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Abstract

We consider a one parameter family of one-dimensional maps, introduced by Rovella,

obtained through modifying the eigenvalues λ2 < λ3 < 0 < λ1 of the geometric Lorenz attractor,

replacing the expanding condition λ3+λ1 > 0 by a contracting one λ3+λ1 < 0. By referring

the techniques of Benedicks-Carleson, Rovella proved that there exists a positive Lebesgue

measure set of parameters, so called set of Rovella parameters, such that the derivatives of

corresponding maps along critical orbits increase exponentially and the critical orbits have

slow recurrence to the critical point.

Metzger proved the existence of unique absolutely continuous (with respect to Lebesgue)

invariant probability measures (SRB) for the Rovella maps. Later on, Alves and Soufi showed

that those maps are strongly statistically stable, i.e., the mapping which maps the parameters

to the densities of the SRB measures is continuos (in the L1-norm) on the set of Rovella

parameters.

In this work, we show that there exist parameters such that the corresponding maps having

super-stable periodic orbits and prove that Rovella maps are not statistically stable on an

extended set of parameters, consists of Rovella parameters and super-stable parameters.





Resumo

Consideramos uma família a um parâmetro de transformações unidimensionais, introduzida

por Rovella, obtida modificando os valores próprios λ2 < λ3 < 0 < λ1 do atrator de Lorenz

geométrico, substituindo a condição de expansão λ3 +λ1 > 0 pela de contração λ3 +λ1 <

0. Usando técnicas de Benedicks-Carleson, Rovella provou que existe um conjunto de

parâmetros com medida de Lebesgue positiva, chamado conjunto de parâmetros de Rovella,

para os quais as derivadas da respetiva transformação ao logo da órbita do valor crítico

crescem exponencialmente e as órbitas críticas têm recorrência lenta ao ponto crítico.

Metzger provou a existência de uma única medida de probabilidade absolutamente con-

tínua com respeito à medida de Lebesgue (medida de SRB) para essas transformações. Mais

tarde, Alves e Soufi mostraram essa família de transformações é fortemente estatisticamente

estável, i.e. a função que associa a cada parâmetro de Rovella a densidade da respetiva

medida de SRB é contínua (na norma L1).

Neste trabalho, mostramos que existem parâmetros cujas transformações correspondentes

têm órbitas periódicas super-estáveis e provamos que as transformações de Rovella não são

estatisticamente estáveis num conjunto de parâmetros estendido, constituído pelos parâmetros

de Rovella mais os parâmetros com órbitas periódicas super-estáveis.
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Chapter 1

Introduction

The theory of Dynamical Systems started in the work of Poincaré on the three-body problem

of celestial mechanics studies processes which evolve in time. The description of these

processes may be given by flows (continuous time) or iterations of maps (discrete time).

An orbit is a collection of points related by the evolution function of the dynamical system.

The main objectives of this theory are to describe the typical behavior of orbits when time

approaches to infinity and to understand the changes in this behavior with the perturbations

of the system or to which extent it is stable.

Ergodic Theory deals with the measure preserving processes in a measure space. In

this approach, one tries in particular to illustrate the average time spent by typical orbits in

different portions of the phase space. Birkhoff’s Ergodic Theorem states that such times

are well defined for almost all points, with respect to an invariant probability measure.

Nevertheless, the notion of typical orbit usually meant with respect to volume (Lebesgue

measure) which might not be an invariant measure in general.

It is a fundamental open problem to understand under which conditions the behavior of

typical (positive Lebesgue measure) orbits is well defined from the statistical point of view.

In chaotic dynamics this problem can be precisely expressed through Sinai-Ruelle-Bowen

(SRB) measures, which were introduced by Sinai for Anosov diffeomorphisms [25] and later

extended by Ruelle [24] for Axiom A diffeomorphisms and Bowen-Ruelle [11] for flows.

Here we consider discrete time system given by a map f defined on a manifold M. An

f-invariant measure µ is called physical measure for f if the basin of µ , i.e., the set of points

1



2 Introduction

x such that

lim
n→+∞

1
n

n−1
∑
j=0

ϕ( f j(x)) = ∫ ϕdµ, for any continuous map ϕ ∶M→R,

has a positive Lebesgue measure. It is to be noted that from Birkhoff’s Ergodic Theorem

it follows that any ergodic invariant probability measure which is absolutely continuous

with respect to Lebesgue measure is physical measure. We shall refer to this special type

of measure as an SRB measure. On the other extreme if a map f has an attracting periodic

orbit {x0,x1,⋯,xk−1} of period k, then the measure µ = 1
k(δx0 +δx1 +⋯+δxk−1) given by the

convex sum of the delta Dirac measures supported on the points in the periodic orbit is a

physical measure for the map f . The basin of an invariant measure for the flow (X t)t∈R on

M is the set of points x ∈M, such that for any continuous map ϕ ∶M→R

lim
T→+∞

1
T ∫

T

0
ϕ(X t(x))dt = ∫ ϕdµ.

The physical measure for the flow (X t)t∈R on M is defined in the similar way. Therefore the

statistical behavior of orbits can be nicely characterize by physical measure in the sense that

for a large (positive volume) set of points the time average of a physical observable of the

system can be determined by space average.

While studying the persistence of the statistical properties of a dynamical system, Alves

and Viana [5] proposed the notion of statistical stability which expresses the continuous

variation of the physical measure, in the weak∗-topology, as a function of dynamical system.

Let G be a family of maps defined on a manifold M corresponding a unique physical measure,

the map f ∈ G is said to be statistically stable if

gz→ µg

is continuous at f in the weak∗-topology, where µg is the physical measure corresponding to

the map g. This kind of stability essentially states that the small perturbations of the system

does not cause much effect on the evaluation of continuous maps along the orbits. Strong

statistical stability refers as the continuous variation of the densities (if they exist) of the
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physical measures in the L1-norm as a function of the dynamical system. There are certain

situations which assure the existence of the densities of physical measure. For example if a

map f admits physical measure µ as an SRB measure then the well-known Radon-Nikodym

Theorem guarantees the existence of density function for the map f .

Lorenz [20] formulated an algebraic simple model of differential equation in R3 as a

finite dimensional approximation of the evolution equation of atmospheric dynamics. He

also showed numerically that it is highly dependent on initial conditions near an attractor.

It was then a question of great interest to rigorously prove this experimental demonstration.

By getting motivated through this problem, Guckenheimer and Williams [18] tried to write

down the abstract properties of that attractor and produced a prototype so called geometric

Lorenz attractor which we introduced in the next paragraph. This was the first example

of a robust attractor with a hyperbolic singularity. It is given as 14th problem of Smale

[26] that if the dynamics of the Lorenz system is same as that of the geometric model.

Morales-Pacifico-Pujals [22] significantly moved in this direction by introducing the notion

of singular hyperbolicity, i.e., a partially hyperbolic set with volume expanding or contracting

central bundle and all of its singularities are hyperbolic. They also accomplished the fact

that a robust attractor of a flow in R3 having a singularity is singular hyperbolic and has the

properties of geometric Lorenz attractor. Then it was just remained to prove that the Lorenz

system in fact corresponds to a sensitive robustly transitive non-hyperbolic attractor having a

singularity. Later on Tucker [29] take on this problem during his PhD thesis and he produced

a proof of it by using computer applications.

The geometric Lorenz attractor is a transitive maximal invariant set for a flow in R3 given

by a vector field having a singularity at the origin 0 and the derivative of that vector field at

singularity has real eigenvalues satisfying

0 < −λ3 < λ1 < −λ2.

The vector field has a cross-section Σ intersecting the (two-dimensional) stable manifold of

the hyperbolic singularity along a curve Γ. The Poincaré return map P ∶ Σ∖Γ→ Σ admits

a stable smooth foliation F on Σ into curves, having Γ as a leaf, which are invariant and
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uniformly contracted by the forward iterates of the map P. The quotient space of the Poincaré

section with stable leaves is diffeomorphic to the interval I = [−1,1] and P induces a map on

I which is uniformly expanding and having a singularity at 0 with derivative tends to infinity

as one approaching to Γ.

Contracting Lorenz attractor, introduce by Rovella [23], is the maximal invariant set of

a geometric flow whose construction is same as the geometric Lorenz attractor. The only

difference is that the eigenvalue relation for the vector field, corresponds the contracting

Lorenz attractor, is given as

0 < λ1 < −λ3 < −λ2.

This attractor is robust in the measure theoretic sense, i.e., there exists a one parameter family

of positive Lebesgue measure vector fields, C3-close to the original one, having a strange

attractor [23]. Similarly as in the case of geometric Lorenz attractor, the initial vector field

has a global cross-section Σ and the one dimensional foliation is contracted by the first return

map P0 defined on the space Σ∖Γ. Therefore P0 induces a map f0 on the interval I which

has a singularity at the origin and two critical values, unlike the map induced though the

geometric Lorenz attractor. The reason that map f0 has critical point is that the eigenvalues

satisfy λ1+λ3 < 0. In fact that one parameter family of vector fields induces a one parameter

family { fa}a≥0 of interval maps, which we refer as contracting Lorenz-like family, such that

each map in the contracting Lorenz-like family carries a singularity at 0 and two critical

values.

In 1980’s and early 1990’s Benedicks and Carleson [8, 9] studied the dynamics near the

well known Hénon attractor. In tuned out that first they need to understand some features

of the dynamics of so called one parameter family of the quadratic maps fa = 1−ax2 where

parameter a ∈ [0,2]. They developed a technique to construct inductively a set of parameters,

refer as Benedicks-Carleson set of parameters for quadratic family, with positive Lebesgue

measure and having full density at point 2 such that the derivatives of corresponding maps

along critical orbits increase exponentially and the critical orbits have slow recurrence to the
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critical point. Immediately after that, in 1992, Benedicks and Young [10] proved that each of

the Benedicks and Carleson quadratic map admits a unique SRB measure.

By referring to the techniques of Benedicks and Carleson, Rovella in [23] also showed that

for the contracting Lorenz-like family there exists a set of parameters with positive Lebesgue

measure and having full density at 0 such that the derivatives of corresponding maps along

critical orbits increase exponentially and those orbits have slow recurrence to the critical

point. We denote that set of Rovella parameters by R and refer the maps associated with R as

Rovella maps. Afterwards, Metzger [21], proved that each Rovella map admits an ergodic

absolutely continuous invariant probability measure. However to prove the uniqueness of the

SRB measure, he considered a slightly smaller class of parameters, inside the set of Rovella

parameters, having full density at 0 and the associated maps admit a strong mixing property.

Based on the work given in [5], Alves [1] provided sufficient conditions for the strong

statistical stability of the non-uniformly expanding maps. Those conditions have to deal

with the volume decay of the set of points that deny either a non-uniformly expanding

requirement or a slow recurrence, up to a given time. It was proved by Freitas [14–16], that

the Benedicks-Carleson quadratic maps are non-uniformly expanding, have slow recurrence

to the critical set, and the volume of their tail sets decays exponentially fast. As a consequence

he obtained the strong statistical stability for those maps by restricting himself on the set

of Benedicks-Carleson parameters. Later on, Alves and Soufi [3, 27] deduce that in fact

all the maps in the Rovella family admit a unique SRB measure. They used the techniques

developed by Freitas to conclude the strong statistical stability of Rovella maps in the set R.

On the other hand, in the beginning of this century, Thunberg [28] showed that in the

neighbourhood of every Benedicks-Carleson parameter there are parameters whose associated

maps have super-attractors: periodic orbits containing critical point. Then he proved that on

a larger class, containing Benedicks-Carleson parameters and parameters associated to maps

having super-attractors, the mapping a↦ µa is severely discontinuous in the weak∗-topology

at every Benedicks-Carleson parameter and hence Benedicks-Carleson maps are statistically

unstable in a larger class.
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Inspired by the work of Thunberg, first in this work we prove a result to discover some

super-stable parameters for the contracting Lorenz-like family. We refer a map in the

contracting Lorenz family as critically-stable if it admits a super-attractor and call the

parameters linked with that map as super-stable parameters (see Definition 5.1.1 for precise

definitions in our setting). Moreover we also obtain some parameters corresponding to maps

whose critical orbits are pre-periodic to the points in the repelling periodic orbits. In the

contracting Lorenz-like family, this type of map refers as post-critically finite map and the

associated parameter as post-critically finite parameter. The above mentioned result is given

as Lemma 5.1.2 and it is, indeed, a key product in our work since it guarantees the existence

of critically-stable maps which admit physical measures supported on the super-attractors.

Therefore those maps are distinct from the Rovella maps and it enables us to study the

statistical stability of the Rovella maps on a larger class of maps consists of Rovella maps

and the critically-stable maps associated to super-stable parameters. In order to present

that lemma, we needed the precise demonstrations of the notions which occur in the basic

construction of the set of Rovella parameters R. Moreover the proof of that lemma is also

supported by some facts related to that basic construction. That is why, first we settled

ourselves to unveil the complete details of the construction of set R to precisely introduce

those notions and to workout the corresponding results. As referred by Rovella in [23], to

construct the set R we followed the approach of Benedicks and Carleson given in [8, 9] for

quadratic family. The precise and detailed construction of the set R is framed in chapter 4.

We denote by E the extended set of parameters consists of Rovella and super-stable

parameters. Then the map fa corresponding to each parameter a ∈ E admits a unique physical

measure which we denote by µa. For a critical value c = ±1 of a map fa in the contracting

Lorenz-like family, we denote µn
a(c) ∶= 1

n

n−1
∑
k=0

δ f k
a (c) and if lim

n→∞
µn

a(c) exists in the weak∗-

topology we call the limit as critical measure for fa and denote it by µa(c). One of our main

result states that if the critical measure for a Rovella map exists then there exists a sequence of

super-stable parameters such that the corresponding sequence of physical measures converges

to the critical measure in the weak∗-topology. The following is the precise statement of that

result which is proved as Theorem 5.2.3.
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Theorem A. For every a ∈ R, there exits a sequence of super-stable parameters {ak}∞k=1 such

that if the critical measure µa(c) for the map fa exits, then

µak

weak∗Ð→ µa(c), k→∞.

The above result is obtained by using Lemma 5.1.2.

Finally as one of the main objective of this work we manage to study the statistical

stability of Rovella maps on the extended set of parameters E and we conclude that Rovella

maps are not statistically stable in the set E .

Our main result Theorem 5.3.2 states as follows:

Theorem B. The map E ∋ a↦ µa is not continuous in the weak∗-topology at any point in R.

One of the important result, which is used in the proof of the above theorem, simply

states that any Rovella map is accumulated by post-critically finite Rovella maps. This result

also obtained using Lemma 5.1.2 mentioned before. Then the proof of the above result

is accomplished by showing that for every Rovella parameter a there exists a sequence of

super-stable parameters converging to parameter a but the sequence of physical measures of

the corresponding critically-stable maps is not converging to the SRB measure of the Rovella

map fa in the weak∗-topology.





Chapter 2

Geometric and Contracting Lorenz

Attractors

In this chapter we shall first present the Lorenz system of equations which is an example of a

system having chaotic behavior near an attractor. Then we describe in detail the geometric

model of flow associated to Lorenz system which illustrates the dynamics of that system.

Afterwards, we explain the dynamics of, so called, the contracting Lorenz attractor which

was introduced by Rovella for a flow in R3. The geometric model of Lorenz flow admits

a robust attractor, which is known as geometric Lorenz attractor, whereas the contracting

Lorenz attractor is not robust but it is persistent in measure.

Let M be a manifold and X be a smooth vector field on M and X t denotes the flow of

diffeomorphisms generated by X .

Definition 2.0.1. An attractor for the smooth flow X t is a transitive (contains a dense orbit)

set Λ ⊂M, invariant under the flow, such that it has an open neighbourhood U with X t(U) ⊂U

for all t > 0 and

Λ =⋂
t≥0

X t(U).

The basin of attraction of Λ is defined as

B(Λ) = {x ∶ lim
t→+∞

dist(X t(x),Λ) = 0}.

9



10 Geometric and Contracting Lorenz Attractors

We say that Λ is robust if for any smooth vector field Y in a neighbourhood of X , ⋂
t≥0

Y t(U) is

also an attractor.

2.1 Lorenz Flow

In the early 1960’s, Lorenz [20] studied numerically the vector field X given in the form of

differential equations

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

ẋ = a(y−x),

ẏ = bx−y−xz,

ż = xy−cx,

for the parametric values a = 10, b = 28 and c = 8/3. Through experimental computations, he

observed that the flow has sensitivity to the initial conditions, i.e., even a small initial error

can lead to enormous differences in the outcome. It was then a question of great interest

to rigorously prove this experimental demonstration. Later on Tucker [29], by the help of

computer, showed that the original Lorenz system corresponds to a sensitive, non-hyperbolic

and robustly transitive attractor having a singularity. Since the attractor is transitive so we

may plot its trajectory starting form any point in the basin of attraction and it can be seen

the picture of chaotic attractor which resembles a butterfly. An attractor formed by a chaotic

system is also called strange attractor. The following properties are well known for the

vector field X :

1. X has a singularity at the origin with eigenvalues

0 < 2.6 ≈ λ3 < λ1 ≈ 11.83 < −λ2 ≈ 22.83;

2. It has a trapping region, i.e., there is an open set U with X t(U) ⊆U , for t > 0, such that

Λ =⋂t>0 X t(U), the maximal invariant set, is an attractor and the origin is the unique

singularity contained in U ;
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3. The divergence of X is negative

divX = ∂ ẋ
dx
+ ∂ ẏ

dy
+ ∂ ż

dz
= −(1+a+c) < 0.

Thus X is strongly dissipative and consequently it contracts volume: for initial volume

V0, from Liouville’s formula, the volume at time t is given by V(t) =V0e−(1+a+c)t . In

particular Λ has zero volume.

The trajectory of a generic point in U starts spiraling around one of the singularities and

suddenly jumps to other one and starts spiraling around it. This mechanism continues and

the Lorenz attractor appears to be a sketch of butterfly, as shown in Figure 2.1. It rotates

randomly around each singularity.

Fig. 2.1 Lorenz Attractor
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2.2 Geometric Lorenz attractor

In the late 1970’s, Guckenheimer and Williams [18] introduced the geometric description of a

flow having similar dynamical behavior as that of Lorenz system, known as geometric Lorenz

flow. This geometric model posses a trapping region containing a transitive attractor which

has a singularity accumulated by the regular orbits preventing the attractor to be hyperbolic.

In fact, if there is a hyperbolic invariant splitting of the tangent space then the continuity of

splitting and the transitivity of attractor affirm that the dimensions of subspaces are equal.

However the central direction of the singularity is zero dimensional since the vector field

vanishes at singularity, consequently the dimension of either stable or unstable direction

at singularity must be different from the dimension of transitive regular orbit inside of the

attractor.

The construction of the geometric model is as follows: The vector field X has a singularity

at (0,0,0) and it is linear in a neighbourhood containing the cube {(x,y,z) ∶ ∣x∣ ≤ 1, ∣y∣ ≤ 1, ∣z∣ ≤

1}. The derivative of X at singularity admits three real eigenvalues λ1, λ2 and λ3 satisfying

0 < −λ3 < λ1 < −λ2. We denote by Σ the roof {∣x∣ ≤ 1, ∣y∣ ≤ 1,z = 1} of the cube, intersecting

the (2-dimensional) stable manifold of singularity along a curve Γ which divides Σ into two

regions Σ+ = {(x,y,1) ∈ Σ ∶ x > 0} and Σ− = {(x,y,1) ∈ Σ ∶ x < 0}; see Figure 2.2 below.

Here is the construction of the geometric model: the vector field X is linear in a

neighborhood of the origin containing the cube {(x, y, y) : |x| ≤ 1, |y| ≤ 1, |z| ≤ 1}.

It has a singularity at (0, 0, 0). The real eigenvalues λ1,λ2 and λ3 of DX(0) with the

eigenvectors along the coordinate axis satisfy 0 < −λ3 < λ1 < −λ2. Let Σ be a square on

the top of the cube given by {(x, y, 1) : −1
2

≤ x, y ≤ 1
2
}. The intersection of Σ and stable

manifold of the singularity, Γ, divide Σ in to two parts Σ+ = {(x, y, 1) ∈ Σ : x > 0} and

Σ− = {(x, y, 1) ∈ Σ : x < 0}; see Figure 2.2. The return map from each of these parts to

the planes x = ±1 is

(x, y, 1) $−→ (sgn(x), y|x|r, |x|s)

where s = −λ3

λ1
and r = −λ2

λ1
. The image of Σ± by the return map are triangles S± without

the vertexes (±1, 0, 0) and every line segment {x = const} ∩ Γ is mapped to the segment

{z = const} ∩ S±.

Figure 2.2: Dynamic near singularity

The time τ which takes for each (x, y, 1) ∈ Σ \ Γ to reach S± is given by

τ(x, y, 1) = − 1

λ1

log |x|.

We now suppose that the flow takes the triangles back to the Σ in a smooth way as it

is shown in Figure 2.3. The triangles are compressed in the y-direction and stretched on

the other transverse direction. In fact, the time needed to pass from the triangels to Σ is

relatively short with respect to the linearized region. The dynamic in the linearized region

will dominate all estimates of expansion and contraction. We assume that the return map

8

Fig. 2.2 Cross Section
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The return map is given by

P ∶ Σ±Ð→ {(±1,y,z) ∶ y,z ∈R}

(x,y,1)z→ (sgn(x),y∣x∣r, ∣x∣s),

where r = −λ2
λ1

and s = −λ3
λ1

. The images of Σ± under P are the triangles S± except ver-

tices (±1,0,0), and the line segments {x = constant} ∩ Σ are mapped to the segments

{z = constant}∩S±. The time τ needed to go from Σ± to S± is given by

τ(x,y,1) = − 1
λ1

log ∣x∣.

We assume that the flow smoothly carries the triangles back to Σ as in Figure 2.3.

Fig. 2.3 The Return Map

The triangles stretched in the direction along x-axis and compressed in the other transver-

sal direction. The dynamics in linearized region will dominate all estimates of contraction

and expansion. To complete the geometric model, it is assumed that the flow from S± reaches

Σ in finite time T . Hence the return time from Σ to itself is

τ(x,y,1) = − 1
λ1

log ∣x∣+T.
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Then we assume that the line segments {z = constant}∩S± are mapped by the return map

to the segments contained in {x = constant}∩Σ. Consequently we obtain the following

expression for Poincaré return map

P(x,y) = ( f (x),g(x,y)),

for some maps f ∶ I0∖{0}→ I0 and g ∶ I0∖{0}×I0→ I0, with I0 = [−1
2 ,

1
2]. The one dimensional

map f is shown in the Figure 2.4 and has the following properties:

(1) f is discontinuous at x = 0, lim
x→0+

f (x) = −1/2 and lim
x→0−

f (x) = 1/2;

(2) f is differentiable on I0∖{0} and f ′(x) >
√

2 for all x ∈ I0∖{0};

(3) lim
x→0+

f ′(x) = lim
x→0−

f ′(x) = +∞.

The map g satisfies ∣∂g
∂y ∣ < κ < 1

2 , which implies that the foliation given by the segment

Σ∩{x = constant} contracting uniformly, i.e., there exists a constant C > 0 such that for any

leaf γ of the foliation and p,q ∈ γ , and for large enough n ∈N, we have

dist(Pn(p),Pn(q)) ≤Cκ
ndist(p,q).

The orbits of points in Σ will return back to itself by following first the linear vector field

until the triangles S± and then X . The pair (⋃t∈RX t(Σ),X t) denotes the geometric flow.

In order to obtain some important results, it is quite useful to reduce the study of flow

to the study of 2-dimensional Poincaré map P, which further can be reduce to work on the

one dimensional map f obtained through assigning to each point x ∈ Σ the leaf containing

it (since the orbits of any two points on a leaf lie in the same leaves and distance of their

images tends to zero under the iterations). The map f is called to be the Lorenz map which

can have continuous extension at 0, it can be assigned two values to f at 0 such that it is

continuous on the intervals [−1
2 ,0] and [0, 1

2]. Accordingly, one can consider P as a 2-valued

map with the domain of definition as Σ. The map P is continuous when we restrict it on the

closure of connected components of Σ∖Γ and it maps the curve Γ down to a point. We set
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Fig. 2.4 Lorenz One-dimensional Map

ΛP =⋂n≥0 Pn(Σ) and the geometric Lorenz attractor Λ is given by the union of orbits of the

points in ΛP by the flow of X .

2.2.1 Robustness

One of the important fact about the geometric Lorenz attractor is robustness, i.e., the vector

fields C1-close to the one constructed above also admit strange attractors. There exists an open

set U ⊂R3, containing the geometric Lorenz attractor, and an open neighbourhood U of X in

C1 topology such that for any vector field Y ∈ U the maximal invariant set ΛY =⋂t≥0Y t(U)

is transitive and Y -invariant. This fact follows from the persistence of invariant contracting

foliation on the cross section Σ.

Theorem 2.2.1. [7, Theorem 3.10] Suppose X is a geometric Lorenz flow with an invariant

contracting stable foliation FX on the cross section Σ. Every vector field Y which is C1

sufficiently close to X has an invariant contracting stable foliation FY on the cross section Σ.

Note that X has a hyperbolic singularity and the cross section Σ is transversal to any flow

C1-close to X . Therefore it persists and the eigenvalues satisfying same relations for every
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Y ∈ U . Indeed, through C1 change of coordinates the singularity of any Y ⊂ U stands on the

origin and the derivative of Y at origin has eigenvectors in the direction of coordinate axis

as before, whereas the stable manifold of singularity lies on the plane x = 0. Consequently

Y has a Poincaré return map of the form PY = JY ○P′, where JY is C1-close to identity and

P′ has same properties as P. Then fY can be define as the one-dimensional quotient map

corresponding to PY over the leaves of foliations FY . Since r−s > 1 and foliation is continuous

with C1 leaves, therefore fY is C1-close to f . Thus there esists c0 ∈ [−1
2 ,

1
2] which plays the

same role for fY as 0 for f and hence fY holds the same properties as that of f .

2.3 Contracting Lorenz Attractor

By considering a vector field almost identical to that used by Guckenheimer and Williams

[18], Rovella [23] introduced a bit different kind of attractor Λ named as contracting Lorenz

attractor which is not persistent. He showed that in a neighbourhood U of the initial vector

field there is an open and dense subset for which the attractor breaks up into one or at most

two attracting periodic orbits, a hyperbolic set, the singularity and wandering trajectories

linking these objects. On the other hand the attractor Λ admits a local basin U .

The corresponding flow of this attractor has similar construction as that of geometric one

with the initial vector field X0 in R3 which has the following properties:

1. X0 has a singularity at the origin and its derivative at singularity has three real eigenval-

ues λ1,λ2 and λ3 satisfying:

(i) 0 < λ1 < −λ3 < −λ2,

(ii) r > s+3, where r = −λ2
λ1

and s = −λ3
λ1

;

2. There exists an open set U ∈R3 which is positively invariant by the flow and it contains

the cube {(x,y,z) ∶ ∣x∣ ≤ 1, ∣y∣ ≤ 1, ∣z∣ ≤ 1}. The top of cube Σ has a foliation by the stable

line segments {x = constant}∩Σ which are invariant by the Poincaré return map P0.

As in the case of geometric Lorenz flow, the invariance of stable foliation on Poincaré
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section gives rise to a one dimensional map f0 ∶ I∖{0}→ I such that

f0 ○π = π ○P0,

where I denotes the interval [−1,1] and it is obtained by the mean of canonical projec-

tion π which assigns to every point in I the leaf in Σ containing that point;

3. There is a sufficiently small ρ > 0 such that the contraction along the invariant foliation

of the lines x = constant in U is stronger than ρ .

Figure 2.5: Rovella attractor

section is foliated by stable lines {x = const}∩Σ which are invariant under Poincaré

first return map P0. As before, the invariance of stable foliation on Poincaré section

uniquely defines a one dimensional map f0 : I \ {0} → I so that the diagram

Σ \ Γ
P0 !!

π

""

Σ

π

""
I \ {0}

f0

!! I

commutes, i.e. f0 ◦ π = π ◦ P0. The interval I = [−1, 1] is obtained by the canonical

projection π , which assigns to each point in I the leaf in Σ that contained it;

3. There is a small number ρ > 0 such that the contraction along the invariant foliation

of lines x = const in U is stronger than ρ.

Observe that Rovella replaced the usual expanding condition λ3+λ1 > 0 in Lorenz attractor

by the contracting condition λ3+λ1 < 0. The one-dimensional map f0 satisfies the following

properties:

1. f0 has a discontinuity at x = 0 and

lim
x→0+

f0(x) = −1, lim
t→0−

f0(x) = 1;

2. f ′
0(x) > 0 for all x ̸= 0 with max

x∈(0,1]
f ′

0(x) = f ′
0(1), max

x∈[−1,0)
f ′

0(x) = f ′
0(−1) and

lim
x→0

f ′
0(x)

|x|s−1
̸= 0 and it is finite;

12

Fig. 2.5 Contracting Lorenz Attractor

The main idea adopted by Rovella was to replace the expanding condition λ1+λ3 > 0 of

the geometric flow by the contracting condition λ1+λ3 < 0.

The map f0 holds the following properties:

(1) f ′0(x) > 0 for x ≠ 0, and the order of the derivative of f0 at 0 is s−1 > 0, i.e., lim
x→0

f ′0(x)
∣x∣s−1

is finite and not equal to zero;

(2) f0 has a discontinuity at 0, f0(0+)=−1, f0(0−)=1, maxx>0 f ′0(x)= f ′0(1), maxx<0 f ′0(x)=

f ′0(−1);
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(3) The points ±1 pre-periodic repelling, i.e., there exit integers k+,k−,n+,n− such that

f k++n+
0 (1) = f k+

0 (1), ( f n+
0 )′( f k+

0 (1)) > 1

f k−+n−
0 (−1) = f k−

0 (−1), ( f n−
0 )′( f k−

0 (−1)) > 1;

For the purpose of simplicity Rovella supposed that the points ±1 are fixed by f0 which

is given as property V.4 in [23].

(4) f0 has negative Schwarzian derivative, i.e., there is χ < 0 such that on I∖{0}

S( f0) = (
f ′′0
f ′0
)
′
− 1

2
(

f ′′0
f ′0
)

2
< χ.

The map f0 can be seen in the Figure 2.6.

Fig. 2.6 Graph of the map f0

2.3.1 Robustness

Unlike the geometric Lorenz attractor, the contracting one Λ = ⋂
t≥0

X t
0(U) is not robust.

Whereas Rovella proved its robustness in a measure theoretical sense by proving the existence
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of a one parameter family of vector fields C3-close to X0, with positive Lebesgue measure,

such that each vector field in that family has transitive non-hyperbolic attractor.

Theorem 2.3.1. [23, Theorem] There exists a C∞ vector field X0 in R3 having an attractor

Λ containing a singularity, and satisfying the following properties:

(a) There exist a local basin U of Λ, a neighbourhood U of X0, and an open and dense

subset U1 of U such that for all X ∈ U1, ΛX = ⋂
t≥0

X t(U) consists of the union of one or at

most two attracting periodic orbits, a hyperbolic set of topological dimension one, a

singularity, and wandering orbits linking them.

(b) Λ is 2-dimensionally almost persistent in the C3 topology.

The term 2-dimensionally almost persistence means that Λ has a local basin U such that X0

is a 2-dimensional full density point of the set of vector fields {Y ∶ΛY = ⋂
t≥0

Y t(U) is an attractor }.





Chapter 3

One-dimensional Maps Associated to the

Contracting Lorenz Attractors

This chapter is devoted to briefly describe the properties and to state some of the interesting

results for the one dimensional maps which comes from the geometric model of contracting

Lorenz attractor.

3.1 Perturbations of the Initial Vector Field

There are some properties of the initial vector field X0 which are valid for the C3 perturbations.

Consider a small neighbourhood U of X0 such that each X ∈U has a singularity near origin with

eigenvalues λ1(X),λ2(X),λ3(X) satisfying −λ2(X) > −λ3(X) > λ1(X) > 0 and rX > sX +3,

rX = −λ2(X)
λ1(X)

and sX = −λ3(X)
λ1(X)

. Moreover, the trajectories contained in the stable manifold still

intersect Σ. The sets U and U can be taken small enough so that U is positively invariant by

the flow of every X ∈ U . The existence of C3 stable 1-dimensional foliations in U and their

continuous variation with X was proved by Rovella [23].

For each X ∈ U , we may take a square ΣX close to Σ formed by line segments of the

foliations so that the first return map PX to ΣX has an invariant foliation and we can choose

the coordinates (x,y) in ΣX so that the segment x = 0 corresponds to the stable manifold of

21
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singularity and

PX(x,y) = ( fX(x),gX(x,y)).

The map fX is of class C3 everywhere but at x = 0 where it has a discontinuity.

In order to prove his main result, Rovella considered a one parameter family {Xa ∈ U ∶

a ≥ 0} of vector fields and the corresponding family { fa ∶ I ∖ {0} → I ∶ a ≥ 0} of C3 one

dimensional maps which we will refer as contracting Lorenz-like family in the sequel. The

maps in that family have the following properties:

(A0) f0(1) = 1 and f0(−1) = −1;

(A1) fa(0+) = −1 and fa(0−) = 1;

(A2) f ′a > 0, f ′′a ∣[−1,0) < 0 and f ′′a ∣(0,1] > 0;

(A3) there exist K1,K2 > 0 and s > 1 (independent of a) such that for all x ∈ I∖{0}

K2∣x∣s−1 ≤ f ′a(x) ≤K1∣x∣s−1;

(A4) fa has negative Schwarzian derivative: there is χ < 0 such that for all x ∈ I∖{0}

S( fa)(x) = (
f ′′a
f ′a
)
′
(x)− 1

2
( f ′′a

f ′a
)

2

(x) < χ;

(A5) fa depend continuously on a in the C3 topology;

(A6) the functions a→ fa(±1) have derivative 1 at a = 0.

It follows from (A0)-(A3) that f ′0(±1) > 2.

3.2 Rovella Maps

Rovella [23] also introduced a set of parameters R, known as set of Rovella parameters,

extracted from the contracting Lorenz-like family. The choice of those parameters was made

according to some exclusion procedure. He mentioned there that the construction of set R
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Fig. 3.1 Rovella Map

is based on the method of Benedicks and Carleson [8, 9] to obtain a set of parameters for

quadratic family.

Rovella worked out that the maps associated with the set R admit stronger properties like

Benedicks and Carleson quadratic maps and one of those properties forces the critical orbits

to stay away from the critical point, which is given as:

(R1) There is a sufficiently small α > 0 such that for every a ∈ R

∣ f n−1
a (±1)∣ ≥ e−αn, for all n > 0.

Following is one of the main results, given in [23], which describes the exponential growth

of derivatives along the critical orbits for the Rovella family of maps and it also states that

the critical orbits are dense in I for almost every Rovella parameter. Moreover this result

provides a full density point of the set of Rovella parameters R.
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Theorem 3.2.1. [23, Theorem 2] The Rovella maps have the following properties:

(R2) For every a ∈ R, the points ±1 have positive Lyapunov exponent, i.e., there is λ ≥ 1 such

that

( f n
a )′(±1) > λ

n, for all n > 0.

(R3) The orbits of the points 1 and -1 under fa are dense in I, for almost every a ∈ R.

(R4) The parameter 0 is a full density point for R, i.e.,

lim
a→0

m1([0,a)∩R)
m1([0,a))

= 1,

where m1 denotes the Lebesgue measure on the real line R.

We will see the detailed arguments to construct the set R in the next chapter.

3.3 SRB Measures for Rovella Maps

Here we consider discrete time system given by a map f defined on the interval I. Recall that

a measure µ on I is called:

• An invariant measure for f if for every measurable set A ⊂ I, µ( f −1(A)) = µ(A);

• An ergodic measure for f if for every measurable set A ⊂ I with f −1(A) = A, either

µ(A) = 0 or µ(A) = 1.

And if ν is another measure on I such that µ(A) = 0 for any measurable set A ⊂ I with

ν(A) = 0, then µ is called absolutely continuous with respect to ν .

The physical measure associated to the map f is defined as follows.

Definition 3.3.1. An f -invariant measure µ is called a physical measure for f if the basin of

µ , i.e., the set of points x ∈ I such that

lim
n→+∞

1
n

n−1
∑
j=0

ϕ( f j(x)) = ∫ ϕdµ, for any continuous map ϕ ∶ I→R,
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has a positive Lebesgue measure.

The following are two important examples of physical measures:

1. From Birkhoff’s Ergodic Theorem it follows that any ergodic invariant probability

measure which is absolutely continuous with respect to Lebesgue measure is a physical

measure. We shall refer to this special type of measure as an SRB measure.

2. If a map f has an attracting periodic orbit {x0,x1,⋯,xk−1} of period k, then the measure

µ = 1
k
(δx0 + δx1 +⋯+ δxk−1) given by the convex sum of the delta Dirac measures

supported on the points in the periodic orbit is a physical measure for f .

As in the case of Benedicks and Carleson [8] maps in the quadratic family, Rovella maps also

grow exponentially along the critical orbits. It was therefore a natural question to address

the existence of ergodic absolutely continuous invariant probability (SRB) measures for the

Rovella maps, as Benedicks and Young [10] studied in the case of Benedicks and Carleson

quadratic maps.

In the beginning of this century Metzger [21] positively answered that question by proving

the existence of SRB measures associated with Rovella maps. For that purpose he used the

properties (A3), (R1) and (R2). However to prove the uniqueness of the SRB measure he

considered a smaller class of maps for which properties (R1) and (R2) imply the following

strong mixing condition:

(M) For any interval J ⊂ I there exists a number n = n(J) > 0 such that [ fa(0+), fa(0−)] ⊂

f n
a (J).

The following lemma states that the set R can be chosen such that the corresponding maps

also satisfy condition (M).

Lemma 3.3.2. [21, Lemma A] Let the parameter a be in a small enough neighbourhood

of the full density point 0 of the set of Rovella parameters R. If the corresponding map fa

satisfies (R1) and (R2) then it satisfies (M).

Metzger mainly followed the techniques given by Viana in [30]. His fundamental strategy

was to reduce the non-uniform hyperbolicity of the dynamics of Rovella maps to that of
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piecewise uniformly expanding maps. For that purpose he used the definition of tower

extension given in [30] to transform the Rovella family to a family of uniformly expanding

maps. Note that the Rovella maps are not continuous having two critical values which makes

this case quite different than the one considered in [30]. In order to sort out this complication

Metzger tried to define the tower to keep track of both the critical orbits which end up with a

tower extension with two blocks (cf. [21]).

Following is one of the main results by Metzger given in that article.

Theorem 3.3.3. [21, Theorem A] Under the conditions (A3), (R1), (R2), and (M) fa admits

an absolutely continuous invariant measure. This measure is unique and ergodic.

3.4 Statistical Stability for Rovella Maps

During the early period of this century, Alves and Viana [5] were studying the statistical

properties of some dynamical systems and they purposed the notion of statistical stability.

This particular type of stability studies the continuous variation of physical measures as a

function of dynamical system. The precise definitions are as follows:

Definition 3.4.1. Let G1 be a family of maps defined on I corresponding unique physical

measures. We say that f ∈ G1 is statistically stable if the function

gz→ µg

is continuous at f in the weak∗ topology, where µg is the physical measure corresponding to

map g.

Definition 3.4.2. Let G2 be a family of maps defined on I corresponding unique physical mea-

sures and those measures admit density functions. We say that f ∈ G2 is strongly statistically

stable if the function

gz→ hg,
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is continuous at f in L1-norm, where hg is density function for the physical measure µg

corresponding to map g.

There are certain situations which assure the existence of densities of physical measures,

e.g., if a map f admits physical measure µ as an SRB measure, i.e., µ is absolutely continuous

with respect to Lebesgue measure, then the well known Radon-Nikodym Theorem guarantees

the existence of density function for µ .

Keller [19] obtained the strong stability results for the piecewise expanding maps by

proving the convergence of the densities of SRB measures in L1-norm. Alves [1] presented

sufficient conditions for the strong statistical stability for non-uniformly expanding maps.

These conditions involve the volume decay of the tail set.

Definition 3.4.3. The map f is said to be non-uniformly expanding if there exists a constant

c such that for Lebesgue almost every x ∈ I

liminf
n→+∞

1
n

n−1
∑
i=0

log( f ′( f i(x))) > c.

Definition 3.4.4. The map f has slow recurrence to the critical set if for every ε > 0 there

exists a δ > 0 such that for Lebesgue almost every x ∈ I

limsup
n→+∞

1
n

n−1
∑
i=0
− logdδ (( f i(x),0) ≤ ε,

where dδ is the delta truncated distance given as

dδ (x,y) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

∣x−y∣, ∣x−y∣ ≤ δ ,

1, ∣x−y∣ > δ .

The expansion time function is given by

H(x) =min{N ≥ 1 ∶ 1
n

n−1
∑
i=0

log( f ′( f i(x))) > c,∀n ≥N},

which is defined and finite almost everywhere in I provided f is non-uniformly expanding.

By fixing ε > 0 and choosing a convenient δ > 0, the recurrence time function is given by the
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expression

R(x) =min{N ≥ 1 ∶ 1
n

n−1
∑
i=0
− logdδ (( f i(x),0) ≤ ε,∀n ≥N},

which is defined and finite almost everywhere in I provided f has slow recurrence to the

critical set. Then the tail set at time n is the set of points that resist satisfying either a

non-uniformly expanding condition or uniform slow recurrence at time n:

T n = {x ∈ I ∶H(x) > n or R(x) > n}.

Freitas [14] proved that the Benedicks-Carleson quadratic maps are non-uniformly expanding.

Moreover, he showed that those maps have slow recurrence to the critical set and the

tail set loses volume exponentially fast. Therefore, applying the conditions given in [1],

Freitas concluded that Benedicks-Carleson quadratic maps are strongly statistically stable by

restricting himself on Benedicks-Carleson maps.

Recently, Alves and Soufi [3] studied the statistical stability for the Rovella maps. By

following the techniques developed by Freitas [14], they established that the Rovella maps

are non-uniformly expanding, have slow recurrence to the critical point and their tail set

decay exponentially fast. Following is the main result given in [3].

Theorem 3.4.5. [3, Theorem A] Each fa, with a ∈ R, is non-uniformly expanding and has

slow recurrence to the critical set. Moreover, there are C > 0 and τ > 0 such that for all a ∈ R

and n ∈N,

∣T n
a ∣ ≤Ce−τn.

By making use of [2, Lemma 5.6], Alves and Soufi established the uniqueness of SRB

measure for Rovella maps which is presented in their article as a corollary of the above

theorem.

Corollary 3.4.6. [3, Corollary B] For all a ∈R, fa has a unique ergodic absolutely continuous

invariant probability measure µa.
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In the same article they also concluded the strong statistical stability of Rovella maps as a

corollary of their main theorem.

Corollary 3.4.7. [3, Corollary C] Let
dµa

dm
denotes the density of the measure µa. Then the

function

R ∋ a↦ dµa

dm

is continuos, if the L1-norm is considered in the space of densities, and the entropy of µa

varies continuously with a ∈ R.





Chapter 4

Construction of the Set of Rovella

Parameters

In this chapter we consider the one parameter family { fa ∶ I∖{0}→ I ∶ a ≥ 0} of maps, which

was introduced by Rovella [23], arises through contracting Lorenz attractor and we refer this

as contracting Lorenz-like family. For this family, Rovella briefly formed a set of parameters

R, so called set of Rovella parameters, such that the derivatives of corresponding maps along

the critical orbits increase exponentially and critical orbits have slow recurrence to the critical

point. He indicated there that the idea of construction of the set R goes back to the work of

Benedicks and Carleson in [8, 9]. In this chapter our aim is to construct that set in a more

detailed and precise way.

Following the techniques of Benedicks and Carleson, we will construct through induction

a nested sequence of sets of parameters {Rn}n∈N such that the derivative of each map

associated with the set Rn has exponential growth along the critical orbits up to time n, i.e.,

there exists some λ > 1 such that for every a ∈ Rn

D±j (a) ∶= ( f j
a)′(∓1) ≥ λ

j for j = 1, . . . ,n. (EGn)

31
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In addition, those parameters will satisfy so called basic assumption: for some α > 0 suffi-

ciently small

∣ξ±j (a)∣ ≥ e−α j for j = 1, . . . ,n, (BAn)

where for any subset P of the set of parameters corresponding to the contracting Lorenz-like

family the mappings ξ±k ∶ P→ I are defined as

ξ
±
k (a) = f k−1

a (∓1) for all k ≥ 1.

Note that it is useful to impose (BAn) to keep ξ±n (a) away from the critical point which

guarantees that D±n(a) do not vanish for a parameter a satisfying (EGn−1). By setting

R =
+∞
⋂
n=1

Rn,

we obtain the set of Rovella parameters.

We will first try to find a parameter a0 > 0 such that for a sufficiently large integer N1,

the conditions (BAN1−1) and (EGN1−1) are satisfied by fa for every a ∈ [0,a0]. Afterwards

by setting Ri = [0,a0] for i = 1, . . . ,N1−1, we assume that Rn−1 satisfies (BAn−1) for n ≥N1.

Then we exclude some parameters from Rn−1 in order to obtain Rn such that every a ∈ Rn

satisfies (BAn) and (EGn) and we inductively construct the sequence {Rn}n∈N.

The parameter exclusion will be made in the following way: the sequences {γi}ν
i=0 and

{p}ν
i=0, ν = ν(n), can be associated to each a ∈ Rn−1 with γ0 = 1, p0 = −1 and 1 ≤ γi+ pi+1 <

γi+1 ≤ n for i = 0, . . . ,ν −1. By setting

qi = γi+1−(γi+ pi+1) for i = 0, . . . ,ν −1,

and

qν =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

0 if n ≤ γν + pν

n−(γν + pν +1) if n > γν + pν .
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For some B1 > 0, c > 0 and λ0 > 1, we will have

( f qν

a )′(ξ±γν+pν+1(a)) ≥ cλ
qν

0 (4.0.1)

( f qi
a )′(ξ±γi+pi+1(a)) ≥ λ

qi
0 for i = 0, . . . ,ν −1 (4.0.2)

( f pi+1
a )′(ξ±γi

(a)) ≥ 1 for i = 0, . . . ,ν −1 (4.0.3)

( f k
a )′(ξ±γi+1(a)) ≥

1
B1

λ
k for k = 1, . . . , pi, and for i = 0, . . . ,ν . (4.0.4)

Using chain rule, for n > γν + pν

D±n(a) =
ν

∏
i=0
( f qi

a )′(ξ±γi+pi+1(a)) ⋅( f pi+1
a )′(ξ±γi

(a)),

and for n ≤ γν + pν

D±n(a) = f ′a(ξ±ν (a))( f n−γν

a )′(ξ±
γν+1(a))

ν−1
∏
i=0
( f qi

a )′(ξ±γi+pi+1(a)) ⋅( f pi+1
a )′(ξ±γi

(a)).

Then, defining Hn(a) = q0+ . . .+qν , using inequalities (4.0.1)-(4.0.4) and property (A3), we

get

D±n(a) ≥ cλ
Hn(a)
0 , if n > γν + pν , (4.0.5)

and

D±n(a) ≥
K2

B1
∣ξ±γν
(a)∣s−1

λ
(n−γν−pν)cλ

Hn(a)
0 , if n ≤ γν + pν . (4.0.6)

We exclude parameters a ∈ Rn−1 such that ∣ξ±n (a)∣ < e−αn or they do not satisfy

Hn(a) ≥ (1−α)n, (Hn)

to obtain the set Rn. Since each a ∈ Rn also satisfies (BAn), from (4.0.5) and (4.0.6), we have

D±n(a) ≥ cλ
αn
0 ⋅λ

(1−2α)n
0 if n > γν + pν , (4.0.7)
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and

D±n(a) ≥
K2

B1
e−(s−1)αn

λ
(n−γν−pν)cλ

(1−α)n
0 if n ≤ γν + pν

≥ K2

B1
cλ
− 1

lnλ0
(s−1)αn

0 λ
(1−α)n
0

= K2

B1
cλ

αn
0 ⋅λ

[1−(2α+ 1
lnλ0
(s−1)α)]n

0 . (4.0.8)

We may choose N1 sufficiently large so that the first factors in both the inequalities (4.0.7) and

(4.0.8) are greater than 1. Also α can be chosen small enough so that 2α + 1
lnλ0
(s−1)α < 1,

then by setting c′ = 1−(2α + 1
lnλ0
(s−1)α) and λ = λ c′

0 (> 1), we conclude that D±n(a) ≥ λ n,

i.e., every a ∈ Rn also satisfies (EGn). Let us fix a sufficiently small α > 0 such that αs < lnλ .

This will be useful in order to establish some important results in the sequel.

The key idea is to split the orbit of a parameter a, {ξ±k (a), k ≥ 1}, into pieces cor-

responding to the times: returns γi, bound periods {γi + 1, . . . ,γi + pi}, and free periods

{γi+ pi+1, . . . ,γi+1−1} before the next returns γi+1. The returns corresponding to a parameter

are the times when the orbit of that parameter visits a small neighbourhood of 0, the bound

periods consist of times when orbit, after visiting that small neighbourhood, shadows an

initial segment of one of the critical orbits closely, and the period of times when orbit stays

outside that small neighbourhood as well as it is not in some bound period refer as the free

periods. We shall precisely define all these notions later in this chapter.

4.1 The Initial Interval

In this section our goal is to acquire the initial interval of parameters in order to make the

induction. First we remark that from now onwards by ω we refer an interval contained in the

set of parameters corresponding to contracting Lorenz-like family. The following lemma by

Alves and Soufi provides very useful properties for the dynamics of the maps f0.

Lemma 4.1.1. [3, Lemma 2.1] There is λc > 1 and a sufficiently large integer ∆c such that:

for any ∆ ≥ ∆c there are a′0 > 0 and c > 0, depending on ∆, such that given any x ∈ I and

a ∈ [0,a′0],
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(1) If x, fa(x), ..., f n−1
a (x) ∉ (−e−∆,e−∆), then ( f n

a )′(x) ≥ cλ n
c ;

(2) If x, fa(x), ..., f n−1
a (x) ∉ (−e−∆,e−∆) and f n

a (x) ∈ (−e−∆,e−∆), then ( f n
a )′(x) ≥ λ n

c ;

(3) If x, fa(x), ..., f n−1
a (x) ∉ (−e−∆,e−∆) and f n

a (x) ∈ (−e−1,e−1), then ( f n
a )′(x) ≥

1
e

λ n
c .

The following result is based on the fact that the maps ξ±k are differentiable as long as

they stay away from 0, and states that under strong growth of the derivatives of fa at the

critical values ±1 the parameter and the space derivatives are comparable.

Proposition 4.1.2. Given λ > 1 and η > 2, there is an integer N± ≥ 2 and A± > 0 such that if

a parameter a ≥ 0 and n ≥N± satisfy both

(1) D±j (a) ≥ η j for 1 ≤ j ≤N±, and

(2) D±j (a) ≥ λ j, for 1 ≤ j ≤ n−1,

then

1
A±
≤ ∣(ξ

±
n )′(a)∣

D±n−1(a)
≤ A±.

Proof. We consider the case of the critical value −1, the case of +1 is similar. Setting

f (a,x) = fa(x) and using the chain rule for k ≥ 1, we have

D+k (a) =
∂ f
∂x
(a,ξ+k (a)) ⋅D

+
k−1(a)

=
k
∏
i=1

∂ f
∂x
(a,ξ+i (a)). (4.1.1)
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On the other hand

(ξ+k+1)
′(a) = ∂ f

∂x
(a,ξ+k (a)) ⋅(ξ

+
k )
′(a)+ ∂ f

∂a
(a,ξ+k (a))

= ∂ f
∂x
(a,ξ+k (a))[

∂ f
∂x
(a,ξ+k−1(a)) ⋅(ξ

+
k−1)

′(a)

+ ∂ f
∂a
(a,ξ+k−1(a))]+

∂ f
∂a
(a,ξ+k (a))

= ∂ f
∂x
(a,ξ+k (a))

∂ f
∂x
(a,ξ+k−1(a)[

∂ f
∂x
(a,ξ+k−2(a) ⋅(ξ

+
k−2)

′(a)

+ ∂ f
∂a
(a,ξ+k−2(a))]+

∂ f
∂x
(a,ξ+k (a))

∂ f
∂a
(a,ξ+k−1(a))+

∂ f
∂a
(a,ξ+k (a))

=
k
∏
i=1

∂ f
∂x
(a,ξ+i (a)) ⋅(ξ+1 )

′(a)+
k
∏
i=2

∂ f
∂x
(a,ξ+i (a))

∂ f
∂a
(a,ξ+1 (a))

+ . . .+ ∂ f
∂x
(a,ξ+k (a))

∂ f
∂a
(a,ξ+k−1(a))+

∂ f
∂a
(a,ξ+k (a)). (4.1.2)

From (4.1.1) and (4.1.2), we have

(ξ+k+1)′(a)
D+k (a)

−
(ξ+k )′(a)
D+k−1(a)

=

∂ f
∂a
(a,ξ+k (a))

∏k
i=1

∂ f
∂x (a,ξ

+
i (a))

=

∂ f
∂a
(a,ξ+k (a))

D+k (a)
. (4.1.3)

After summing the both sides of (4.1.3) over k = 1, ...,n−1, we get

(ξ+n )′(a)
D+n−1(a)

−
(ξ+1 )′(a)

D+0(a)
=

n−1
∑
k=1

∂ f
∂a
(a,ξ+k (a))

D+k (a)
.

We may assume that there exist A1,A2 > 0 such that for every parameter a,

A1 < sup
x∈I
∣∂ f
∂a
(a,x)∣ ≤ ∣(ξ+1 )

′(a)∣ ≤ A2.
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Since D+0(a) = 1, from the above equation, we get

∣∣(ξ
+
n )′(a)

D+n−1(a)
∣− ∣(ξ+1 )

′(a)∣ ∣ ≤ ∣(ξ
+
n )′(a)

D+n−1(a)
−(ξ+1 )

′(a)∣

= ∣
n−1
∑
k=1

∂ f
∂a
(a,ξ+k (a))

D+k (a)
∣

≤ sup
x∈I
∣∂ f
∂a
(a,x)∣

n−1
∑
k=1

1
D+k (a)

≤ ∣(ξ+1 )
′(a)∣

n−1
∑
k=1

1
D+k (a)

.

And from the above inequality, we get

A1(1−
n−1
∑
k=1

1
D+k (a)

) ≤ ∣(ξ
+
n )′(a)∣

D+n−1(a)
≤ A2(1+

n−1
∑
k=1

1
D+k (a)

). (4.1.4)

On the other hand since η > 2 and λ > 1, therefore ∑+∞k=1
1

ηk < 1 and ∑+∞k
1

λ k → 0 as k→ +∞.

Thus we can choose an integer N+0 and a number ε ′ > 0 such that∑+∞k=1
1

ηk +∑+∞k=N+0 +1
1

λ k < 1−ε ′.

Then if D+k (a) ≥ ηk for every k = 1, . . . ,N+0 , and D+k (a) ≥ λ k for every k =N+0 +1, . . . ,n−1, we

obtain

n−1
∑
k=1

1
D+k−1(a)

≤
N+0
∑
k=1

1
ηk +

n−1
∑

k=N+0 +1

1
λ k

≤
∞
∑
k=1

1
ηk +

∞
∑

k=N+0 +1

1
λ k

≤ 1−ε
′.

The result follows from (4.1.4) with A+ ≥max{ 1
ε ′A1

,A2(2−ε ′)}.

From here on we take

N =max{N+,N−} and A =max{A+,A−},
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where N± and A± are provided by Proposition 4.1.2.

Remark 4.1.3. Observe that if the conditions (1), (3) of Proposition 4.1.2 are satisfied for

some n ≥N and for every a in some parameter interval ω then we have in particular ξ±k (a) ≠ 0

for all a ∈ω and k =N,⋯,n, since ∣(ξ±k )′(a)∣ ≥
1
A

D±k−1(a). Then for any N ≤ k ≤ n, ξ±k ∣ω are

diffeomorphisms with the inverses defined as: for any x± ∈ ξ±k (ω) with ξ±k (a) = x± for some

a ∈ω , then

(ξ±k )
−1(x±) ∶= ξ

±
−k(x

±) = a.

In fact ξ±k ∣ω are diffeomorphisms and this assertion plays an important part to inductively

construct the set of Rovella parameters. Consequently for every N ≤ i ≤ j ≤ n, we can define

the following functions

ψ± ∶ ξ±i (ω)Ð→ ξ±j (ω)

x ↦ ξ±j ○(ξ±i )−1(x),

with the derivative given for a ∈ω by

(ψ±)′(ξ±i (a)) =
(ξ±j )′(a)
(ξ±i )′(a)

, a ∈ω.

The functions ψ± will be useful in the proof of the next lemma which is useful in finding

an estimate for the lengths of ξ±n (ω) at particular time n, where ω is a parameter interval.

Lemma 4.1.4. Given λ > 1 and η > 2, consider a parameter interval ω such that every a ∈ω

and some n ≥N hold both

(1) D±j (a) ≥ η j for 1 ≤ j ≤N, and

(2) D±j (a) ≥ λ j, for 1 ≤ j ≤ n−1.

Then, for any N ≤ i ≤ j ≤ n, there is a± ∈ω such that

1
A2 ∣( f j−i

a± )
′(ξ±i (a±))∣ ≤

∣ξ±j (ω)∣
∣ξ±i (ω)∣

≤ A2 ∣( f j−i
a± )

′(ξ±i (a±))∣ .
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Proof. We are going to present the proof corresponding to critical value −1, the other case

can be seen along similar lines. Since (1) and (2) hold for every a ∈ ω , it follows from

Proposition 4.1.2 that

1
A2 ⋅

D+j−1(a)
D+i−1(a)

≤
∣(ξ+j )′(a)∣
∣(ξ+i )′(a)∣

≤ A2 ⋅
D+j−1(a)
D+i−1(a)

. (4.1.5)

On the other hand, by the Mean Value Theorem, for some a+ ∈ω we have

∣ξ+j (ω)∣
∣ξ+i (ω)∣

= ∣(ξ+j−i)′(ξ+i (a+))∣ = ∣(ξ+j ○ξ
+
−i)′(ξ+i (a+))∣ = ∣(ψ+)′(ξ+i (a+))∣. (4.1.6)

Also

D+j−1(a
+) = ( f j−1

a+ )
′(−1) = ( f j−i

a+ ○ f i−1
a+ )

′(−1)

= ( f j−i
a+ )

′( f i−1
a+ (−1))( f i−1

a+ )
′(−1)

= ( f j−i
a+ )

′(ξ+i (a+))D+i−1(a
+),

which gives

D+j−1(a+)
D+i−1(a+)

= ( f j−i
a+ )

′(ξ+i (a+)). (4.1.7)

Now using (4.1.6) and (4.1.7) in (4.1.5), we get

1
A2 ∣( f j−i

a+ )
′(ξ+i (a+))∣ ≤

∣ξ+j (ω)∣
∣ξ+i (ω)∣

≤ A2 ∣( f j−i
a+ )

′(ξ+i (a+))∣ .

Hence the result follows.

Since the points 1 and −1 are fixed by the map f0, f0(0+)=−1, f0(0−)= 1 and f0 is smooth

in the intervals [−1,0) and (0,1], so we can find numbers η0 > 2 and ε0 > 0 with η0−ε0 > 2

such that f ′0(−1) = η0. We set η1 = η0−ε0 > 2, and denote O−(a) ∈ [−1,0) and O+(a) ∈ (0,1]

the zeros of the map fa on the left and right side of the origin, respectively, i.e., fa(O±(a)) = 0.

Also since the point 1 is a critical value for f0 with f0(0−)= 1, O−(0) ∈ (−1,0), f0(0−)= 1 and

f ′0(x)≤ f ′0(y) for x,y ∈ [O−(0),0)with x≥ y, then we may choose ε0 > 0 such that f ′0(O−(0))≥
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1+ε0. Therefore we can take δ0 > 0 such that O−(0)+δ0 < 0 and f ′0(O−(0)+δ0) ≥ 1+ ε0
2 . Note

that f0(x) ≥ g(x) for every x ∈ [O−(0),0), where g(x) = − x−O−(0)
O−(0) is the linear map passing

through the points (O−(0),0) and (0,1)with g(O−(0)+δ0) =− δ0
O−(0) . Thus we may choose a

positive integer ∆0 >− log( −δ0
O−(0)) and set x0 =O−(0)+δ0 and λ ′0 = 1+ ε0

2 such that f ′0(x0) ≥ λ ′0

and f0(x0) > e−∆0 with x0 ∈ (O−(0),0). Let us fix a λ0 > 1 and ∆ with λ0 ≤min{λc,λ ′0} and

∆ ≥max{∆c,∆0}, where λc and ∆c are provided by Lemma 4.1.1. Note that this λ0 will work

for Lemma 4.1.1. These notations will be useful in the next proposition which provides the

initial interval of our later construction of the set of parameters.

Proposition 4.1.5. Given any integer N0 ≥N, there exist an integer N1 ≥N0 and a parameter

0 < a0 ≤ a′0 such that

(i) D+j (a) ≥ η
j

1 f or every a ∈ [0,a0] and 1 ≤ j ≤N0−1,

(ii) D+j (a) ≥ λ
j

0 f or every a ∈ [0,a0] and 1 ≤ j ≤N1−1,

(iii) ξ+j ([0,a0])∩(−e−∆,e−∆) = φ f or every 1 ≤ j ≤N1−1,

(iv) ξ+N1
([0,a0]) ⊃ (−e−∆,e−∆).

Proof. For 1 ≤ n ≤N0, set

Φn ∶ [0,a′0]Ð→ [−1,1]× [0,+∞)

a z→ (ξ+n+1(a),D
+
n(a)).

Since −1 is fixed by f0, using the chain rule we get

D+n(0) = ( f n
0 )
′(−1) =

n−1
∏
i=0

f ′0( f i
0(−1)) =

n−1
∏
i=0

f ′0(−1)

Recalling that f ′0(−1) = η0, we have Φn(0) = (−1,ηn
0). Since Φk is continuous as long as ξ+k

mapped onto the origin, so, for 1≤ n≤N0 we have sequence of parameters {an ∶ an ∈ [0,a′0]}
N0
n=1

with ai ≤ ak, for i ≥ k, and

Φn ([0,an]) ⊂ [−1,O−(0)]× [ηn
1 ,+∞).



4.1 The Initial Interval 41

That is for every 1 ≤ n ≤N0 and every a ∈ [0,aN0], ξ+n+1(a) ≤O−(0) and

D+n(a) ≥ η
n
1 .

Thus any a ∈ [0,aN0] satisfies (i). Since f ′0(x0) ≥ λ0, then it is to be noted that if for some

parameter a, ξ+j (a) ∈ [−1,x0] for every j = 1, . . . ,k, then

D+k (a) ≥ λ
k
0 .

Now as long as ξ+i ([0,aN0]), i ≥ 1, is contained in [−1,x0), any a ∈ [0,aN0] satisfies the

hypothesis of Proposition (4.1.2), thus by using mean value theorem, for some a ∈ (0,aN0),

we have

∣ξ+i+1 ([0,aN0]) ∣ = ∣(ξ+i+1)
′(a)∣ ⋅aN0

≥
aN0

A
D+i (a)

≥
aN0

A
λ

i
0.

The above inequality reveals that while ξ+i ([0,aN0]), i≥1, remains inside the interval [−1,x0),

we have exponential growth of ξ+i ([0,aN0]), and then there exists an integer k such that

ξ+k ([0,aN0]) /⊂ [−1,x0). Let N′1 be the first integer to have the above situation, i.e.,

ξ
+
i ([0,aN0]) ⊂ [−1,x0) for every 1 ≤ i <N′1,

and

ξ
+
N′1
([0,aN0]) /⊂ [−1,x0).

Therefore we may chose a0 ∈ [0,aN0] such that ξ+N′1
(a0) = x0, since fa0(x0) ≥ e−∆, then

ξ+N′1+1([0,a0]) ⊃ [−1,e−∆). Hence the result follows by taking N1 =N′1+1.

Remark 4.1.6. From the property (A0), we know that the points 1 and −1 are fixed by the map

f0, therefore by the definition of f0, it can be seen that the connected components of the graph
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of f0 in the intervals [−1,0) and (0,1] are symmetric about origin, i.e., f0(x) = − f0(−x) for

all x ∈ I∖{0}. Therefore for the sake of simplicity we may assume that for any parameter a

corresponding to contracting Lorenz-like family, fa(x) = − fa(−x) for all x ∈ I∖{0}. Thus the

similar result as Proposition 4.1.5 can be obtain for ξ− and D− with the same integer N1 and

the parameter interval [0,a0]. We also remark that the results can be proved in more general

setting without the assumption of symmetry.

4.2 The Bound Periods

The periods of time occurring after the returns of critical orbits ξ±k (a) to a small neighbour-

hood of 0 have a significant role and we call those periods as bound periods. In this section

first we will precisely define those periods of time and then obtain some results which are

used to get the exponential growth property (EGn) under the assumptions (BAn) and (Hn). In

order to explicitly describe the closeness to 0, we set δ ∶= e−∆, where ∆ is the one which is

used in Proposition 4.1.5, and consider the following neighbourhoods of 0 for m ≥ ∆−1

Um = (−e−m,e−m).

We also set for m ≥ ∆−1

Im = [e−(m+1),e−m) and I+m = Im−1∪ Im∪ Im+1.

We extend the above definition, setting for m ≤ −(∆−1)

Im = −I∣m∣ and I+m = −I+∣m∣.

Since we will study the iterations of small parameter intervals, therefore the notions like,

returns, bound periods and free periods must be constant in small parameter intervals. Here

we fix some β > 0 such that sα ≤ β and β
s+5

β + logλ
< 1.
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Definition 4.2.1. Let x ∈ I+m, we denote p(a,m) to be the largest integer such that

∣ f j
a(x)−ξ

+
j (a)∣ ≤ e−β j i f m > 0,

and

∣ f j
a(x)−ξ

−
j (a)∣ ≤ e−β j i f m < 0,

for j = 1, . . . , p(a,m). Then the time interval 1, . . . , p(a,m) is called the bound period for x.

Note that by the above definition

∣ f j−1
a ([−1, fa(e−∣m∣+1)])∣ ≤ e−β j,

for all 1 ≤ j ≤ p(a,m). The above definition allows us to state our next result which essentially

assures that the bound period p(a,m) for ξ+j (a) ∈ I+m, satisfies the properties (4.0.3) and

(4.0.4). First we mention that Rn ⊂ [0,a0] denotes a set satisfying (BAn) and (EGn). In fact

we will encounter these sets later in the construction of set of Rovella parameters. It is also

to be noted that if a ∈ Rn−1 and ξ+n (a) ∈ I+m for some m with ∣m∣ ≥ ∆, then ξ−n (a) ∈ I+−m and

p(a,m) = p(a,−m).

Lemma 4.2.2. Assume that a ∈ Rn−1 and either ξ+n (a) or ξ−n (a) belongs to an interval I+m,

for some ∆ ≤ ∣m∣ ≤ [αn]−1. Then

(1) there exists B1 = B1(α,β) such that for every k = 1, . . . , p(a,m)

(a)
1

B1
≤ ( f k

a )′(y)
D+k (a)

≤ B1 if y ∈ [−1, fa(e−∣m∣+1)] ,

(b)
1

B1
≤ ( f k

a )′(y)
D−k (a)

≤ B1 if y ∈ [ fa(−e−∣m∣+1),1] ;

(2) p(a,m) ≤ s+1
β + logλ

∣m∣;

(3) letting p = p(a,m) and κ1 = β
s+2

β + logλ
, we have for all x ∈ I+m

( f p+1
a )′(x) ≥ e(1−κ1)∣m∣.
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Proof. For obtaining (1) it is sufficient to prove the first item, since the second one can be

obtained by following similar lines. We may assume that ξ+n (a) ∈ I+m. First using chain rule,

for k = 1, . . . ,min{p,n}, we have

( f k
a )′(y)

D+k (a)
= ( f k

a )′(y)
( f k

a )′(−1)
=

k−1
∏
j=0

f ′a( f j
a(y))

f ′a(ξ+j+1(a))

=
k−1
∏
j=0
(1+

f ′a( f j
a(y))− f ′a(ξ+j+1(a))

f ′a(ξ+j+1(a))
)

≤ exp(
k−1
∑
j=0
∣

f ′a( f j
a(y))− f ′a(ξ+j+1(a))

f ′a(ξ+j+1(a))
∣).

Therefore we conclude the proof of this item by showing that

k−1
∑
j=0

∣ f ′a( f j
a(y))− f ′a(ξ+j+1(a))∣

f ′a(ξ+j+1(a))

is uniformly bounded. Since 0 is not in [ξ+j (a)− e−β j,ξ+j (a)+ e−β j] and fa has negative

Schwarzian derivative inside this interval, as long as f j
a(y) ∈ [ξ+j (a)−e−β j,ξ+j (a)+e−β j],

∣ f ′a( f j
a(y))− f ′a(ξ+j+1(a))∣

f ′a(ξ+j+1(a))
≤ ∣ f ′′a (z)∣

∣ f j
a(y)−ξ+j+1(a)∣
f ′a(ξ+j+1(a))

≤C∣z∣s−2
∣ f j

a(y)−ξ+j+1(a)∣
f ′a(ξ+j+1(a))

.

Now k ≤ n, p and a satisfies (BAn−1), therefore from the above inequality, using the binding

condition and property (A3), we get

k−1
∑
j=0

∣ f ′a( f j
a(y))− f ′a(ξ+j+1(a))∣

f ′a(ξ+j+1(a))
≤ C

K2

k−1
∑
j=0

e−β j

e−α(s−1)( j+1) .

The right side of the above inequality is uniformly bounded since β ≥ sα with s > 1. Conse-

quently to conclude the proof of (1) we just need to make sure that p < n. See part (2).
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For proving (2), let x = e−∣m∣+1 ∈ I+m and j =min{p,n}−1. Then using the first part of (1)

and property (A3), we have

∣ f j+1
a (x)−ξ

+
j+1(a)∣ = ∣ f

j
a( fa(x))− f j

a(−1)∣

= ( f j
a)′(y)∣ fa(x)+1∣, y ∈ (−1, fa(e−∣m∣+1))

≥ K2

B1
D+j (a)

∣x∣s
s
.

Now by using binding condition and taking into account that a satisfies (EGn−1), from the

last inequality it follows that

K2

B1s
λ

je−(∣m∣+2)s ≤ e−β( j+1),

and from the above inequality it can be work out that

j ≤ ∣m∣s
β + logλ

+
2s− log( K2

B1s)−β

β + logλ
.

Therefore if ∣m∣ is large enough, we may conclude that

j ≤ ∣m∣(s+1)
β + logλ

−1. (4.2.1)

Since ∣m∣ ≤ [αn]−1, from (4.2.1) we have

j ≤ ([αn]−1)(s+1)
β + logλ

−1 ≤ (αn−1)(s+1)
β + logλ

−1

≤ (αn)(s+1)
β + logλ

−1 < n−1,

where the last inequality holds since β ≥ sα and α < logλ . Hence j = p−1 and from (4.2.1)

the result follows. Let us now prove (3). Clearly, by the binding condition

∣ f p
a ([−1, fa(e−∣m∣+1)])∣ ≥ e−β(p+1). (4.2.2)
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Thus by the mean value theorem, for some z ∈ (−1, fa(e−∣m∣+1)) and for some y ∈ (0,e−∣m∣+1),

we have

∣ f p
a ([−1, fa(e−∣m∣+1)])∣ = ( f p

a )′(z) f ′a(y)e−∣m∣+1. (4.2.3)

From (4.2.2) and (4.2.3), we obtain

( f p
a )′(z) ≥

e−β(p+1)+∣m∣−1

f ′a(y)
.

Now using the above inequality, property (A3) and part (1), for any x ∈ I+m, we get

( f p+1
a )′(x) = ( f p

a )′( fa(x)) f ′a(x)

≥ 1
B1

D+p(a) f ′a(x), since fa(x) ∈ [−1, fa(e−∣m∣+1)]

≥ 1
B2

1
( f p

a )′(z) f ′a(x), since z ∈ [−1, fa(e−∣m∣+1)]

≥ 1
B2

1
e−β(p+1)+∣m∣−1 ⋅ f ′a(x)

f ′a(y)

≥ 1
B2

1
e−β(p+1)+∣m∣−1 ⋅ K2∣x∣s−1

K1∣y∣s−1 .

Since ∣x∣ ≥ e−∣m∣−2, ∣y∣ ≤ e−∣m∣+1 and from part (2) we have p < s+1
β+logλ

∣m∣. Hence the result

concluded from the above inequality, providing ∆ is sufficiently large so that K2
K1B2

1
e−(3s+β−2) ≥

e−
β

β+logλ
∣m∣.

Now we are intended to find similar bounds, as in the above lemma, when p(a,m) is

constant in small parameter intervals. In this regard, for a parameter interval ω such that

either ξ+n (ω) or ξ−n (ω) is contained in some I+m, with ∣m∣ ≥ ∆. Then we define

p(ω,m) =min
a∈ω

p(a,m).

Note that by the above definition p(ω,m) ≤ p(a,m) and

∣ f j−1
a ([−1, fa(e−∣m∣+1)])∣ ≤ e−β j,
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for all 1 ≤ j ≤ p(ω,m) and for every a ∈ω . Furthermore, p(ω,m) = p(ω,−m) and p(ω,m) ≤

p(a,m), therefore for every a ∈ω items (1) and (2) of Lemma 4.2.2 follow directly. But it

requires some more work in order to prove part (3) and this is what we are going to establish

in the remaining section. We take a parameter interval ω ⊂ Rn−1 with n sufficiently large

and under this hypothesis the next two results are consequence of exponential growth of the

lengths of ξ±k (ω), k ≥ 1.

Proposition 4.2.3. Let ω ⊂ Rn−1 be a parameter interval, then for every a,b ∈ω

∣a−b∣ ≤ 4Aλ
−n.

Proof. By using Proposition 4.1.2 and mean value theorem, for some d ∈ω , we have

2 ≥ ∣ξ+n (ω)∣ = (ξ+n )′(d)∣ω ∣ ≥ (ξ+n )′(d)∣a−b∣

≥ 1
A

D+n−1(d)∣a−b∣ ≥ 1
A

λ
n−1∣a−b∣,

where the last inequality holds since d ∈ Rn−1. And from the above inequality, we get

∣a−b∣ ≤ 2Aλ
−(n−1) ≤ 4Aλ

−n.

Lemma 4.2.4. Let ω ⊂Rn−1 be a parameter interval and either ξ+n (ω) or ξ−n (ω) is contained

in I+m with ∆ ≤ ∣m∣ ≤ [αn]−1, then for every a,b ∈ω and every 1 ≤ j ≤ p(ω,m),

∣∣ξ±j (a)∣s−1− ∣ξ±j (b)∣s−1∣ ≤ e−β j.

Proof. We need to prove the result just in the case of ξ+j , the other one can be prove in the

same way. If a = b then it is trivial. So let us assume a ≠ b. From the inequality (4.1.4) in the
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proof of Proposition 4.1.2, we have

∣(ξ+j+1)′(a)∣
D+j (a)

≤ A2(1+
j

∑
k=1

1
D+k−1(a)

),

and since ω ⊂ Rn−1 and j ≤ p(ω,m) ≤ n−1, we get

∣(ξ+j+1)′(a)∣
D+j (a)

≤ A2(1+
j

∑
k=1

1
λ k−1 ) ≤ A2(1+

∞
∑
k=1

1
λ k−1 ) ≤ A3,

for some A3 > 0. Now if 1 < s ≤ 2, since the modulus function ∣ ⋅ ∣ is differentiable everywhere

except 0. Therefore, using above inequality and mean value theorem, we get

∣∣ξ+j (a)∣s−1− ∣ξ+j (b)∣s−1∣ ≤ ∣∣ξ+j (a)∣− ∣ξ+j (b)∣∣

= ∣
ξ+j (d)
∣ξ+j (d)∣

(ξ+j )′(d)∣∣a−b∣, d ∈ (a,b)

≤
∣(ξ+j )′(d)∣
D+j−1(d)

D+j−1(d)∣a−b∣

≤ A3D+j−1(d)∣a−b∣. (4.2.4)

And if s > 2, again using the mean value theorem, we get

∣∣ξ+j (a)∣s−1− ∣ξ+j (b)∣s−1∣ ≤ (s−1)∣ξ+j (d)∣s−2∣(ξ+j )′(d)∣∣a−b∣, d ∈ (a,b)

≤ (s−1)
∣(ξ+j )′(d)∣
D+j−1(d)

D+j−1(d)∣a−b∣

≤ AsD+j−1(d)∣a−b∣, (4.2.5)

where As = (s−1)A3. By Lemma 4.2.2 and the mean value theorem, for y ∈ (−1, fd(e−∣m∣+1)),

we have

∣ f j−1
d ([−1, fd(e−∣m∣+1)])∣ = ∣( f j−1

d )′(y)∣[−1, fd(e−∣m∣+1)]∣

≥ 1
B1

D+j−1(d)∣[−1, fd(e−∣m∣+1)]∣. (4.2.6)



4.2 The Bound Periods 49

From the inequalities (4.2.4), (4.2.5) and (4.2.6), we obtain

∣∣ξ+j (a)∣s−1− ∣ξ+j (b)∣s−1∣ ≤ AsB1∣a−b∣
∣ f j−1

d ([−1, fd(e−∣m∣+1)])∣
∣[−1, fd(e−∣m∣+1)]∣

, (4.2.7)

Using property (A3), we have

∣[−1, fd(e−∣m∣+1)]∣ = 1+ fd(e−∣m∣+1)

≥ K2e(−∣m∣+1)(s−1)

s

≥K2e−∣m∣s ≥K2e−αns. (4.2.8)

And from the binding condition, we have

∣ f j−1
d ([−1, fd(e−∣m∣+1)])∣ ≤ e−β j. (4.2.9)

Using (4.2.8), (4.2.9) and Proposition 4.2.3 in (4.2.7), we get

∣∣ξ+j (a)∣s−1− ∣ξ+j (b)∣s−1∣ ≤ AsB1

K2
4Aλ

−ne−β jeαsn. (4.2.10)

By the choice of α , eαs < λ and for sufficiently large n, 4AAsB1
K2
( eαs

λ
)n ≤ 1. Hence the result

directly follows from (4.2.10).

Lemma 4.2.5. Let ω ⊂Rn−1 be a parameter interval and either ξ+n (ω) or ξ−n (ω) is contained

in I+m with ∆ ≤ ∣m∣ ≤ [αn]−1, then there exists a positive constant B2 = B2(α,β) such that for

every a,b ∈ω and x,y ∈ I+m,

( f j
a)′( fa(x))
( f j

b)′( fb(y))
≤ B2 ∀ j = 1, . . . , p(ω,m).

Proof. We may assume that ξ+n (ω)⊂ I+m. Since x,y ∈ I+m, fa(x), fa(y) ∈ [−1, fa(e−∣m∣+1)]. Thus

by using Lemma 4.2.2, we have

( f j
a)′( fa(x))
( f j

b)′( fb(y))
⋅
D+j (a)
D+j (b)

⋅
D+j (b)
D j(a)

≤ B2
1 ⋅

D+j (a)
D+j (b)

.
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Now if a = b then there is nothing to prove. So let us assume that a ≠ b. Using chain rule, we

have

D+j (a)
D+j (b)

= ∏
j
i=1 f ′a(ξ+i (a))

∏ j
i=1 f ′b(ξ

+
i (b))

,

which implies

D+j (a)
D+j (b)

=
j

∏
i=1
(1+

f ′a(ξ+i (a))− f ′b(ξ
+
i (b))

f ′b(ξ
+
i (b))

)

≤ exp(
j

∑
i=1
∣

f ′a(ξ+i (a))− f ′b(ξ
+
i (b))

f ′b(ξ
+
i (b))

∣). (4.2.11)

Therefore to conclude the result we need to prove that

j

∑
i=1

∣ f ′a(ξ+i (a))− f ′b(ξ
+
i (b))∣

f ′b(ξ
+
i (b))

is uniformly bounded. By using mean value theorem, property (A3) and Lemma 4.2.4, we

get

f ′a(ξ+i (a))− f ′b(ξ
+
i (b)) ≤K1∣(ξ+i (a))∣s−1−K2∣(ξ+i (b))∣s−1

≤K′∣∣(ξ+i (a))∣s−1− ∣(ξ+i (b))∣s−1∣, fore some large K′

≤K′e−β i. (4.2.12)

Thus by using basic assumption and Lemma 4.2.4, we obtain

f ′b(ξ
+
i (b)) ≥ f ′a(ξ+i (a))−K′e−β i

≥K1∣ξ+i (a)∣s−1−K′e−β i

≥K1e−α(s−1)i−K′e−β i

≥K1e−α(s−1)i(1− K′

K1
e(α(s−1)−β)i)

≥K∗e−α(s−1)i, (4.2.13)
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where K∗ =K1(1−
K′

K1
eα(s−1)−β ). Finally using iequalities (4.2.12) and (4.2.13), it follows

that

j

∑
i=1

∣ f ′a(ξ+i (a))− f ′b(ξ
+
i (b))∣

f ′b(ξ
+
i (b))

≤ K′

K∗
∞
∑
i=1

e(α(s−1)−β)i

<∞, since β ≥ sα .

Hence the result follows.

Finally we have the following lemma.

Lemma 4.2.6. Let ω ⊂ Rn−1 be a parameter interval and let either ξ+n (ω) or ξ−n (ω) is

contained in I+m with ∆ ≤ ∣m∣ ≤ [αn]−1. Set p = p(ω,m), then we have the following:

(1) There exists a constant B1(α,β) such that for every k = 1, . . . , p:

(a) 1
B1
≤ ( f k

a )′(y)
D+k (a)

≤ B1 i f y ∈ [−1, fa(e−∣m∣+1)],

(b) 1
B1
≤ ( f k

a )′(y)
D−k (a)

≤ B1 i f y ∈ [ fa(−e−∣m∣+1),1];

(2) p < s+1
β+logλ

∣m∣;

(3) Let κ2 = β
s+3

β+logλ
and x ∈ I+m. Then for every a ∈ω and x ∈ I+m we have

( f p+1
a )′(x) ≥ e(1−κ2)∣m∣.

Proof. We just need to prove (3). We may choose a∗ ∈ω such that p(ω,m) = p(a∗,m), then

from Lemma 4.2.5, we have

( f p
a∗)′( fa∗(x))
( f p

a )′( fa(x))
≤ B2.
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Now from the above inequality, using property (A3), we get

∣( f p+1
a∗ )′(x)∣

∣( f p+1
a )′(x)∣

=
f ′a∗(x)
f ′a(x)

( f p
a∗)′( fa∗(x))
( f p

a )′( fa(x))

≤ K1∣x∣s−1

K2∣x∣s−1
( f p

a∗)′( fa∗(x))
( f p

a )′( fa(x))
≤ K1

K2
B2.

Using part (3) of Lemma 4.2.2 in the above inequality, we obtain

∣( f p+1
a )′(x)∣ ≥ K2

K1B3
∣( f p+1

a∗ )′(x)∣

≥ K2

K1B3
exp((1−β

s+2
s+ logλ

)∣m∣)

≥ exp((1−β
s+3

s+ logλ
)∣m∣),

where the last inequality holds provided ∆ is sufficiently large.

4.3 Basic Construction

Now we define precisely the sets (Rn)n∈N and for a ∈ Rn the sequences (γi)i∈N and (p)i∈N
as referred before. First we subdivide each Im, m ≥ ∆ into m2 intervals of equal length by

introducing, for 1 ≤ k ≤m2, the following subintervals

Im,k = [e−m−k
∣Im∣
m2 ,e

−m−(k−1) ∣Im∣
m2 ),

and

I∆−1,k = [e−∆,e−∆+k
∣I∆−1∣
(∆−1)2

), k ≥ 1.

We extend the above definitions for m ≤−(∆−1) by setting Im,k =−I∣m∣,k. Therefore for ∣m∣ ≥∆

we have a partition of Im into intervals of equal length, i.e., Im = Im,m2 ∪⋯∪ Im,1, and each

Im,k has two adjacent intervals: Im,k−1 and Im,k+1 for Im,k with 1 < k < m2, Im−1,(m−1)2 and

Im,2 for Im,1, Im+1,1 and Im,m2−1 for Im,m2 . We set I+m,k = Im1,k1 ∪ Im,k ∪ Im2,k2, where Im1,k1 and

Im2,k2 are the adjacent intervals to Im,k. Note that Im,k ⊂ Im, I+m,k ⊂ I+m and ∣I+m,k∣ ≤
3∣Im∣
m2 if k ≠ 1
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and ∣I+m,k∣ ≤
5∣Im∣
m2 if k = 1, provided ∆ is large enough. It is useful also to consider the sets

I+
∆−1,1 = (0,1] and I+1−∆,1 = [−1,0).

Related to the above splitting of U∆, we will define inductively partitioning Pn of the

parameter intervals in order to have bounded distortion of ξ±n and D±n−1 on ω ∈Pn−1. Then

we define

Rn =⋃{ω ∶ω ∈Pn}.

Now we start our induction by taking the parameter interval [0,a0] and the integer N1

provided by Proposition 4.1.5. For i = 1,⋯,N1−1, we set Ri = [0,a0] and Pi = {[0,a0]}. Now

assume by induction on n ≥N1 that the following assertions are true for every ω ∈Pn−1:

1. There is a sequence of parameter intervals [0,a0] =ω1 ⊃⋯ ⊃ωn−1 =ω such that ωk ∈Pk

for k = 1,⋯,n−1.

2. There is a set Rn−1(ω)= {γ0,⋯,γν}, with γ0 = 1, which is the set of the return times of ω

up to n−1 and for k < n−1, Rk(ωk)=Rk(ω)∩{1,⋯,k}. Note that when Rn−1(ω)= {1},

ω has no return.

3. For any return γi ∈Rn−1(ω), i = 0, . . . ,ν , it is associated the intervals I+mi,ki
and I+−mi,ki

,

∣mi∣ ≥ ∆, such that ξ+γi (ωγi) ⊂ I+mi,ki
and ξ−γi (ωγi) ⊂ I+−mi,ki

. We call I+mi,ki
and I+−mi,ki

as host

intervals for ω . We put p = p(ωγi,mi), the pound periods associated to the returns γi

and, for sake of notation, we set p0 = −1. The periods {γi+ p+1, . . . ,γi+1−1}(i < ν)

and {γν + pν +1, . . . ,n−1} (if n > γν + pν ) are called the free periods after the returns γi.

During the free times j = 1, . . . ,qi,

ξ
±
γi+p+ j(ω)∩U∆ =∅

and then by Lemma 4.1.1, the assertions (4.0.1) and (4.0.2) are satisfied for every a ∈ω .

4. For k = 1,⋯,n−1, ωk satisfies (BAk) and (EGk). Therefore for each return γi ∈Rn−1(ω),

ωγi satisfies (BAγi) and (EGγi−1) and then Lemma 4.2.6 guarantees that pi < s+1
β+logλ

∣mi∣,

i.e., the bound period is finite. On the other hand, since ω ⊂ωγi , again using Lemma
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4.2.6, for every a ∈ω we have

( f pi+1
a )′(ξ±γi

(a)) ≥ exp((1−β
s+3

s+ logλ
)∣m+i ∣) ≥ 1,

which is assertion (4.0.3). Again by Lemma 4.2.6, for every k = 1, . . . , pi

( f k
a )′(ξ±γi+1(a)) ≥

1
B1
⋅D±k (a).

Since a satisfies (EGγi−1) and k ≤ pi ≤ s+1
β+logλ

⋅ ∣m+i ∣ <
s+1

β+logλ
⋅αγi < γi, we have

( f k
a )′(ξ±γi+1(a)) ≥

1
B1

λ
k.

Therefore assertion (4.0.4) is also satisfied.

Notice that all the above properties are trivially verified for n ≤N1 by taking Rn−1(ω) = {γ0},

i.e., there is no return till N1−1. Now we move towards the induction step. First we consider

a supplementary partitioning Qn containing portion of ω ∈Pn−1 which satisfy (BAn). Taking

ω ∈Pn−1, there can be following possible situations:

(a) If Rn−1(ω) ≠ {1} and n ≤ γν−1+ pν−1, i.e., n belongs to the bound period associated to

previous return then we put ω ∈Qn and set Rn(ω) =Rn−1(ω).

(b) If either Rn−1(ω) = {1} or n ≤ γν−1+ pν−1 and ξ±n (ω)∩U∆ ⊂ I∆,1∪ I−∆,1, we again put

ω ∈Qn and set Rn(ω) =Rn−1(ω). We call n a free time for ω .

(c) If we are not in the above situations, then ω must have a returning situation at time n.

In this case we can have two possibilities:

(i) ξ+n (ω) do not cover completely some interval Im,k. Clearly same holds for ξ−n (ω).

Since n ≥N1 we have that ω satisfies conditions (i) and (ii) of Proposition 4.1.2,

so as mentioned before, ξ±n ∣ω is an isomorphism. Also as ω is an interval by the

assumption of induction, therefore ξ±n (ω) are intervals and must contain in some

I+m,k and I+−m,k. We put ω ∈Qn and set Rn(ω) =Rn−1(ω)∪{n}. We call n as an

inessential return time for ω and refer I+m,k and I+−m,k as host intervals of the return.
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(ii) ξ+n (ω) contains at least one interval Im,k with ∣m∣ ≥ ∆. Then ξ−n (ω) covers I−m,k.

In this case we say that ω has an essential return situation at time n and consider

the following sets

ω
′
m,k = (ξ

+
n )−1(Im,k)⋂ω = (ξ−n )−1(I−m,k)⋂ω,

ω
1 = (ξ+n )−1([0,1]∖U∆)⋂ω = (ξ−n )−1([−1,0]∖U∆)⋂ω,

ω
2 = (ξ+n )−1([−1,0]∖U∆)⋂ω = (ξ−n )−1([0,1]∖U∆)⋂ω.

Let A be the set of indices (m,k) such that ωm,k is non-empty, we have

ω ∖(ξ+n )−1(0) =ω ∖(ξ−n )−1(0) = ⋃
(m,k)∈A

ω
′
m,k∪ω

1∪ω
2.

Again since, ξ±n ∣ω is an isomorphism, so ω ′m,k is an interval. Moreover ξ+n (ω ′m,k)

and ξ−n (ω ′−m,k)covers the whole Im,k and I−m,k, respectively, except for two extreme

end intervals. We join ω ′m,k to its adjacent interval when ξ+n (ω ′m,k) do not cover

Im,k completely and get a new decomposition of ω ∖ (ξ+n )−1(0) into intervals

ωm,k such that Im,k ⊂ ξ+n (ωm,k) ⊂ I+m,k and I−m,k ⊂ ξ−n (ωm,k) ⊂ I+−m,k. Now we put

ωm,k ∈Qn if and only if m ≤ [αn]−1 and set I+m,k and I+−m,k as its host intervals.

Note that the portion of ω excluded is an interval whose image under ξ±n contained

in U[αn]−1. If m ≥ ∆ we set Rn(ωm,k) =Rn−1(ω)∪{n} and call n as an essential

return for ωm,k. If m = ∆−1 then we set Rn(ωm,k) =Rn−1(ω), then ωm,k is called

an escape component and n an escaping situation for a ∈ωm,k.

Now we can easily check that any descendant of an ω ∈ Pn−1 that belongs to Qn satisfies

(BAn):

(a) If n is a bound time, i.e., n = γ + j, 1 ≤ j ≤ p ≤ n−1, where γ and p are returns and bound

periods for ω. Then by using binding condition, for all a ∈ω, we obtain

∣ξ±
γ+ j(a)∣ ≥ ∣ξ±j (a)∣−e−β j.
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Since every a ∈ω satisfies (BA j) by the induction hypothesis, therefore from Lemma

4.2.6 and above inequality, we have

∣ξ±n (a)∣ = ∣ξ±γ+ j(a)∣ ≥ e−α j −e−β j

= (1−e(α−β) j)e−α j

≥ e−αn, for large N1.

(b) If n is a free time then ∣ξ±n (a)∣ ≥ e−(∆+1) for every a ∈ω and therefore ∣ξ±n (a)∣ ≥ e−αn,

providing N1 sufficiently large.

(c) If n is a returning situation for ω .

(i) n is an inessential return for ω , i.e., ξ+n (ω) and ξ−n (ω) do not cover some interval

Im,k. If ω does not satisfy (BAn) then there exists a y ≠ 0 which contained one of

ξ±n (ω) with ∣y∣ < eαn. Let us assume that y ∈ ξ+n (ω), then the host interval I+m,k of

ω at time n must having ∣m∣ ≥ [αn]−1. Thus ∣ξ+n (ω)∣ ≤ ∣I+m,k∣ ≤
5∣Im∣
(m)2 < e−αn, which

is not possible since we will prove later in this section (Lemma 4.3.3) that

∣ξ+n (ω)∣ ≥ e−αn.

(ii) n is an essential returning situation. Since ξ+n (ωm,k) ⊂ I+m,k and ξ−n (ωm,k) ⊂

I+−m,k for every descendant ωm,k of ω with ∣m∣ ≤ [αn]− 1, which means that

ξ±n (ωm,k)∩U[αn] =∅, i.e., ∣ξ±n (ωm,k)∣ ≥ e−αn.

Now we set

Pn = {ω ∈Qn ∶Hn(a) ≥ (1−α)n) for every a ∈ω }

and

Rn =⋃{ω ∶ω ∈Pn}.
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Then Rn satisfies (BAn), (EGn−1) and (Hn) and thus satisfies (EGn) as explained earlier in

this chapter before section 4.1.

Each a ∈ Rn belongs to only one ωk ∈ Pk, for every k = 1, . . . ,n. We construct these

intervals as follows. We set [0,a0] =ω1 = . . . =ωN1−1 and by Proposition 4.1.5, ξ+N1
(ω) ⊃U∆,

so γ1(a) = N1 is an essential returning situation for ωN1−1. Therefore we subdivide [0,a0]

into intervals J(m,k) with J(m,k) ∈PN1 for ∆−1 ≤ ∣m∣ ≤ [αN1]−1. Since a ∈Pn, there is some

(m1,k1) such that ωγ1(a) = J(m1,k1). Put ωk = J(m1,k1) for k = γ1(a)+1, . . . ,γ2(a)−1, where

γ2(a) is the next essential returning situation for J(m1,k1). Now we split J(m1,k1) and get a

new component J(m1,k1),(m2,k2) of Pγ2(a) and we set ωγ2(a) =J(m1,k1),(m2,k2). By continuing

in the same way we obtain sequences γ1, . . . ,γν and (m1,k1), . . . ,(mν ,kν) (ν = ν(a,n)) such

that

ωγi =J(m1,k1),...,(mi,ki),

ωγi ⊂ωγi−1,

ωk =ωγi for k = γi, . . . ,γi+1−1,

with

Imi,ki ⊂ ξ
+
γi
(ωγi) ⊂ I+mi,ki

and

I−mi,ki ⊂ ξ
−
γi
(ωγi) ⊂ I+−mi,ki

.

Moreover since ξ±γi ∣ωγi−1 are homeomorphisms, every ω ∈Pn is equal to some J(m1,k1),...,(mi,ki)

for some unique sequence (m1,k1), . . . ,(mi,ki) with ∣mi∣ ≥ ∆−1.

The next lemmas of this sections are proved for the critical value −1 and one can prove in

the case of critical value 1 in the same way. The following lemma reveals that the escape

components return very big as compared with U∆.
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Lemma 4.3.1. If ω ∈Pθ is an escape component, then in the next returning situation γ for ω

we have

∣ξ+γ (ω)∣ ≥ e−κ3∆,

where κ3 = β
s+5

β + logλ
.

Proof. If ξ+γ (ω) is not completely contained in U1, then the result follows immediately. Thus

we may assume that ξ+γ (ω) ⊆U1. Since ω is an escape component with escaping time θ ,

so Im,1 ⊆ ξ+
θ
(ω) with ∣m∣ = ∆−1. Without loss of generality assume that m > 0. Let p be the

bound period after the return θ and q = γ −θ − p−1 be the free period before the return γ .

Since γ is the return after θ , therefore it is not in the binding period of the return θ , i.e.,

γ −θ > p. Now we may have two possible situations:

First if ξ+
θ
(ω) ⊆ Im. Since ω is an interval so let us assume ω = (a,b). Therefore by using

Lemma 4.1.1, Lemma 4.2.6 and tne mean value theorem, we obtain

∣ξ+γ (ω)∣ = ∣( f γ−1
a (−1), f γ−1

b (−1))∣ = ∣( f γ−θ
a ( f θ−1

a (−1)), f γ−θ

b ( f θ−1
b (−1)))∣

≥ ∣( f γ−θ
a ( f θ−1

a (−1)), f γ−θ
a ( f θ−1

b (−1)))∣

= ∣ f γ−θ
a ( f θ−1

a (−1), f θ−1
b (−1))∣

= ( f γ−θ
a )′( f θ−1

c (−1))∣ f θ−1
a (−1)− f θ−1

b (−1)∣, for some c ∈ω .

= ( f q
a )′( f p+1

a ( f θ−1
c (−1)))( f p+1

a )′( f θ−1
c (−1))∣ξ+

θ
(ω)∣

≥ 1
e

λ
qe(1−β

s+3
β+logλ

)∆∣ξ+
θ
(ω)∣, since f θ−1

c (−1) ⊂ ξ
+
θ
(ω) ⊂ Im ⊂ I+m.

≥ 1
e∆2 λ

qe
2β

β+logλ
∆e(1−β

s+5
β+logλ

)∆e−∆

≥ e−β
s+5

β+logλ
∆
, for ∆ large enough,

where second last inequality holds since θ is an escape time time for ω , thus ∣ξ+
θ
(ω)∣ ≥

e−(∆−1)−e−∆

(∆−1)2 > e−∆

∆2 .
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Secondly if ξ+
θ
(ω) ⊇ Im, we have

∣ξ+γ (ω)∣ = ∣( f γ−1
a (−1), f γ−1

b (−1))∣ = ∣( f γ−θ
a ( f θ−1

a (−1)), f γ−θ

b ( f θ−1
b (−1)))∣

≥ ∣( f γ−θ
a ( f θ−1

a (−1)), f γ−θ
a ( f θ−1

b (−1)))∣

= ∣ f γ−θ
a ( f θ−1

a (−1), f θ−1
b (−1))∣

≥ ∣ f γ−θ
a (Im)∣ = ( f γ−θ

a )′(x)∣Im∣ for some x ∈ Im.

Hence the result follows from the above inequality in similar way as of the previous case.

In the following lemma we obtain the estimates on the length of ξ+k at a return k.

Lemma 4.3.2. Let γ1 be a return for ω ∈Pn−1 with host interval Im,k. Let p = p(ω,m) be the

bound period for the return γ1, then for sufficiently large ∆, we have the following

(a) If γ2 ≤ n is the next return after γ1, then by setting q = γ2−γ1− p−1, we have

(i) ∣ξ+γ2(ω)∣ ≥ λ qe(1−κ3)∣m∣∣ξ+γ1(ω)∣ ≥ 2∣ξ+γ1(ω)∣,

(ii) ∣ξ+γ2(ω)∣ ≥ λ qe−κ3∣m∣, if γ1 is an essential return;

(b) If n is a free time and γ2 is the last return up to n, then putting q = n− p, we have

(i) ∣ξ+γ2(ω)∣ ≥ cλ qe(1−κ3)∣m∣∣ξ+γ1(ω)∣ ≥ 2∣ξ+γ1(ω)∣,

(ii) ∣ξ+γ2(ω)∣ ≥ cλ qe−κ3∣m∣, if γ1 is an essential return.

Proof. By writing

∣ξ+γ2(ω)∣
∣ξ+γ1(ω)∣

=
∣ξ+γ2(ω)∣
∣ξ+

γ1+p+1(ω)∣
⋅
∣ξ+

γ1+p+1(ω)∣
∣ξ+γ1(ω)∣

,

it follows from Lemma 4.1.4 that for some a,b ∈ω ,

∣ξ+γ2(ω)∣
∣ξ+γ1(ω)∣

≥ 1
A4 ⋅ ∣( f q

a )′(ξ+γ1+p+1(a))∣ ⋅ ∣( f p+1
b )′(ξ+γ1

(b))∣.

Now using Lemma 4.2.6, from the above inequality, we get

∣ξ+γ2(ω)∣
∣ξ+γ1(ω)∣

≥ 1
A4 ⋅ ∣( f q

a )′(ξ+γ1+p+1(a))∣ ⋅e
(1−β

s+3
β+logλ

)∣m∣
. (4.3.1)
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(a) Since f q
a (ξ+γ1+p+1(a)) = ξ+γ2(a) ∈U∆, therefore from the inequality (4.3.1), using Lemma

4.1.1, we obtain

∣ξ+γ2(ω)∣
∣ξ+γ1(ω)∣

≥ 1
A4 ⋅λ

q ⋅e(1−β
s+3

β+logλ
)∣m∣

. (4.3.2)

Hence (i) simply follows from the inequality (4.3.2) for ∆ sufficiently large. In fact

(ii) also follows from (4.3.2) by taking into account that γ1 is an essential return, i.e.,

ξ+γ1(ω) ⊃ Im,k, thus ξ+γ1(ω) ≥
e−∣m∣
m2 .

(b) The proof is analogous to part (a) and the constant c appears since in this situation we

can just use part (1) of Lemma 4.1.1, which assures that ∣( f q
s )′(ξ+γ1+p+1(s))∣ ≥ cλ q.

Next lemma guarantees that if n is a returning situation for ω then the length of ξ+n (ω) is

large as compared with ∣U[αn]∣.

Lemma 4.3.3. If n is a returning situation for ω ∈Pn−1, then

∣ξ+n (ω)∣ ≥ e−αn.

Proof. Since n is a returning situation for ω, so it is not in bound period of the previous

return. Let γ0 ≤ n−1 be the smallest integer such that ωγ0 =ω , i.e., γ0 is either and escape

situation or an essential return for ω .

Now if γ0 is an escape time, then the result immediately follows by Lemma 4.3.1, provided

N1 is sufficiently large so that e−β
s+5

β+logλ
∆ ≥ e−αn.

And if γ0 is a an essential return for ω . Let Im,k ⊂ ξ+γ0(ω) ⊂ I+m,k with ∆ ≤ ∣m∣ ≤ [αn]−1.

We set n = γν and {γi}ν
i=1 as the returns after γ0. Then there can be two cases:

(i) If ν = 1, i.e., n is the return next to γ0, then using Lemma 4.3.2, we have

∣ξ+n (ω)∣ ≥ e−β
s+5

β+logλ
∣m∣
.
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(ii) If ν > 1, then we may write

∣ξ+n (ω)∣ = ∣ξ+γ1
(ω)∣ ⋅

ν

∏
i=2

∣ξ+γi (ω)∣
∣ξ+γi−1(ω)∣

. (4.3.3)

From Lemma 4.3.2 we know that
∣ξ+γi (ω)∣
∣ξ+γi−1(ω)∣

≥2, for i=2, . . . ,ν , and ∣ξ+γ1(ω)∣≥ e−β
s+5

β+logλ
∣m∣.

Then from (4.3.3), we obtain

∣ξ+n (ω)∣ ≥ e−β
s+5

β+logλ
∣m∣ ⋅

ν

∏
i=1

1.

Therefore form both the above cases, we get

∣ξ+n (ω)∣ ≥ e−β
s+5

β+logλ
∣m∣

≥ e−β
s+5

β+logλ
αn
, since ∣m∣ ≤ [αn]−1

≥ e−αn,

where the last inequality holds since β
s+5

β + logλ
< 1. Hence the result follows.





Chapter 5

Main Results

In this chapter we are going to present our main results about the statistical instability of a

class of maps in the contracting Lorenz-like family { fa}a≥0. In this regard, we will prove that

the Rovella maps are not statistically stable if we consider a set consists of Rovella parameters

and some other parameters which we will call as super-stable parameters. We remind that the

Rovella maps lie in the family { fa}a≥0 and admit unique SRB measures (physical measure),

as explained in chapter 3. It was proved by Alves and Soufi [3] that the map

R ∋ a↦ ga

is continuous in the L1-norm at every point in the set of Rovella parameters R, where ga is the

density of physical measure µa for the map fa. Thus Rovella maps are strongly statistically

stable if we confine ourself on the set R. This chapter is organized as follows.

In section 5.1 we will present a result, given as Lemma 5.1.2, which guarantees the

existence of critically-stable maps in the family { fa}a≥0 and consequently those maps admit

a physical measure which is supported on the super-attractor. Then it is a question of great

interest to study the statistical stability of Rovella maps on a larger class of maps, in the

contracting Lorenz-like family, consists of Rovella maps and critically-stable maps.

In section 5.2 we will introduce the notion of critical measure and prove that if a critical

measure for a Rovella map exists then it is accumulated by physical measures of the critically-

stable maps (see Theorem ). Finally in section 5.3 we will focus ourselves in answering
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weather the Rovella maps are statistically stable on an extended class of maps mentioned

in the previous paragraph. And at the end we will conclude that the Rovella maps are not

statistically stable on that extended class of maps in the contracting Lorenz-like family which

is given by Theorem 5.3.2.

5.1 The Extended Set of Parameters

Recall from chapter 4, we constructed inductively the set of Rovella parameters R for the

family { fa}a≥0 such that the critical orbits of each map corresponding to set R have slow

recurrence to the critical point and the derivatives grow exponentially along critical orbits. We

started the inductive step with the interval [0,a0] provided by Proposition 4.1.5. There exist

λ0 > 1 and a natural number N1 such that for every 1 ≤ j ≤ N1−1, ξ±j ([0,a0])∩U∆ = φ and

ξ±N1
([0,a0]) ⊃U∆, and ( f j

a)′(±1) ≥ λ
j

0 , where U∆ = (−e−∆,e−∆) for a sufficiently large integer

∆. By setting P1 =P2 = . . . =PN1−1 = {[0,a0]}, we made the inductive step by assuming that

Pn−1 consists of parameter intervals such that each parameter a lies in some interval in Pn−1

satisfies basic assumption (BAn−1):

∣ξ±j (a)∣ ≥ e−α j for j = 1, . . . ,n−1,

where α > 0 is sufficiently small and ξ±j (a) = f j−1
a (∓1), and the exponential growth property

(EGn−1):

( f j
a)′(±1) ≥ λ

j for j = 1, . . . ,n−1,

where 1 < λ ≤ λ0.

For every parameter interval ω we associated free periods, returns and bound periods

following the returns. The returns correspond to times when ω visits a small neighbourhood

of 0 which we denote as (−δ ,δ), where δ = e−∆, i.e., γ is said to be a return for ω if

ξ±γ (ω)∩(−δ ,δ) ≠∅. The bound period after the return γ is the set of consecutive integers
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{ j ∶ γ +1 ≤ j ≤ p} such that for every a ∈ω and for some β > 0

∣ξ±
γ+ j(a)−ξ

−
j (a)∣ ≤ e−β j, if ξ

±
γ (ω)∩(−δ ,δ) ⊂ [−1,0),

and

∣ξ±
γ+ j(a)−ξ

+
j (a)∣ ≤ e−β j, if ξ

±
γ (ω)∩(−δ ,δ) ⊂ (0,1],

for j = 1, . . . , p. The bound period after any return is finite, by Lemma (4.2.6). And a free

period represented by the time starting after the bound period, i.e., from γ + p+1, and ends

till the next return.

Then the partitioning Pn is obtained as follows: for a parameter interval ωn−1 ∈Pn−1, if

n is in a free period or in a bound period after a return then we do not make any change in

ωn−1 and keep as it is in Pn. But if n is a return for ωn−1 then we decide weather ωn−1 should

break up further into smaller intervals and needs some parameter exclusions. There are two

type of returns.

(i) If ξ±n (ωn−1) do not cover some interval of the form Im,k with ∣m∣ ≥ ∆ then again we pass

ωn−1 to Pn and call n as inessential return time for ωn−1.

(ii) If Im,k ⊂ ξ±n (ωn−1) for some ∣m∣ ≥∆−1, then if necessary, first we exclude the parameters

from ωn−1 which do not satisfy (BAn) and the excluded part is also an interval. Then

we make the partitioning of remaining parts of ωn−1 into subintervals ωm
n and ωes

n such

that Im,k ⊂ ξ±n (ωm
n ) ⊂ I+m,k, for ∣m∣ ≥ ∆, and Im,1 ⊂ ξ±n (ωes

n ) ⊂ I+m,1, for ∣m∣ = ∆−1. In this

case we call n as an essential return for ωm
n and an escape situation for every parameter

a ∈ωes
n , where ωes

n is said to be an escape component for a. Then we keep the intervals

ωm
n such that each a ∈ωm

n satisfies (Hn), i.e.,

Hn(a) ≥ (1−α)n,

where Hn(a) denotes the sum of free periods up to time n for the parameter a.
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Hence we obtain a partitioning Pn of parameter intervals such that each parameter a, inside

Pn, satisfies (BAn) and (EGn). We set

Rn =⋃{ω ∶ω ∈Pn},

and finally we get

R =
+∞
⋂
n=1

Rn.

Note that the implication of (Hn) assures that any parameter interval in Pn spends most of

the time in the free periods, up to time n. Then as a consequence of (Hn) and Lemma 4.1.1,

for every parameter a ∈ R we obtain an infinite sequence {θk}k≥1 of escape times and the

corresponding sequence {ωk(a)}k≥1 of escape components.

5.1.1 Hyperbolic Periodic Repellers

We recall from the properties of the family of maps { fa}a≥0 given in section 3.1, that each map

fa is differentiable at every point in I∖{0} with f ′′a (x) < 0 for x ∈ [−1,0) and f ′′a (x) > 0 for

x ∈ (0,1], ±1 are critical values for fawith fa(−1) close to −1 and fa(1) close to 1, therefore

the graph of fa holds two connected components [ fa(−1),1) and (−1, fa(1)]. This further

suggests that the graph of the map f 2
a consists of four connected components [ f 2

a (−1),1),

(−1, fa(1)), ( fa(−1),1) and (−1, f 2
a (1)], which are respectively the images of the points

lie in the intervals [−1,O−(a)), (O−(a),0), (0,O+(a)) and (O+(a),1] under the map f 2
a .

Also f 2
a has three discontinuities at O−(a), 0 and O+(a), where the points O−(a) and O+(a),

introduced in section 4.1, are zeros of the map fa located on the left and the right side of 0,

respectively.

Thus the graph of f 2
a intersects the identity map in two disjoint intervals ((O−(a),0) and

(0,O+(a)) such that the bottom of the graph of f 2
a in the intervals (O−(a),0) and (0,O+(a))

is near −1 with its ceiling close to 1 which assures that the derivative of f 2
a at that points of

intersection with identity map is greater than 1. Thus the map fa has a repelling periodic

orbit of period 2. Moreover, since the map fa has negative Schwarzian derivative, therefore



5.1 The Extended Set of Parameters 67

that repelling periodic orbit is hyperbolic from Guckenheimer’s theorem [17] which states

that every compact invariant set for fa which does not contain critical point and all of its

periodic points are hyperbolic repelling is a hyperbolic set.

The arguments given above also advocate that the map fa has more hyperbolic repelling

periodic orbits of period p for p > 2.

Fig. 5.1 Graph of f 2
a in black and graph of identity map in blue

5.1.2 Critically-stable and Post-critically Finite Maps near Rovella Maps

In this section we present a result ensures the existence of parameters, outside the set R,

admitting physical measures. First we precisely define some relevant terms.

Definition 5.1.1. A map fa in the contracting Lorenz-like family is called

1. critically-stable if there is some k ≥ 1 such that ξ+k (a) = 0 or ξ−k (a) = 0, and in such case

we define fa(0) = −1 or fa(0) = 1, respectively; if both situations occur, we consider

for definiteness fa(0) = −1;

2. post-critically finite if there is some k ≥ 1 such that f k
a (1) or f k

a (−1) has a repelling

periodic orbit.
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In case (1) we say that the orbit of 0 is a super-attractor. By extension, we call the parameters

associated to critically-stable and post-critically finite maps as super-stable and post-critically

finite parameters, respectively.

We also remind that there are constants K1,K2 > 0 and s > 1 such that for any parameter a

associated with the contracting Lorenz-like family and for every x ∈ I∖{0}, we have

K2∣x∣s−1 ≤ f ′a(x) ≤K1∣x∣s−1. (5.1.1)

The above property is given as (A3) in section 3.1. Furthermore, observe that from the

properties (A0)-(A3) it follows that, for a0 sufficiently close to 0, f ′a(x)≫ 1 for each a ∈ [0,a0]

and for every x ∈ [−1,O−(a)].

For the sake of notations we will denote by [(a,b)] the open interval between a and b,

not necessarily in order, and by ℓ(a,b) the length of interval (a,b). We also denote by Λa ⊂ I

the hyperbolic set consists of a repelling periodic orbit of period p for the map fa, and we fix

some point y−(a) ∈Λa contained in the interval (O−(a),0). Notice that as any map fa in the

contracting Lorenz-like family is smooth in the intervals [−1,0) and (0,1], thus we may find

a neighbourhood N of the set Λa such that fa is smooth in N . Therefore the arguments of

De Melo and Van Strien [13] can be adopted to show that the set Λa varies continuously with

the parameter a.

The proof of next lemma is based on the idea that whenever a parameter faces the escape

situation, the escape component containing that parameter returns big enough to a small

neighbourhood of origin so that with a finite number of further iterations it crosses 0.

Lemma 5.1.2. Consider a Rovella parameter a ∈ R and let Λa be the hyperbolic set for fa

and y(a) ∈Λa. Let θk be a large escape time for the parameter a with escaping component

ωθk(a) and let τk be the next returning situation for ωθk(a). Then there are two parameters

as,ap ∈ ωθk(a) and two non-negative integers ρs and σp, with ρs,σp <M for some large

number M, such that

(a) fas has a super-attractor of period τk+ρs;

(b) ξ+i (ap) ≠ y(ap) for i < σk and ξ+σk
(ap) = y(ap) for σk ≤ τk+σp.
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Proof. Since τk is a returning time for ωθk(a), thus ξ+τk
(ωθk(a))∩(−δ ,δ) ≠∅, where δ = e−∆.

Also from Lemma 4.3.1, we have

∣ξ+τk
(ωθk(a))∣ ≥ e−

β

β+logλ
∆⋅(s+5)

.

Now the idea of the proof works as follows:

(a) If 0 ∈ ξ+τk
(ωθk(a)), then we conclude part (a) by taking ρs = 0. But if 0 ∉ ξ+τk

(ωθk(a)),

then we may take an interval (b,d)⊂ωθk(a) such that ∣ξ+τk
(d)−ξ+τk

(b)∣=δ (s+5)−δ 2(s+5).

Without loss of generality we can assume that the interval ξ+τk
(ωθk(a)) takes place on

the right side of the origin and ξ+τk
(d) = δ (s+5) and ξ+τk

(b) = δ 2(s+5). Let x+ > 0 be such

that x+ ≃ 0, by mean value theorem, for some x1 ∈ (x+,δ 2(s+5)) and x2 ∈ (x+,δ (s+5)),

we have

fb(δ 2(s+5))− fb(0+) ≃ f ′b(x1)δ 2(s+5) (5.1.2)

and

fd(δ (s+5))− fd(0+) ≃ f ′d(x2)δ (s+5), (5.1.3)

where f ′b(x1) and f ′d(x2) are the slopes of chords joining the points (x+, fb(x+)) and

(δ 2(s+5), fb(δ 2(s+5)), and the points (x+, fd(x+)) and (δ (s+5), fd(δ (s+5)), respectively.

Since b ∼ d and the derivative of each map fa, a ∈ [0,a0], is increasing in the interval

(0,1], therefore f ′d(x2) ≥ f ′b(x1). Also the inequality (5.1.1) assures that f ′d(x2) is

bounded away from 0. Then by taking into account that fb(0+) = fd(0+) = −1, one

may assume, by using (5.1.2) and (5.1.3), that the distance of ξ+
τk+1+i(b) from −1

will increase with a rate slower than ( f ′b( fb(−1)))i ⋅ δ 2(s+5) as for as the distance

of ξ+
τk+1+i(d) from −1 will be increasing with a rate faster than ( f ′d( fd(O−(d))))

i ⋅

δ (s+5), for i ≥ 1 such that ξ+
τk+1+i(d) remains in the interval (−1,O−(d)). Set yi =

f ′d( f i
d(δ (s+5))) and zi = f ′b( f i

b(δ 2(s+5))), then for i ≥ 1 with ξ+
τk+1+i(d) ∈ (−1,O−(d)),
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we have

ℓ((ξ+
τk+1+i(b),ξ

+
τk+1+i(d))) ≥ yi ⋅δ (s+5)− zi ⋅δ 2(s+5) (5.1.4)

= zi ⋅δ (s+5)(yi

zi
−δ
(s+5)). (5.1.5)

We may assume θk large enough so that b ∼ d and then f ′b(x) ∼ f ′d(x), for every x ∈

I ∖0. Since for every x ∈ [−1,O−(a)], f ′a(x)≫ 1 for any a ∈ [0,a0] with a ≤ b, and

δ is sufficiently small, therefore the inequality (5.1.4) indicate that the length of the

interval (ξ+
τk+1(b),ξ

+
τk+1(d)) start increasing continuously by the further iterations and

eventually for some i1,

ℓ(ξ+
τk+1+i1(b),ξ

+
τk+1+i1(d)) ≃ ℓ(−1,O−(d)).

On the other hand, since f ′0(−1) ≥ f ′a(−1) and f ′a0
(O−(a0)) ≤ f ′a(O−(a)) for every

a ∈ [0,a0], thus by keeping an eye on (5.1.5), one may notice that

i1 ≤ −
(s+5)

log(c1/c2)
logδ ,

where c1 = f ′0(−1) and c2 = f ′a0
(O−(a0)), and log(c1/c2) > 0 since c2 < c1. Therefore the

interval (ξ+τk+ρs(b),ξ+τk+ρs(d)) will cross the origin for ρs = i1+2 or ρs = i1+3, with its

left end still in a small neighbourhood of −1, and hence there exists as ∈ωθk(a) such

that ξ+τk+ρs(as) = 0.

(b) If ξ+
σ ′k
(ap) = y(ap) for some ap ∈ ωθk and σ ′k ≤ τk. Then we choose σk to be the least

integer such that ξ+σk
(ap) ∈Λap concluded par (b) by taking some σp ≤ p. Let us consider

that ξ+τk
(ωθk)∩Λb =∅ for all b ∈ωθk . So we may may take an interval (b′,d′) ∈ωθk such

that ∣ξ+τk
(d′)−ξ+τk

(b′)∣ = 1
2(δ (s+5)−δ 2(s+5)). Again we can assume that ξ+τk

(d′) = δ
(s+5)
2

and ξ+τk
(b′) = δ

2(s+5)
2 . Then by the similar arguments as in part (a), ξ+

τk+σ ′(d′) will cross

the origin, for some σ ′ ≤ ρs+ i2, where i2 is such that ( f ′d(
δ
(s+5)
2 ))

i2 ≥ 2. Clearly i2 ≤M1

for some M1 > 0, since δ is small and f ′d(
δ
(s+5)
2 )≫ 1. But ξ+

τk+σ ′(b′) will be still in a

small neighbourhood of −1.
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Now as Λa moves continuously with a, so [(y−(b′),y−(d′))] will be a small interval

contained in the interval (O−(d′),0), therefore

[(y−(b′),y−(d′))] ⊂ (ξ+
τk+σ ′(b

′),ξ+
τk+σ ′(d

′)). (5.1.6)

Since 0 ∉ ξ+
τk+σ ′−1((b′,d′)), therefore ξ+

τk+σ ′ is a diffeomorphism on the interval (b′,d′)

and then ξ+
τk+σ ′(a)−y−(a) is continuous on the (b′,d′). From (5.1.6), ξ+

τk+σ ′(a)−y−(a)

changes sign on the interval (b′,d′), thus by the intermediate value theorem there

exists ap ∈ (b′,d′) such that ξ+
τk+σ ′(ap) = y−(ap) and then ξ+τk+σp(ap) = y(ap) for some

σp ≤ σ ′+ p−1. Hence this part concluded by taking σk = τk+σp.

Remark 5.1.3. We may choose δ sufficiently small such that the 2-periodic repelling points of

the map f0 lie outside the interval (−δ ,δ). Since the absolute values of 2-periodic points for

any map fa, a ∈ [0,a0], is bigger than the absolute values of 2-periodic points of f0, therefore

2-periodic points of fa remain outside (−δ ,δ). Let us denote by Λδ
a the hyperbolic set of

fa consists of a repelling periodic orbit of period p ≥ 2 such that Λδ

b ∩(−δ ,δ) =∅ for every

b ∈ [0,a0]. Then it is to be noted that if we consider Λδ
a in Lemma 5.1.2 then ap ∈ R: we can

take θk large enough so that e−αγk ≤ e−2(s+3)
2 , then the parameter ap satisfies (BAγk). On the

other hand, as the parameter ap satisfies the condition (Hγk) so does every a ∈ωθk , and since

Λδ
ap ∩(−δ ,δ) =∅ therefore after the time γk the orbit of ap always stays outside the interval

(−δ ,δ), i.e., the parameter ap satisfies (BAn) and (Hn) for all n ≥ 1. Consequently, ap never

excluded in the construction of the set of Rovella parameters.

5.1.3 The Extended Set

Lemma 5.1.2 provides us some elements of the set [0,a0]which correspond to either critically-

stable or post-critically finite maps. Let us denote by S the set of super-stable parameters

in [0,a0]. It is to be noted that if a map has a super-attractor then it can not have an SRB
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measure, so the set S is disjoint from the set of Rovella parameters R. Therefore by setting

E = R∪S,

we possess a larger set of parameters for the contracting Lorenz-like family such that the

corresponding maps admit unique SRB measures.

5.2 Accumulation of Critical Sum by Physical Measures

This section is devoted to prove a result which states that if the critical measure for a Rovella

map exists then there is a sequence of super-stable parameters such that the corresponding

sequence of physical measures converges to the critical measure in the weak∗-topology. First

we give the following definition.

Definition 5.2.1. Let fa be a map in the contracting Lorenz-like family and let c be one of

its critical values. Let us denote µn
a(c) ∶= 1

n

n−1
∑
k=0

δ f k
a (c) the convex combination of delta Dirac

measures on the first n terms of the critical orbit. If the limit

lim
n→∞

µ
n
a(c)

exits in the weak∗-topology then we call this limit as critical measure and denote by µa(c).

The following Proposition is analogous to [28, Lemma 4] and can be transformed straight-

forward into our context. Let us denote by dH(A,B) the Hausdorff distance between the sets

A and B, which is defined as:

dH(A,B) =max{sup
a∈A
{dist(a,B)},sup

b∈B
{dist(b,A)}},

where dist(a,B) = inf
b∈B
{dist(a,b)}.

Proposition 5.2.2. Let ω = (b,d) ⊂ [0,a0] be a parameter interval such that every a ∈ ω

satisfies (BAn) and (EGn). Let ξ+n (ω) ⊂ I+m,k and ξ−n (ω) ⊂ I+−m,k for some ∣m∣ ≥ ∆ and p

denotes the bound period corresponding to the return n. If d is sufficiently close to 0, then
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there exists a constant C > 0 such that for any a ∈ω

dH(ξ±n+1+ j(ω), f j
a(ξ±n+1(ω))) ≤C∣ f j

a(ξ±n+1(ω))∣

for every 1 ≤ j ≤ p.

Now we are in a position to state the main theorem of this section. We present this

theorem for the critical value c = −1, similar result can be prove for the critical value c = 1.

Theorem 5.2.3. For every a ∈ R, there exits a sequence of super-stable parameters {ak}∞k=1
such that if the critical measure µa(c) for the map fa exits, then

µak

weak∗Ð→ µa(c), k→∞.

Proof. Since each a ∈ R encounters infinitely many escape situations so we can consider

the sequence {θk}k≥1 of escape times for a and {ωθk(a)}k≥1 be the corresponding escape

components. Then by using Lemma 5.1.2 we obtain a sequence {ak ∈ωθk(a)}k≥1 of super-

stable parameters such that fak has a super-attractor of period ρk. Since ωθk is the partitioning

element contained in Pθk , therefore each b ∈ωθk(a) satisfies (EGθk), i.e.,

D+j (b) ≥ λ
j for j = 1, . . . ,θk,

where λ > 1. On the other hand, since 0 ∉ ξ+
θk
(ωθk(a)) for any k ≥ 1, thus by mean value

theorem for any k ≥ 1, we have

∣ξ+
θk+1(ωθk(a))∣ = ∣(ξ

+
θk+1)

′(bk)∣∣ωθk(a)∣,

for some bk ∈ωθk(a). Then using Proposition 4.1.2 in the above equation, we obtain

∣ωθk(a)∣ =
1

∣(ξ+
θk+1)′(bk)∣

∣ξ+
θk+1(ωθk(a))∣

=
D+

θk
(bk)

∣(ξ+
θk+1)′(bk)∣

∣ξ+
θk+1(ωθk(a))∣

1
D+

θk
(bk)

≤ 2Aλ
−θk .
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Therefore the length of ωθk decreasing and consequently ρk ↑∞, k→∞. We need to show

that for any real valued continuous function ϕ on the interval I

lim
n→∞∫ ϕ dµak = ∫ ϕ dµa(c).

Since the Lipschitz continuos functions are dense in the space of continuous functions on I,

therefore it is enough to prove the above assertion for Lipschitz continuous test functions.

Let ℓc be the Lipschitz constant for the function ϕ , then for any ak, we have

∣∫ ϕ dµak −∫ ϕ dµa(c)∣ ≤ ∣∫ ϕ dµak −
1
ρk

ρk

∑
i=1

ϕ(ξ+i (ak))∣+ ∣
1
ρk

ρk

∑
i=1
(ϕ(ξ+i (ak))−ϕ(ξ+i (a)))∣

+ ∣ 1
ρk

ρk

∑
i=1

ϕ(ξ+i (a))−∫ ϕ dµa(c)∣. (5.2.1)

Since µak is the physical measure supported on the super-attractor of fak , thus the first term

of the inequality (5.2.1) is 0. And since ρk ↑∞, k→∞, by the definition of µa(c) for every

ε > 0 there exists n0 = n0(ε) such that

∣ 1
ρk

ρk

∑
i=1

ϕ(ξ+i (a))−∫ ϕ dµa(c)∣ < ε

for all k ≥ n0. Therefore to conclude this theorem we just need to show that ∣
ρk

∑
i=1
(ϕ(ξ+i (ak))−

ϕ(ξ+i (a)))∣ is bounded by some constant independent of ak.

Now by using the Lipschitz continuity of ϕ , we get

∣ 1
ρk

ρk

∑
i=1
(ϕ(ξ+i (ak))−ϕ(ξ+i (a)))∣ ≤

ℓc

ρk

ρk

∑
i=1
∣ξ+i (ak)−ξ

+
i (a)∣

therefore we are going to show that the sum
ρk

∑
i=1
∣ξ+i (ak)−ξ+i (a)∣ =∶ S is bounded by some

constant independent of ak. Let us denote

Di = ∣ξ+i (ak)−ξ
+
i (a)∣,
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and let τk be the last return before ρk for the interval ωθk as in Lemma 5.1.2. We set γχ = τk

and consider the sequences {γ j}χ

j=1 and {p j}χ

j=1, respectively, as returns and the bound

periods for the interval ωθk up to the time τk. Just for the notations we set γ0 = p0 = 0. Then

we can split the sum S as

S =
χ−1

∑
j=0
(S1

j +S2
j )+S3,

such that

S1
j =

γ j+p j

∑
l=γ j

Dl, S2
j =

γ j+1−1

∑
l=γ j+p j

Dl,

and

S3 =
ρk

∑
l=γχ

Dl.

Then observe that S1
0 is empty sum so it is equal to 0 and S2

0 is the sum until the first return.

Again from Lemma 5.1.2, ρk ≤M for some M ≥ 0, thus S3 is finite sum and therefore it

is bounded. Now since τk is the next return to θk for the interval ωθk , so every b ∈ ωθk

satisfies (EGτk−1) and therefore, by using Proposition 4.1.2 and mean value theorem, for

some b ∈ [(ak,a)], for any 1 ≤ j ≤ χ −1 and for every 1 ≤ n < γ j+1−γ j − p j, we have

∣ξ+γ j+1
(ak)−ξ

+
γ j+1
(a)∣ = ∣(ξ+n )′(b)∣∣ξ+γ j+1−n(ak)−ξ

+
γ j+1−n(a)∣

=D+n(b)
∣(ξ+n )′(b)∣

D+n(b)
∣ξ+γ j+1−n(ak)−ξ

+
γ j+1−n(a)∣

≥ 1
A

λ
n∣ξ+γ j+1−n(ak)−ξ

+
γ j+1−n(a)∣.
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Again since every b ∈ωθk satisfies (EGτk−1) and (BAτk−1), thus by using above inequality

and Lemma 4.3.2, we obtain

χ−1

∑
j=0
S2

j =
χ−1

∑
j=0

γ j+1−1

∑
l=γ j+p j

Dl ≤
χ−1

∑
j=0

γ j+1−1

∑
l=γ j+p j

Aλ
−(γ j+1−l)Dγ j+1

≤ A1

χ

∑
j=1

Dγ j ≤ A1

χ

∑
j=1

2 j−χDγχ
<∞.

To conclude the result it remains to show that
χ−1
∑
j=0
S1

j is bounded. Since ωθk ∈ Pτk−1 and

γ j < γχ = τk are returns, thus ξ+γ j[(ak,a)] ⊂ I+m j,k j
, for some ∣m j∣ ≥ ∆ and k j ≤m2

j . Then using

binding condition, mean value theorem, Lemma 4.2.6 and Proposition 5.2.2, for every

1 ≤ i ≤ p j and for any b ∈ [(ak,a)], we obtain

Dγ j+i ≤C1∣ f i−1
b (ξ

+
γ j+1
([(ak,a)]))∣ =C1

∣ f i−1
b (ξ

+
γ j+1
([(ak,a)]))∣

∣ f i−1
b ([−1, fb(e−∣m j ∣+1)])∣

∣ f i−1
b ([−1, fb(e−∣m j ∣+1)])∣

≤C2
∣ξ+γ j+1

([(ak,a)])∣
∣[−1, fb(e−∣m j ∣+1)]∣

e−β i ≤C2
∣ξ+γ j+1

([(ak,a)])∣
∣[ fb(e−∣m j ∣−2), fb(e−∣m j ∣+1)]∣

e−β i

≤C2
f ′b(x)
f ′b(y)

∣ξ+γ j([(ak,a)])∣
∣I+m j
∣

e−β i ≤C2
∣ξ+γ j([(ak,a)])∣

∣Im j ∣
e−β i.

where x ∈ ξ+γ j([(ak,a)]), y ∈ I+m j
, and the last inequality holds since ξ+γ j([(ak,a)]) ⊂ I+m j,k j

and

the derivative increases when we move away from zero, thus f ′b(x) ≤ f ′b(y). On the other

hand since ∣Im j ∣ < 1, thus

Dγ j <
∣ξ+γ j([(ak,a)])∣

∣Im j ∣
,

and therefore, we have

S1
j ≤C2

∞
∑
i=0

∣ξ+γ j([(ak,a)])∣
∣Im j ∣

e−β i ≤C3
∣ξ+γ j([(ak,a)])∣

∣Im j ∣

≤C3

∣I+m j,k j
∣

∣Im j ∣
≤C3

5∣Im j ∣
m2

j

1
∣Im j ∣
=C3

5
m2

j
.
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Hence by using Lemma 4.3.2, we obtain

χ−1

∑
j=0
S1

j ≤ 5C3∑
m j

∑
returns
to Im j

m−2
j ≤ 5C3∑

m j

∑
last return

to Im j

m−2
j

≤ 5C3 ∑
m≥∆

m−2 ≤ 5C3

∞
∑
m=1

m−2 <∞.

5.3 Statistical Instability of the Rovella Maps

This is worth to start this section by recalling the notion of physical measure for a map f

defined on I. A measure µ on I is called a physical measure for the mapping f if for any

observable, i.e., continuous real valued function φ on I, the time average converges to the

space average for a positive Lebesgue measure subset of I. More formally, An f -invariant

measure µ is called a physical measure for f if the basin of µ , i.e., the set of points

{x ∈ I ∶ lim
n→+∞

1
n

n−1
∑
j=0

ϕ( f j(x)) = ∫ ϕdµ, for any continuous map ϕ ∶ I→R}

has positive Lebesgue measure. One of the vital example of a physical measure is the ergodic

absolutely continuous (with respect to Lebesgue) invariant probability measure which we

called as an SRB measure. On the other extreme if a map owns an attracting periodic orbit

then it admits a physical measure supported on that periodic orbit.

It is an important and interesting problem to study the statistical stability for a family of

maps admitting unique physical measures. Recall that a map f in a family of maps G, defined

on I admitting unique physical measures, is statistically stable if the mapping

G ∋ gz→ µg

is continuous at f in the weak∗ topology, where µg is the physical measure corresponding

to the map g. The strong statistical stability refer as continuous variation of the densities of

physical measures, if they exist, in the L1-norm
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It was Metzger [21] who proved that each Rovella map admits an SRB measure. Although,

to establish the uniqueness of the SRB measures he considered a smaller class of maps.

Recently, Alves and Soufi [3] showed that each Rovella map admits a unique SRB measure

and then they proved that Rovella maps are strongly statistically stable if we restrict ourselves

on the set of Rovella parameters R.

In section 5.1.3 we discovered an extended set of parameter E for the contracting Lorenz-

like family { fa}a≥0 consists of Rovella parameters and super-stable parameters. Therefore

the map fa associated with any parameter a ∈ E admits a unique physical measures µa which

is either an SRB measure or a measure supported on the super-attractor. Then it opens up the

quest of statistical stability of the Rovella map on this extended class of maps which we are

going to tackle in this chapter.

5.3.1 Accumulation of Rovella Maps by Post-critically Finite Rovella Maps

In this section we present a result which is essentially a corollary of Lemma 5.1.2 and it

states that each Rovella parameter is accumulated by post-critically finite Rovella parameters.

Recall that Ā denotes the closure of a set A.

Proposition 5.3.1. Let Λ =Λδ
a be a hyperbolic set for fa, a ∈ R, y = y(a) be any point in Λδ

a

and let Λb and y(b) be the continuation of Λ and y. Then

a ∈ {b ∈ R ∣ fNb (−1) = y(b) for some integer N =N (b)}.

Proof. Since each a ∈ R encounters infinitely many escape situations so we can consider

the sequence {θk}k≥1 of escape times for a and {ωθk(a)}k≥1 be the corresponding escape

components. Then by using Lemma 5.1.2 and the Remark 5.1.3 we obtain a sequence

{ak ∈ωθk(a)}k≥1 of parameters, contained in the set R, such that {ξ+j (ak)}k≥1 is pre-periodic

to y(ak). Since ωθk is the partitioning element contained in Pθk , therefore each b ∈ωθk(a)

satisfies (EGθk), i.e.,

D+j (b) ≥ λ
j for j = 1, . . . ,θk,
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where λ > 1. On the other hand, since 0+ ∉ ξ+
θk
(ωθk(a)) for any k ≥ 1, thus by mean value

theorem for any k ≥ 1, we have

∣ξ+
θk+1(ωθk+1(a))∣ = ∣(ξ+θk+1)

′(bk)∣∣ωθk(a)∣,

for some bk ∈ωθk(a). Then using Proposition 4.1.2 in the above equation, we obtain

∣ωθk(a)∣ =
1

∣(ξ+
θk
)′(bk)∣

∣ξ+
θk+1(ωθk(a))∣

=
D+

θk
(bk)

∣(ξ+
θk+1)′(bk)∣

∣ξ+
θk+1(ωθk(a))∣

1
D+

θk
(bk)

≤ 2Aλ
−θk . (5.3.1)

Now for every ε > 0 there is a positive integer k1 such that λ
−θk1 ≤ ε and since a ∈ωθk(a) ⊂

ωθk1
(a) for every k ≥ k1, therefore by using the inequality (5.3.1), we get

∣ak−a∣ ≤ ∣ωθk(a)∣ ≤ ∣ωθk1
(a)∣ ≤ ε for every k ≥ k1.

From the above inequality we conclude that ak → a, k→∞ and hence a is accumulated by a

sequence lie in the set

{b ∈ R ∣ fNb (−1) = y(b) for some integer N =N (b)}.

5.3.2 Statistical Instability

Here we conclude this chapter by presenting our main result about the statistical instability

of Rovella maps in the set E . Proposition 5.3.1 is the crucial step towards the proof of that

result and then the proof is accomplished by following the approach of Thunberg [28] for the

Benedicks-Carleson quadratic maps.

The idea of proof is based on the following strategy: for any Rovella parameter a, first

we make use of Proposition 5.3.1 to obtain a sequence of post-critically finite parameters lie
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in the set of Rovella parameters and converging to a. In the next step, using Lemma 5.1.2,

for each post-critically finite Rovella parameter b in that sequence we find a sequence of

super-stable parameters converging to b and the sequence of physical measures associated

to critically-stable maps converges to the measure supported on a repelling periodic orbit

of fb in the weak∗-topology. Finally hyperbolicity of the repelling periodic orbit enables

us to extract a sequence of super-stable parameters converging to a and the corresponding

sequence of physical measures converges, in the weak∗-topology, to the measure supported

on repelling periodic orbit for fa, which is obviously not an SRB measure for fa. Hence the

Rovella maps are statistically unstable in the set E .

Now all is set to present the main theorem of our work.

Theorem 5.3.2. The map E ∋ a↦ µa is not continuous in the weak∗-topology at any point in

the set of Rovella parameters R.

Proof. Let a ∈ R and Λδ
a = {x1(a), . . . ,xp(a)} be the hyperbolic repeller for fa. Then from

Proposition 5.3.1 we obtain a sequence {an}∞n=1 ⊂ R such that an→ a, n→∞, and the critical

orbit of fan is pre-periodic to some point in Λδ
an , for every n ≥ 1. For arbitrary fixed n let

L = L(n) be the smallest natural number such that f L
an(−1) ∈Λan , and let f L

an(−1) = x1(an).

Now for sufficiently small r > 0, using Lemma 5.1.2 we can obtain a sequence of parameter

intervals {Ωn, j ∶Ωn, j ⊂ωn, j(an)}∞j=1, where ωn, j(an) is the escape component of the parameter

an, and a strictly increasing sequence of positive integers {m j}∞j=1, m1 = L, such that

(i) an ∈Ωn, j for all j ≥ 1, Ωn, j+1 ⊂Ωn, j, and ∣Ωn, j∣→ 0 as j→∞;

(ii) ξ+mi
(Ωn, j) ⊂⋃p

k=1(xk(an)− r,xk(an)+ r) for i = 1, . . . , j;

(iii) ξ+m j
(Ωn, j) = (xi j(an)− r,xi j(an)+ r) for some i j ∈ {1, . . . , p};

(iv) There exists a natural number ρ = ρ(r) such that for every j there is a positive integer

ρ j ≤ ρ such that −1 ∈ ξ+m j+ρ j(Ωn, j);

(v) m j −L+1 = ℓ j p for some integer ℓ j.

As a consequence of (i) and (iv), we obtain a sequence {an, j ∶ an, j ∈ Ωn, j}∞j=1 such that

an, j → an as j→∞ and fan, j has a supper-attractor of length m j +ρ j for every j ≥ 1. From



5.3 Statistical Instability of the Rovella Maps 81

(ii) and (iii), we have

#{i ≤m j +ρ j ∶ f i
an, j
(−1) ∉

p

⋃
k=1
(xk(an)− r,xk(an)+ r)} = (m j +ρ j)−(m j −(L−1))

= ρ j −1+L ≤ ρ +L.

Now we will show that µan, j

weak∗Ð→ 1
p∑

p
i=1 δxi(an) ∶= µ

sing
an , j →∞. For that let us take a

continuous map ϕ ∶ I →R and fix a sufficiently small ε > 0. Since ϕ is continuous on the

closed interval I, thus it is bounded, i.e., there is a constant C>0, such that

sup
x∈I

ϕ(x) ≤C,

and therefore for the physical measure µan, j of fan, j , we have

∫ ϕ dµan, j =
1

m j +ρ j

m j+ρ j

∑
i=1

ϕ( f i
an, j
(−1))

≤ 1
m j +ρ j

m j

∑
i=L

ϕ( f i
an, j
(−1))+

ρ j −1+L
m j +ρ j

sup
x∈I

ϕ(x)

≤ 1
m j +ρ j

m j

∑
i=L

ϕ( f i
an, j
(−1))+ ρ +L

m j +1
C. (5.3.2)

Now we are going to work out the first term of the above inequality. Again the continuity of

ϕ on the closed interval I implies that it is uniformly continuous on I and therefore we can

choose a small r > 0 such that

∣ϕ(x)−ϕ(y)∣ < ε

2
whenever ∣x−y∣ < r. (5.3.3)

On the other hand, since f L
an(−1) = x1(an), thus by using (ii) and (iii), we have

f i
an. j
(−1) ∈ (xi(an)− r,xi(an)+ r) for all L ≤ i ≤m j ,

that is

∣ f i
an. j
(−1)− f i−L

an (x1(an))∣ < r for all L ≤ i ≤m j . (5.3.4)
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Then by taking into account the inequalities (5.3.3) and (5.3.4), we obtain

1
m j +ρ j

m j

∑
i=L

ϕ( f i
an, j
(−1)) = 1

m j +ρ j

m j

∑
i=L

ϕ( f i
an. j
(−1))

= 1
m j +ρ j

m j

∑
i=L
(ϕ( f i−L

an (x1(an))+ϕ( f i
an. j
(−1))−ϕ( f i−L

an (x1(an))))

≤ 1
m j +ρ j

m j

∑
i=L
(ϕ( f i−L

an (x1(an))+ ∣ϕ( f i
an. j
(−1))−ϕ( f i−L

an (x1(an)))∣)

≤ 1
m j +ρ j

m j

∑
i=L
(ϕ( f i−L

an (x1(an)))+
ε

2
). (5.3.5)

From (v) we can write m j −L+1 = ℓ j p for some positive integer ℓ j, thus from the above

inequality, we get

m j

∑
i=L
(ϕ( f i−L

an (x1(an)))+
ε

2
) =

m j−L+1

∑
i=1
(ϕ( f i−1

an (x1(an)))+
ε

2
)

= (ℓ j p)(
1
ℓ j p

ℓ j p

∑
i=1
(ϕ( f i−1

an (x1(an)))+
ε

2
))

= (m j −L+1)(1
p

p

∑
i=1
(ϕ( f i−1

an (x1(an)))+
ε

2
))

= (m j −L+1)(1
p

p

∑
i=1
(ϕ((xi(an)))+

ε

2
))

= (m j −L+1)(∫ ϕ dµ
sing
an +

ε

2
). (5.3.6)

Using the inequalities (5.3.5) and (5.3.6) in the inequality (5.3.2), we have

∫ ϕ dµan, j ≤
m j −L+1
m j +ρ j

(∫ ϕ dµ
sing
an +

ε

2
)+ ρ +L

m j +1
C.

Clearly the second term of the above inequality goes to zero as m j →∞, therefore for

sufficiently large m j, we get

∫ ϕ dµan, j ≤ ∫ ϕ dµ
sing
an +ε.
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Following the similar arguments as above, we can get

∫ ϕ dµan, j ≥ ∫ ϕ dµ
sing
an −ε.

Therefore µan, j

weak∗Ð→ 1
p∑

p
i=1 δxi(an), j→∞. From the fact that Λδ

a moves continuously with a,

we obtain a sequence {an, jn}n≥1 such that fan, jn
has a super-attractor with an, jn → a as n→∞,

and

µan, j

weak∗Ð→ 1
p

p

∑
i=1

δxi(a).

Since xi(a) ∈Λδ
a , 1 ≤ i ≤ p, where Λδ

a , is a hyperbolic repeller, thus 1
p

p
∑
i=1

δxi(a) is not an SRB

measure for the map fa. Hence the mapping

E ∋ a↦ µa

is not continuous at any a ∈ R.

Finally from the above theorem we conclude the statistical instability of Rovella maps in

the class of mappings associated with the set of parameters E .





Chapter 6

Final Comments

Recall from chapter 2, Rovella [23] considered a vector field X on R3 which is linear in

a neighbourhood U of the origin (0,0,0) containing the cube {(x,y,z) ∶ ∣x∣ ≤ 1, ∣y∣ ≤ 1, ∣z∣ ≤

1}. The derivative of X at (0,0,0), which is the only singularity of X , admits three real

eigenvalues λ1, λ2 and λ3 which satisfy

0 < λ1 < −λ3 < −λ2.

We denote by Σ, the roof {(x,y,z) ∶ ∣x∣ ≤ 1, ∣y∣ ≤ 1,z = 1} of the cube, which is a cross-section

for the flow of X and it is foliated by the stable leaves parallel to the x-axis. We have P as

the Poincaré first return map from Σ∖Γ to Σ, where Γ = {(x,y,z) ∶ x = 0, ∣y∣ ≤ 1,z = 1}, with

the return time function τ ∶ Σ→R. By making the quotient space of Σ∖Γ with the stable

leaves, projecting the stable leaves {x = constant}∩Σ to the line {(x,y,z) ∶ ∣x∣ ≤ 1,y =−1,z = 1}

through the map π , we get a one-dimensional map f ∶ I∖{0}→ I, such that

f ○π = π ○P

and f has two critical values −1 and 1.

Rovella considered a one-parameter family of vector fields near X and the corresponding

one-parameter family of one-dimensional maps which we named as contracting Lorenz-like

family. He also discovered that there is a positive Lebesgue measure set of parameters R

85
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such that the derivatives of the corresponding maps have exponential growths along the

critical orbits and those orbits have slow recurrence to the critical points. Later on, Metzger

[21] proved that each Rovella map admits a unique absolutely continuous (w.r.t. Lebesgue)

invariant probability measure (SRB). We shall refer these measures as ACIP measures in

the sequel. In the previous chapter we explore a set of parameters E , for the contracting

Lorenz-like family, consists of Rovella parameters and the super-stable parameters such that

each map corresponding to set E has a physical measure which either an ACIP measure or

measure supported on the attracting periodic orbit.

The physical measure µ f for the contracting Lorenz-like map f on the interval I may

be lifted to a physical measure µX for the flow X t of the vector field X on the contracting

Lorenz attractor Λ. To define the physical measures for the flows we may distinguish two

cases: one corresponding to ACIP measures and the other one for the measures supported on

the attracting periodic orbits.

6.1 Lifting of ACIP Measures

In this section we will define a lift µX for the ACIP measure µ f of the one-dimensional map f

on the interval I to the contracting Lorenz attractor Λ which is ultimately a physical measure

for the flow X t . Like Alves and Soufi [4], we may use the approach given in [6]. We shall

first pass through a physical measure for the the Poincaré map P on the cross-section Σ.

6.1.1 Physical Measure for the Poincaré Map

Let µ f be the ACIP measure for the interval map f in the contracting Lorenz-like family.

We may lift the measure µ f to a measure µP on Σ. For any bounded function ϕ ∶ Σ→R, let

ϕ± ∶ I→R be defined as

ϕ+(x) = sup
x′∈π−1(x)

ϕ(x′) and ϕ−(x) = inf
x′∈π−1(x)

ϕ(x′).

The following Lemma may be obtained in the similar way as [6, Lemma 6.1].
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Lemma 6.1.1. Given any continuous function ϕ ∶ Σ→R, both the limits

lim
n→+∞∫ (ϕ ○Pn)+ dµ f and lim

n→+∞∫ (ϕ ○Pn)− dµ f

exist and they coincide.

Then we have the following corollary of the above Lemma similar as [6, corollary 6.2].

Corollary 6.1.2. There exists a unique P-invariant probability measure µP on Σ such that

∫ ϕ dµP = lim
n→+∞∫ (ϕ ○Pn)+ dµ f = lim

n→+∞∫ (ϕ ○Pn)− dµ f . (6.1.1)

In fact µP is a physical measure for the Poncaré map P (c.f. [6]).

6.1.2 Physical Measure for the Flow

We may define an equivalence relation ∼ on Σ×R generated by (x,τ(x)) ∼ (P(x),0), that is

(x,u) ∼ (x′,u′) if and only if there exits

(x,s) = (x0,u0),(x1,u1), . . . ,(xk,uk) = (x′,u′)

in Σ×R such that, for every 1 ≤ i ≤ k

Either xi = P(xi−1) and ui = ui−1−τ(xi−1);

or xi−1 = P(xi) and ui−1 = ui−τ(xi),

where τ is the return time function on Σ defined in Section 2.2. We denote by V = Σ×R/ ∼

the corresponding quotient space and by Π ∶ Σ→V the canonical projection which induces

on V a topology and Borel σ -algebra of measurable subsets of V .

The flow of X on the space V is given as

X t(Π(x,u)) =Π(x,u+ t),
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for every (x,u) ∈ Σ×R and t ∈R. We consider the set

D = {(x,u) ∈ Σ×R ∶ 0 ≤ u < τ(x), if τ(x) is finite},

which is a fundamental domain for the equivalence relation ∼ (c.f. [31]).

We need to make sure that the return time function τ is integrable with respect to the

measure µP. In this regard we may use the following result by H. Cui and Y. Ding [12].

Theorem 6.1.3. For every Rovella map f the density
dµ f

dm
of the SRB measure µ f with

respect to the Lebesgue measure m belongs to some Lp(m) with p > 1, where p depends only

on the (side) orders of the critical point.

It gives rise to an interesting problem to show that the density
dµ f

dm
is uniformly bounded

in Lp(m) for some 1 < p <∞ as long as we have τ ∈ Lq(m) for all q > 1, then by using the

Hölder inequality we may conclude that

∫ τ dµP < +∞,

since τ is measurable, bounded away from zero, τ ≡ +∞ on Γ and τ(z) ≈ log(d(z,Γ)) with z

close to Γ (c.f [30]). Therefore we may define a probability measure µX on V as

∫ ψ dµX =
1

∫ τ dµP
∫

τ(x)

∫
0

ψ(Π(x,t)) dt dµP(x) (6.1.2)

for every bounded measurable ψ ∶V →R. This measure is indeed a physical measure for the

flow of the vector field X (c.f. [6]).

6.2 Lifting for the Measures supported on the Attracting Periodic Or-

bits

In this section we will consider a map f in the contracting Lorenz-like family which corre-

sponds a super-stable periodic attractor and consequently a physical measure µ f supported on

the super-attractor. As in the case of ACIP, we can lift the measure µ f to a physical measure
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µX for the flow X t on the contracting Lorenz attractor Λ. Again we shall first pass through

the physical measure for Poncaré map P.

6.2.1 Physical Measure for the Poincaré Map

Let {z, . . . , f k−1(z)} be the attracting periodic orbit for the map f . It follows that f k has

an attracting fixed point z ∈ I. This implies that the corresponding iterate of the Poincaré

map Pk has an invariant stable leaf γz. As Pk restricted to the invariant stable leaf γz is a

contraction on a disk, it necessarily has some fixed point p ∈ γz ⊂ Σ. It is not difficult to see

that {p, . . . ,Pk−1(p)} is an attracting periodic orbit for P. Hence

µ̃P =
1
k
(δp+⋯+δPk−1(p)) (6.2.1)

is a physical measure for P. Then it can be seen easily that the lift µP of the measure

µ f =
1
k
(δz+⋯+δ f k−1(z))

defined in the similar way as in (6.1.1) coincides with the measure µ̃P.

6.2.2 Physical Measure for the Flow

Assume now that {p, . . . ,Pk−1(p)} is an attracting periodic orbit for the Poincaré map P on

Σ. It is straightforward to check that the orbit of p is an attracting periodic orbit for the flow

of the vector field X ∶U →R. For each j = 0, . . . ,k−1, let τ j be the time the flow of X takes

to get from P j(p) ∈ Σ to P j+1(p) ∈ Σ. Given any continuous ϕ ∶U →R, define

∫ ϕdµ̃X =
1

τ0+⋯+τk−1

k−1
∑
j=0
∫

τ j

0
ϕ(X(P j(p),t))dt. (6.2.2)

It is not difficult to see that µ̃X coincide with the measure µX , on the contracting Lorenz

attractor Λ, which is defined in the similar way as in (6.1.2) through the measure µ̃P. Hence

µ̃X is a physical measure for the flow of the vector field X .
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6.3 Inverse Procedure

In the previous sections we have seen a procedure of defining a physical measure µX for

the flow of the vector field X corresponding to a physical measure µ f for the map f . In this

section our aim is to describe an inverse procedure, i.e., we try to define a physical measure

µ̂ f for the map f corresponding to the physical measure µX for the flow of the vector field X

such that µ̂ f coincide with the measure µ f .

6.3.1 Physical measure for the Poincaré map

Viana and Oliveira, in [31], introduced a technic to define a physical measure µ̂P for the

Poincaré map P provided the physical measure µX for the flow of vector field X . We may

define µ̂P as follows:

For every ρ > 0, we denote Σρ = {x ∈Σ ∶ τ(x) ≥ ρ}. Given any A ⊂Σρ and σ ∈ (0,ρ], define

Aσ = {X t(x) ∶ x ∈ A and 0 ≤ t < σ}. Then observe that the map (x,t)↦ X t(x) is a bijection

from A×(0,σ] to Aσ . We have the following Lemma.

Lemma 6.3.1. [6] Let A be a measurable subset of Σρ for some ρ > 0. Then the function

σ ↦ µX(Aσ)
σ

is constant in the interval (0,ρ].

Given any measurable subset A of Σρ , we define

µ̂P(A) =
µX(Aρ)

ρ
,

and given any measurable subset A of Σ

µ̂P(A) = sup
ρ

µ̂P(A∩Σρ).

Then µ̂P is a physical measure for the Poincaré map P [31]. It can be deduce through easy

calculations that µ̂P = µP on the cross-section Σ.
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6.3.2 Physical measure for the One-dimensional Map

We want to define an inverse procedure for the lift defined by (6.1.1), i.e., assign to a P-

invariant measure µP on Σ an f -invariant measure µ̂ f on I whose lift coincides with µP. The

natural candidate is the push-forward by π , the projection from the Poincaré section onto the

interval,

µ̂ f = π∗µP. (6.3.1)

Let us now see that the lift µ̂P of µ̂ f actually coincides with µP. Observe that for all

continuous φ ∶ Σ→R and all n ∈N we have

(φ ○Pn)− ○π ≤ φ ○Pn ≤ (φ ○Pn)+ ○π.

It follows that

∫ (φ ○Pn)− ○πdµP ≤ ∫ φ ○PndµP ≤ ∫ (φ ○Pn)+ ○πdµP.

Using the fact that µP is P-invariant and basic properties of the push-forward, we deduce

from the above inequality that

∫ (φ ○Pn)−d(π∗µP) ≤ ∫ φdµP ≤ ∫ (φ ○Pn)+d(π∗µP).

Using (6.3.1) in the above inequality, we get

∫ (φ ○Pn)−dµ̂ f ≤ ∫ φdµP ≤ ∫ (φ ○Pn)+dµ̂ f .

Taking limits in n in the above inequality and using (6.1.1), we conclude

∫ φdµ̂P = ∫ φdµP,

which finally gives µ̂P = µP.
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6.4 Final Remark: work in progress

It is an interesting problem to prove that the inverse procedure of defining a physical measure

for the map f given a physical measure for the flow of X is continuous, which is our work in

progress. Then as a corollary of Theorem B, we may conclude the statistical stability of the

contracting Lorenz flow.
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