index among all [41, 46].

Accordingly, it was shown that women with PE and SiPE, have a considerable higher CPP and CVR and a critically lower AR index than women with chronic hypertension alone [26, 41]. Therefore, GHTN and PE appear to have substantial differences regarding their pathophysiology [42].

In PE, CPP in anterior cerebral artery (ACA), MCA and PCA is increased even when adequate antihypertensive medication is administrated [35, 37, 47-50]. On the other hand, the effect of PE specifically on parenchymal arterioles, responsible for vascularization of white matter, is not

yet explicit [30]. The high perfusion pressure recorded in preeclamptic women has often been associated with symptoms such as headache and it in those suffering from eclamptic seizure [51].

Interestingly, a markedly low maternal MCA Doppler resistance in the second trimester, measured by TCD can actually be predictive of the development of pre-eclampsia. While most patients who develop the disease prematurely have increased peripheral vascular resistance from an early state, those who develop the condition later have initially low vascular resistance [42].

IV. Transient and long term consequences of CBF changes for the hypertensive mother

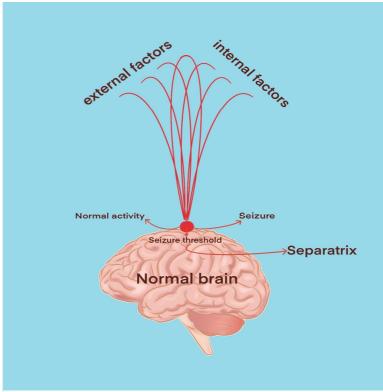
Cerebral blood flow changes of pregnancy quickly return to non-pregnancy state within hours after delivery [20, 26, 46]. However, these post-partum reset is altered when hypertensive disorders are present [26].

When hypertension is present, CBF deregulation can lead to BBB disruption, cerebral vasogenic edema [12, 31, 39, 46, 52, 53] and neuronal injury [20, 21]. Recent studies show that consequences of these changes may remain over time, leading to neuronal degeneration and capillary rarefaction [21]. One of the most affected areas is the occipital lobe, which frequently presents cortical/subcortical lesions [30, 48, 54]. Using brain MRI, hyperintense T2 lesions are frequently found in posterior cerebral territories, usually regressing over time, a clinical situation called reversible posterior encephalopathy syndrome (PRES), a variant of hypertensive encephalopathy [40]. These cortical areas are rarely affected in healthy pregnancies, in which there is not even the expected increase in blood flow [20].

Pre-eclamptic/eclamptic women have a higher risk of developing long-term neurological consequences. Several studies found a permanent reduced cerebrovascular reactivity in women with history of hypertensive disorders when compared to normal pregnancies [12, 37, 55]. The risk of stroke increases by about 80% [12, 29, 31, 35, 53, 56], occurring at an earlier age. An association with dementia has been difficult to achieve [57]. However, some studies recorded a significant increase in the incidence of vascular dementia and Alzheimer's disease in these women [12, 58]. Cognitive impairment [12, 37, 46, 59-62] and a white matter lesions [12, 46, 53, 62, 63] have also been found in long-term follow-up.

The reversibility of cerebral changes during hypertensive disorders of pregnancy remains an important question yet to be answered, fostered by the divergence of results found.

V. Animal models and findings


Several animal models were built in order to more easily understand these disorders. One of the most used is the reduced uterine perfusion pressure model (RUPP). This model is based on the fact that reduction in utero-placental blood flow is observed in most patients with pre-eclampsia [53, 64]. In these rats, there is an altered myogenic control, both in passive and active circunstances. While non-pregnant rats adapt its vessel diameter to blood pressure changes, in RUPP rats the diameter does not change significantly, making it impossible for the organism to defend itself from changes in blood pressure [30, 38].

Other similar studies have been conducted. For example, plasma from preeclamptic women was injected into the brain veins of late pregnant rats, with a significant increase in the permeability of the animal's blood vessels, and an attenuated vascular reactivity was enhanced [65]. Thus, myogenic control appeared to be abolished [12, 38]. Another example is the genetic mousse model knocked-out for endothelial NO synthase. Also, eclamptic seizures were induced in some animal models to study complications of eclampsia [30].

Despite the effort to create a faithful model for hypertensive disorders of pregnancy, there are no animal models that mimic all characteristic symptoms of the different conditions of hypertension during pregnancy. Diagnosis of hypertensive diseases in pregnancy is, in fact, a matter of constant discussion and definitions have been recently changed. Also, various methodologies have been used to study CBF both in animal models and humans and CBF study in animal models measures only static autoregulation, making difficult to interpret the results.

MECHANISM OF SEIZURE IN ECLAMPSIA

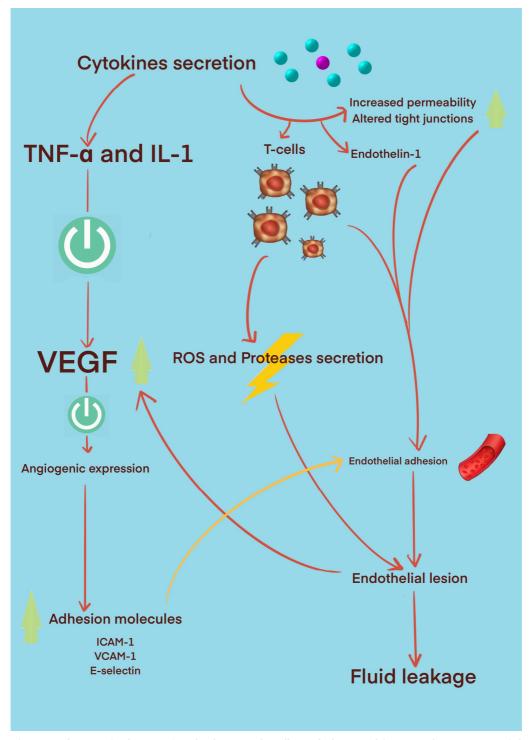
There is a wide variety of biological stimuli potentially causing seizures. Normal and convulsive activities are separated by a seizure threshold. Neuronal reorganizations occurring under pathological conditions lower seizure threshold (Figure 3) [66].

Figure 3. The impact of external and internal factors on the seizure threshold of a normal brain

A lot of theories and mechanisms of seizures in eclampsia have been studied and a variety of theories have been constructed. However, this remains a controversial theme and a lot is to be discovered.

The theories formulated to explain how seizures occur in the setting of preeclampsia, resulting in eclampsia, are presented and discussed below.

I. Blood brain barrier


Blood brain barrier (BBB) limits the passage of bigger molecules to brain cells, having a protective role [12, 20, 46]. An adequate function of parenchymal arteries (PAs) and the integrity of neurovascular coupling is crucial to keep BBB healthy. This arteries are capable of upstream vasodilation, what ensures a decrease in CVR locally [30], a phenomenon that is impaired in PE women [30].

In hypertensive sidorders of pregnancy, the release of placental factors and the inscrease of substances potencially toxic to BBB, such as circulating oxidized LDL (oxLDL) binding to its receptor, LOX-1, leads to subsequent generation of peroxynitrite causing damage to BBB [12].

II. Immunogenic/cytotoxic theory

As previously discussed, maternal immunity changes during the gestational period. This theory states that seizures in eclampsia are related to these changes [32]. Through widespread inflammation, there is an increase in the release of pro-inflammatory cytokines leading to activation of glial cells [30]. Moreover, the upregulation of endothelin-1, produced by endothelial cells [67, 68], leads to hypoperfusion [68, 69]. This insult decreases the seizure threshold [12, 32, 68]. A representation of this theory is seen in Figure 4.

PRES (posterior reversible encephalopathy syndrome) supports this theory. It has various etiologies but all share an inflammatory state [67, 68, 70]. Accordingly, the increased activity of the VEGF has a crucial role in the establishment of PE/E [12, 29, 53, 65, 68].

Figure 4. Cytotoxic theory visual scheme. Th cells and placental factors play an essential role in the release of pro-inflammatory cytokines.

III. The role of aquaporins in brain edema

Aquaporins 4 (AQP 4) and 9 (AQP9) are water transport channels and play an essential role in cerebral edema.

They are particularly abundant in nervous tissue. Additionally, there is an important increase in AQP4 pregnant rats [71]. This water channel has been associated with greater neuronal excitability [72, 73]. Therefore, the dysregulation of these channels contributes to seizure [74]. Magnesium sulfate reverts this process inhibitting AQP4 expression [62, 75-77]. AQP9 is permeable to other substances, such as nucleic acids, glucose, and urea, having a potencial role in seizure mechanism in pathologic metabolic conditions [73].

An upregulation of both proteins is observed in the hippocampus of women after seizure, with consequent higher microglia activation [73].

IV. PRES theories

PRES can be identified in almost 100% of women with eclampsia and in PE women with neurological symptoms [13, 43, 67, 68, 70, 77-79]. The parieto-occipital region is the most affected [39, 43, 80]. This might be related to the distribution of the sympathetic innervation in the brain. The vasoconstriction that occurs due to sympathetic stimulation is greater in the anterior areas, protecting them from injury [95].

In MRI, vasogenic edema in white matter is present, as an area of low density [80]. At T2 MRI, hyperintensity is observed in the injured sites [81]. Eventually, some patients may also have cytotoxic edema, which may suggest some degree of ischemia [82].

Most women suffer from PRES as a consequence of previous PE/E. In most cases, a preceding peak of blood pressure can be identified [79]. Nevertheless, there is still a significant number of normotensive women that develop PRES [5, 12].

The loss of CBF autoregulation leads to PRES [67, 78]. Cerebral hyperperfusion occurs, due to forced vasodilation of blood vessels. However, other areas present reactive vasoconstriction (Figure 5). Endothelial lesion leads to vasogenic edema [12, 67, 68, 70, 77, 82]. Additionally, in

posterior cortex, there is an increased expression of nNOS, making it more sensitive to hyperperfusion [39, 43].

Despite this, the theory of hypoperfusion is gaining relevance [80, 81]. It states that vasoconstriction leads to critical ischemia and, subsequently, vasogenic edema [67, 79], as we can see in Figure 5. In fact, supporting this theory, areas of hypoperfusion and vasospasm are found in the posterior regions of the brain [67, 80]. Also, there is a reduction in the caliber of cerebral arteries [12], as well as an increase in the thickness of carotid arteries [35].

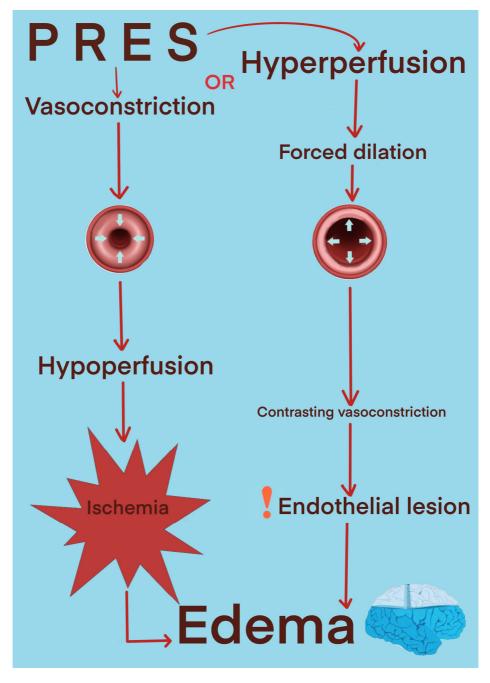


Figure 5. Hyperperfusion and Hypoperfusion theories on the development of PRES

V. Hypomagnesemia

MgSO4 (magnesium sulfate) is used worldwide in the prophylaxis and treatment of eclamptic seizures. However, little is known about its mechanism of action [62, 69, 75-77, 83, 84]. Its effect on lowering blood pressure is not very significant. Thus, further mechanisms might be involved [69].

Several studies have highlighted hypomagnesemia in PRES, regardless of its underlying etiology. In fact, PRES women have lower magnesium levels [13, 43, 67].

Magnesium can have a neuroprotective role, inhibiting the inflammatory state of pregnancy. Thus, it reduces BBB permeability [76, 77]. After its administration, pro-inflammatory mediators [62, 68, 69, 75, 76] and process of pinocytosis decrease [77]. Moreover, it reduces neuroinflammation and microglial activation, increasing seizure threshold [43, 62, 69, 76, 77, 84]. By acting as an anti-oxidant, it reduces lipid peroxidation. Therefore, it fights the increasing osmotic fragility of erythrocytes [85]. Additionally, as an NMDA-R antagonist, reduces neuronal excitability [77, 84].

It also stabilizes blood pressure through its action on vascular function [77, 83], improving uteroplacental perfusion [77, 83]. Uterine and cerebral arteries are more sensitive to its action during pregnancy [2, 12, 77]. On the other hand, it antagonizes calcium channels [62, 67, 75-77, 83, 84], reverting endothelial dysfunction [86]. Consequently, it leads to vasodilation and smooth muscle relaxation [70, 84].

By this variety of roles, magnesium sulfate as an important role in stabilizing serious preeclampsia and in prevention of seizures and for now is one of the scares therapeutic weapons in hypertensive disorders of pregnancy.

DISCUSSION

Eclampsia and its mechanisms remain poorly understood. Defined as a hypertensive disorder of pregnancy, this disease appears to have a poor association with blood pressure. Thus, many researchers now consider hypertension to be a consequence of an already installed endothelial injury. Consequently, the reason why pregnant women, with blood pressure within the normal range of cerebral autoregulation develop neurological symptoms and/or eclampsia remains unexplained.

Several theories have been formulated and deepened: loss of CBF autoregulation, BBB disruption, immune overexpression, vasospasm and hypomagnesemia. Eclampsia is possibly a multifactorial disease, to which all these mechanisms contribute. There is a variety of scientific papers on this subject. However some limitations are evident: firstly, eclampsia is an exclusive disease of humans, and most studies are carried out on rats. Thus, interpretation of results should be cautious. Concerns also arise regarding methodology. Transcranial Doppler is frequently used to study CBF, but this technique has no sensitivity to assess true CBF. On the other hand, most studies carried out in humans are prospective and this could lead to patients' misclassification. Definition of preeclampsia is controversial and many of the neurological symptoms experienced are difficult to record and some cases of severe preeclampsia might be misdiagnosed. In this way, the development of eclampsia may seem more unexpected than it actually is.

Regarding the cytotoxic theory, it is known that some placental factors may have an essential role in the release of pro-inflammatory cytokines. However, they are yet to be identified. Other theories yet to be validated are the role of impairment of glucose metabolism and hyperlipidemia.

The reason why certain regions of the hippocampus are affected and others are not is unknown. Thus, it is questioned whether different mechanisms will affect different cerebral areas.

On the other hand, other theories have been formulated. However, the impact of these emerging mechanisms remains unknown. In-depth knowledge of the previous theories did not allow absolute prevention of eclampsia. Therefore, the search for other essential factors can be the key to its prevention and treatment. Further studies should be carried out for this purpose, with adequate samples and methodology.

The questioned role of hypertension in eclampsia lead to new definitions. Thus, severe PE is now

PE with severe symptoms. The main objective of such a change is evident. Its severity should

never be underestimated, regardless of blood pressure values. Despite this changes, very high

blood pressures (160 / 110mmHg) continue to be universally recognized as an essential risk

factor.

Eclampsia is associated with poor maternofetal outcomes and long-term consequences.

Therefore, it should be prevented. Seizure prophylaxis with magnesium sulfate should be

considered in all women suffering from pre-eclampsia, even with no severe hypertension or

symptoms. On the other hand, some concerns arise regarding its administration and adverse

effects. Therefore, it is imperative to establish protocols on this subject.

Studies to understand and fill in the gaps of knowledge regarding neurological complications in

pre-eclamptic patients are being done for several years now. Nevertheless, there is still a lot to

conclude. A better comprehension of eclampsia outcomes could decrease both morbidity and

mortality.

On women who have died of eclampsia, it has been shown that cerebral edema is a recurrent

finding. Improved education and awareness of the importance of antenatal care may not only

improve maternal and neonatal outcomes. It will also assist in the enhanced characterization of

eclampsia.

In conclusion, eclampsia is a very unpredictable and dangerous disorder. A better

characterization of its risk factors and knowledge of its pathological mechanisms should be a

priority.

ETHICS COMMITTEE APPROVAL

N/A

PEER-REVIEW

Externally peer-reviewed.

18

AUTHOR CONTRIBUTIONS

Concept – D.S., L.G-M.; Design – D.S., C-M., L.G-M.; Supervision – L.G-M.; Literature Review – D.S., C-M., L.G-M.; Writer – D.S., C.M., L.G-M.; Critical Review- L.G-M.

CONFLICTS OF INTEREST

We have no conflicts of interest in this review.

FINANCIAL DISCLOSURE

The authors declared that this study received no financial support.

REFERENCES

- 1. Cerdeira, A.S., et al., Randomized Interventional Study on Prediction of Preeclampsia/Eclampsia in Women With Suspected Preeclampsia: INSPIRE. Hypertension, 2019. **74**(4): p. 983-990.
- 2. Sardesai, S., et al., *Posterior Reversible Encephalopathy Syndrome (PRES): Evolving the Mystery of Eclampsia!* J Obstet Gynaecol India, 2019. **69**(4): p. 334-338.
- 3. Sutton, A.L.M., L.M. Harper, and A.T.N. Tita, *Hypertensive Disorders in Pregnancy*. Obstet Gynecol Clin North Am, 2018. **45**(2): p. 333-347.
- 4. Hastie, R., et al., *Predictive Value of the Signs and Symptoms Preceding Eclampsia: A Systematic Review.* Obstet Gynecol, 2019. **134**(4): p. 677-684.
- 5. Berhan, Y. and A. Berhan, Should magnesium sulfate be administered to women with mild pre-eclampsia? A systematic review of published reports on eclampsia. J Obstet Gynaecol Res, 2015. **41**(6): p. 831-42.
- 6. Alese, O.M., T. Naicker, and J. Moodley, *Liver enzyme patterns in maternal deaths due to eclampsia: A South African cohort.* Pregnancy Hypertens, 2019. **17**: p. 15-19.
- 7. NzeObiang, P.C., et al., Magnesium sulfate administration for the management of eclampsia: Assessment of practices in university hospitals of Libreville (Gabon). Anaesth Crit Care Pain Med, 2019.
- 8. Laskowska, M., *Eclampsia emergency condition in obstetrics: case reports of two patients.* J Obstet Gynaecol, 2019. **39**(8): p. 1171-1172.
- 9. Gill, P., A.P. Tamirisa, and M.J. Van Hook, *Acute Eclampsia*, in *StatPearls*. 2019: Treasure Island (FL).
- 10. Jaskolka, D., et al., *Fetal sex and maternal risk of pre-eclampsia/eclampsia: a systematic review and meta-analysis.* BJOG, 2017. **124**(4): p. 553-560.
- 11. Sk, M.I.K., et al., *Praying until death: revisiting three delays model to contextualize the socio-cultural factors associated with maternal deaths in a region with high prevalence of eclampsia in India.* BMC Pregnancy Childbirth, 2019. **19**(1): p. 314.
- 12. Bergman, L., et al., *Investigating Maternal Brain Alterations in Preeclampsia: the Need for a Multidisciplinary Effort.* Curr Hypertens Rep, 2019. **21**(9): p. 72.
- 13. Youssoufa, M., K.T. Callixte, and N. Christian, *Occipital lobe epilepsy secondary to posterior reversible encephalopathy syndrome (PRES) during a post-partum eclampsia in Mali (West Africa)*. BMC Res Notes, 2013. **6**: p. 321.
- 14. Ennaqui, K., et al., [Haemorrhagic stroke of the brainstem secondary to postpartum eclampsia: about a case and literature review]. Pan Afr Med J, 2017. **27**: p. 266.

- 15. Sang, C., et al., Characteristics and outcome of severe preeclampsia/eclampsia concurrent with or complicated by acute pancreatitis: a report of five cases and literature review. J Matern Fetal Neonatal Med, 2019. **32**(4): p. 633-640.
- Shen, T., et al., A study on clinical characteristics and the causes of missed diagnosis of reversible posterior leukoencephalopathy syndrome in eclampsia. Neurol Sci, 2019.
 40(9): p. 1873-1876.
- 17. Bollig, K.J. and D.L. Jackson, *Seizures in Pregnancy*. Obstet Gynecol Clin North Am, 2018. **45**(2): p. 349-367.
- 18. Conti-Ramsden, F., et al., *Markers of maternal cardiac dysfunction in pre-eclampsia and superimposed pre-eclampsia.* Eur J Obstet Gynecol Reprod Biol, 2019. **237**: p. 151-156.
- 19. Cipolla, M.J., *The Cerebral Circulation*, in *San Rafael (CA): Morgan & Claypool Life Sciences*; 2009. p. Chapter 5, Control of Cerebral Blood Flow.

.

- 20. Bisson, M., I. Marc, and P. Brassard, *Cerebral blood flow regulation, exercise and pregnancy: why should we care?* Clin Sci (Lond), 2016. **130**(9): p. 651-65.
- 21. Fantini, S., et al., Cerebral blood flow and autoregulation: current measurement techniques and prospects for noninvasive optical methods. Neurophotonics, 2016. **3**(3): p. 031411.
- 22. Paulson, O.B., S. Strandgaard, and L. Edvinsson, *Cerebral autoregulation*. Cerebrovasc Brain Metab Rev, 1990. **2**(2): p. 161-92.
- 23. Phillips, S.J. and J.P. Whisnant, *Hypertension and the brain. The National High Blood Pressure Education Program.* Arch Intern Med, 1992. **152**(5): p. 938-45.
- 24. Cipolla, M.J. and G. Osol, *Vascular smooth muscle actin cytoskeleton in cerebral artery forced dilatation.* Stroke, 1998. **29**(6): p. 1223-8.
- 25. Osol, G., et al., *Myogenic tone, reactivity, and forced dilatation: a three-phase model of in vitro arterial myogenic behavior.* Am J Physiol Heart Circ Physiol, 2002. **283**(6): p. H2260-7.
- 26. Jones-Muhammad, M. and J.P. Warrington, *Cerebral Blood Flow Regulation in Pregnancy, Hypertension, and Hypertensive Disorders of Pregnancy.* Brain Sci, 2019. **9**(9).
- 27. Truong, G.T., et al., *Role of nitrite in regulation of fetal cephalic circulation in sheep.* J Physiol, 2014. **592**(8): p. 1785-94.
- 28. Shu, C.Y., et al., *New horizons in neurometabolic and neurovascular coupling from calibrated fMRI.* Prog Brain Res, 2016. **225**: p. 99-122.

- 29. Matenchuk, B.A., et al., *Longitudinal study of cerebral blood flow regulation during exercise in pregnancy.* J Cereb Blood Flow Metab, 2019: p. 271678X19889089.
- 30. Johnson, A.C. and M.J. Cipolla, *Impaired function of cerebral parenchymal arterioles in experimental preeclampsia*. Microvasc Res, 2018. **119**: p. 64-72.
- 31. Steinback, C.D., E.C. King, and M.H. Davenport, *Longitudinal cerebrovascular reactivity during pregnancy: a case study.* Appl Physiol Nutr Metab, 2015. **40**(6): p. 636-9.
- 32. Cipolla, M.J., et al., *Differential effects of low-dose endotoxin on the cerebral circulation during pregnancy.* Reprod Sci, 2011. **18**(12): p. 1211-21.
- 33. Poston, L., A.L. McCarthy, and J.M. Ritter, *Control of vascular resistance in the maternal and feto-placental arterial beds.* Pharmacol Ther, 1995. **65**(2): p. 215-39.
- 34. Williams, K.P., F. Galerneau, and M. Small, *Transfer function analysis of dynamic cerebral autoregulation in preeclampsia.* Pregnancy Hypertens, 2015. **5**(4): p. 322-4.
- 35. Janzarik, W.G., et al., *No long-term impairment of cerebral autoregulation after preeclampsia.* Pregnancy Hypertens, 2018. **13**: p. 171-173.
- 36. van Veen, T.R., et al., *Cerebral autoregulation in normal pregnancy and preeclampsia.*Obstet Gynecol, 2013. **122**(5): p. 1064-9.
- 37. Barnes, J.N., et al., *Cerebrovascular Reactivity and Vascular Activation in Postmenopausal Women With Histories of Preeclampsia.* Hypertension, 2018. **71**(1): p. 110-117.
- 38. Warrington, J.P., et al., *Placental ischemia in pregnant rats impairs cerebral blood flow autoregulation and increases blood-brain barrier permeability.* Physiol Rep, 2014. **2**(8).
- 39. Cipolla, M.J., N. Bishop, and S.L. Chan, *Effect of pregnancy on autoregulation of cerebral blood flow in anterior versus posterior cerebrum.* Hypertension, 2012. **60**(3): p. 705-11.
- 40. Sekine, T., et al., *Transient splenial lesion after recovery of cerebral vasoconstriction and posterior reversible encephalopathy syndrome: a case report of eclampsia.* Intern Med, 2012. **51**(11): p. 1407-11.
- 41. van Veen, T.R., et al., *Cerebral autoregulation in different hypertensive disorders of pregnancy.* Am J Obstet Gynecol, 2015. **212**(4): p. 513 e1-7.
- 42. Belfort, M., et al., *Low maternal middle cerebral artery Doppler resistance indices can predict future development of pre-eclampsia.* Ultrasound Obstet Gynecol, 2012. **40**(4): p. 406-11.
- 43. Fang, X., et al., *Posterior reversible encephalopathy syndrome in preeclampsia and eclampsia: The role of hypomagnesemia.* Seizure, 2020. **76**: p. 12-16.
- Jarvis, S.S., et al., *Sympathetic activation during early pregnancy in humans.* J Physiol, 2012. **590**(15): p. 3535-43.

- 45. Greenwood, J.P., et al., *Sympathetic nerve discharge in normal pregnancy and pregnancy-induced hypertension.* J Hypertens, 1998. **16**(5): p. 617-24.
- 46. Hammer, E.S. and M.J. Cipolla, *Cerebrovascular Dysfunction in Preeclamptic Pregnancies*. Curr Hypertens Rep, 2015. **17**(8): p. 64.
- 47. Zunker, P., et al., *Cerebral hemodynamics in pre-eclampsia/eclampsia syndrome.*Ultrasound Obstet Gynecol, 1995. **6**(6): p. 411-5.
- 48. Garcia-Reitboeck, P. and A. Al-Memar, *Images in clinical medicine: Reversible cerebral vasoconstriction after preeclampsia.* N Engl J Med, 2013. **369**(3): p. e4.
- 49. Braun, J.S., et al., *Serial multimodal monitoring of cerebral manifestations in eclampsia and comparison with normal pregnancy: a clinical study.* J Neurol, 2013. **260**(3): p. 910-3.
- 50. Choi, S.J., et al., *Maternal cerebral blood flow and glucose metabolism in pregnancies complicated by severe preeclampsia.* Hypertens Pregnancy, 2012. **31**(1): p. 177-88.
- 51. Sonneveld, M.J., et al., *Cerebral perfusion pressure in women with preeclampsia is elevated even after treatment of elevated blood pressure.* Acta Obstet Gynecol Scand, 2014. **93**(5): p. 508-11.
- 52. Cipolla, M.J., *Cerebrovascular function in pregnancy and eclampsia.* Hypertension, 2007. **50**(1): p. 14-24.
- 53. Clayton, A.M., et al., *Postpartum increases in cerebral edema and inflammation in response to placental ischemia during pregnancy.* Brain Behav Immun, 2018. **70**: p. 376-389.
- 54. Demirtas, O., et al., *Cranial MR imaging with clinical correlation in preeclampsia and eclampsia.* Diagn Interv Radiol, 2005. **11**(4): p. 189-94.
- 55. Ogoh, S., *Relationship between cognitive function and regulation of cerebral blood flow.*J Physiol Sci, 2017. **67**(3): p. 345-351.
- 56. Wu, P., et al., *Preeclampsia and Future Cardiovascular Health: A Systematic Review and Meta-Analysis.* Circ Cardiovasc Qual Outcomes, 2017. **10**(2).
- 57. Nelander, M., et al., *Pregnancy hypertensive disease and risk of dementia and cardiovascular disease in women aged 65 years or older: a cohort study.* BMJ Open, 2016. **6**(1): p. e009880.
- 58. Basit, S., J. Wohlfahrt, and H.A. Boyd, *Pre-eclampsia and risk of dementia later in life:* nationwide cohort study. BMJ, 2018. **363**: p. k4109.
- 59. Mielke, M.M., et al., *Impaired Cognition and Brain Atrophy Decades After Hypertensive Pregnancy Disorders.* Circ Cardiovasc Qual Outcomes, 2016. **9**(2 Suppl 1): p. S70-6.

- 60. Postma, I.R., et al., *Neurocognitive functioning following preeclampsia and eclampsia: a long-term follow-up study.* Am J Obstet Gynecol, 2014. **211**(1): p. 37 e1-9.
- 61. Elharram, M., et al., Long-Term Cognitive Impairment After Preeclampsia: A Systematic Review and Meta-analysis. Obstet Gynecol, 2018. **132**(2): p. 355-364.
- Johnson, A.C., et al., Magnesium sulfate treatment reverses seizure susceptibility and decreases neuroinflammation in a rat model of severe preeclampsia. PLoS One, 2014. **9**(11): p. e113670.
- 63. Siepmann, T., et al., Long-term cerebral white and gray matter changes after preeclampsia. Neurology, 2017. **88**(13): p. 1256-1264.
- 64. Alexander, B.T., et al., Reduced uterine perfusion pressure during pregnancy in the rat is associated with increases in arterial pressure and changes in renal nitric oxide. Hypertension, 2001. **37**(4): p. 1191-5.
- 65. Amburgey, O.A., et al., *Plasma from preeclamptic women increases blood-brain barrier permeability: role of vascular endothelial growth factor signaling.* Hypertension, 2010. **56**(5): p. 1003-8.
- 66. Jirsa, V.K., et al., *On the nature of seizure dynamics*. Brain, 2014. **137**(Pt 8): p. 2210-30.
- 67. Bartynski, W.S., *Posterior reversible encephalopathy syndrome, part 2: controversies surrounding pathophysiology of vasogenic edema.* AJNR Am J Neuroradiol, 2008. **29**(6): p. 1043-9.
- 68. Marra, A., et al., *Posterior reversible encephalopathy syndrome: the endothelial hypotheses.* Med Hypotheses, 2014. **82**(5): p. 619-22.
- 69. Huang, Q., et al., Decreased seizure threshold in an eclampsia-like model induced in pregnant rats with lipopolysaccharide and pentylenetetrazol treatments. PLoS One, 2014. **9**(2): p. e89333.
- 70. Pizon, A.F. and A.B. Wolfson, *Postpartum focal neurologic deficits: posterior leukoencephalopathy syndrome.* J Emerg Med, 2005. **29**(2): p. 163-6.
- 71. Quick, A.M. and M.J. Cipolla, *Pregnancy-induced up-regulation of aquaporin-4 protein in brain and its role in eclampsia*. FASEB J, 2005. **19**(2): p. 170-5.
- 72. Binder, D.K., et al., *Increased seizure duration and slowed potassium kinetics in mice lacking aguaporin-4 water channels.* Glia, 2006. **53**(6): p. 631-6.
- 73. Han, X., et al., Changes in the Expression of AQP4 and AQP9 in the Hippocampus Following Eclampsia-Like Seizure. Int J Mol Sci, 2018. **19**(1).
- 74. Dudek, F.E., A. Obenaus, and J.G. Tasker, *Osmolality-induced changes in extracellular* volume alter epileptiform bursts independent of chemical synapses in the rat:

- *importance of non-synaptic mechanisms in hippocampal epileptogenesis.* Neurosci Lett, 1990. **120**(2): p. 267-70.
- 75. Li, X., H. Liu, and Y. Yang, Magnesium sulfate attenuates brain edema by lowering AQP4 expression and inhibits glia-mediated neuroinflammation in a rodent model of eclampsia. Behav Brain Res, 2019. **364**: p. 403-412.
- 76. Li, X., et al., Magnesium Sulfate Provides Neuroprotection in Eclampsia-Like Seizure Model by Ameliorating Neuroinflammation and Brain Edema. Mol Neurobiol, 2017. **54**(10): p. 7938-7948.
- 77. Euser, A.G. and M.J. Cipolla, *Magnesium sulfate for the treatment of eclampsia: a brief review.* Stroke, 2009. **40**(4): p. 1169-75.
- 78. Andres, M.A., et al., [Eclampsia and total bilateral amaurosis in a woman subsequently diagnosed with reversible posterior leukoencephalopathy syndrome]. Rev Esp Anestesiol Reanim, 2008. **55**(5): p. 304-7.
- 79. Plazzi, G., et al., *Occipital lobe epilepsy: a chronic condition related to transient occipital lobe involvement in eclampsia*. Epilepsia, 1994. **35**(3): p. 644-7.
- 80. Naidu, K., et al., Single photon emission and cerebral computerised tomographic scan and transcranial Doppler sonographic findings in eclampsia. Br J Obstet Gynaecol, 1997. **104**(10): p. 1165-72.
- 81. Yamaguchi, K., et al., *Recovery of decreased local cerebral blood flow detected by the xenon/CT CBF method in a patient with eclampsia.* Keio J Med, 2000. **49 Suppl 1**: p. A71-4.
- 82. Fletcher, J.J., et al., *Overlapping features of eclampsia and postpartum angiopathy.*Neurocrit Care, 2009. **11**(2): p. 199-209.
- 83. Abad, C., et al., *Magnesium sulfate affords protection against oxidative damage during severe preeclampsia.* Placenta, 2015. **36**(2): p. 179-85.
- 84. Hunter, L.A. and K.J. Gibbins, *Magnesium sulfate: past, present, and future.* J Midwifery Womens Health, 2011. **56**(6): p. 566-74.
- 85. Carrera, F., et al., *Preeclampsia and calcium-ATPase activity of plasma membranes from human myometrium and placental trophoblast.* Hypertens Pregnancy, 2003. **22**(3): p. 295-304.
- 86. Shah, R.R., Anti-Angiogenic Tyrosine Kinase Inhibitors and Reversible Posterior Leukoencephalopathy Syndrome: Could Hypomagnesaemia Be the Trigger? Drug Saf, 2017. **40**(5): p. 373-386.