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Abstract

The work is divided in two parts. We start by studying a finite decision

model where the utility function is an additive combination of a personal

valuation component and a social interaction component. Individuals are

characterized according to these two components (their valuation type and

externality type), and also according to their crowding type (how they influ-

ence others). The social interaction component has two main properties, it

is formed by dyadic interactions and based on whether individuals make the

same or different decisions. We characterize pure and mixed Nash equilibria,

namely through the study of type symmetries imposed by the social profile

on the personal valuation space. In the second part we study duopolies where

firms engage in a Bertrand competition and consumers choose strategically

taking into account the consumption choice of other consumers. We propose

an index that measures the social propensity of a market and allows a clas-

sification of markets according to the social interdependence of its consumer

choices. Through the notion of subgame-perfect equilibrium, with first stage

local pure price equilibrium for firms, we characterize local market equilibria

and show that with social propensity duopolies have non-monopolistic out-

comes. Furthermore, we characterize prices, demand and revealed personal

preferences.



iv



Contents

1 Introduction 1

2 The decision game 17

2.1 Game setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.1.1 The profile of individuals . . . . . . . . . . . . . . . . 20

2.2 Pure Nash equilibria . . . . . . . . . . . . . . . . . . . . . . . 25

2.2.1 Feasibility . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.2.2 Social contexts and equilibrium partitions . . . . . . . 27

2.2.3 Strategy classes and Nash domains . . . . . . . . . . . 30

2.2.4 Conformity thresholds and decision tiling . . . . . . . 34

2.2.5 Reciprocal relations and cycles . . . . . . . . . . . . . 38

2.2.6 Proofs . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

2.3 Mixed Nash equilibria . . . . . . . . . . . . . . . . . . . . . . 56

2.3.1 Type symmetries under DI and PBI . . . . . . . . . . 57

2.3.2 Proofs . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

3 Socially prone duopolies 71

3.1 The duopoly setup . . . . . . . . . . . . . . . . . . . . . . . . 71

3.1.1 Firms . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

3.1.2 Consumers . . . . . . . . . . . . . . . . . . . . . . . . 74

3.1.3 Social propensity and communities . . . . . . . . . . . 77

3.2 Local Market Equilibria . . . . . . . . . . . . . . . . . . . . . 82

v



vi CONTENTS

3.3 Network and homogeneities . . . . . . . . . . . . . . . . . . . 93

3.4 Dyadic interactions . . . . . . . . . . . . . . . . . . . . . . . . 101

3.4.1 The case with DI and homogeneous consumers . . . . 106

3.4.2 Pure strategies and monopolies . . . . . . . . . . . . . 109

4 Conclusions and future work 119

References 123

A The referendum game. 129



List of Figures

2.1 The benchmark decision tiling for the class of �2,2 decision

games. There are no interactions: A11 = A22 = A12 = A21 =

0. There are only type-symmetric strategies, except on the axis. 39

2.2 The decision tiling for a �2,2 decision game when A11 > 0,

A22 > 0, A12 > 0 and A21 > 0. All equilibria are type-

symmetric. There are multiple equilibria in the intersection

areas. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

2.3 The area of the decision tiling for a �2,2 decision game where

non-type symmetric Nash domains will lie. In this case we

considered 4 individuals in each type to show the non-type

symmetric domains. Here there are only intra-type influences.

A22 < A11 < 0, A12 = A21 = 0. . . . . . . . . . . . . . . . . . 41

2.4 The area of the decision tiling for a �2,2 decision game where

non-type symmetric Nash domains will lie and inter-type in-

teractions are turned on. In this case A11 < 0, A22 < 0,

A12 < 0, A21 = 0. . . . . . . . . . . . . . . . . . . . . . . . . . 42

vii



viii LIST OF FIGURES

2.5 The time evolution of the probabilities of individuals under the

replicator dynamics forming a stable cycle for a �2,2 decision

game. There are 2 individuals of each type and the parameters

are A11 = �0.1, A12 = 3, A21 = �10, A22 = 0; n1 = n2 = 2,

x = 0.4, y = 0.6. The initial probabilities are p1(0) = 0.5,

p2(0) = 0.6 for type 1 and q1(0) = 0.4 and q2(0) = 0.3 for

type 2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

2.6 A relation between the non-type-symmetric Nash domains for

the decision tiling for a �2,2 decision game without weak reci-

procity. In this case A12 > 0 and A21 < 0 which creates a

space between the domains containing valuations for which

there is no pure Nash equilibrium. . . . . . . . . . . . . . . . 45

2.7 A relation between the non-type-symmetric Nash domains for

the decision tiling of a �2,2 decision game with weak reci-

procity. In this case A12 < 0 and A21 < 0 which provokes

the intersection of the domains creating multiplicity of equi-

librium instead of an empty space. . . . . . . . . . . . . . . . 46

3.1 Depiction of the influence relation between Two communities

Q1 and Q2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

3.2 A small influence network with two strong components, pos-

itive and negative influences, and negative social propensity.

A red (green) conection represents a negative (positive) influ-

ence weight. Thickness indicates relative strength of influence

weights. The color of vertices indicates the consumer strategy

in a grey scale, where black means �i

= 1, and white means

�i

= 0. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81



LIST OF FIGURES ix

3.3 A influence network with 40 individuals and the respective

social propensity and local market equilibrium. It’s nearly

impossible to uncover relations in such a condensed set of

relations, nevertheless this can be dealt with using commu-

nities, as can be seen in figure 3.4. A red (green) conection

represents a negative (positive) influence weight. Thickness

indicates relative strength of influence weights. The color of

vertices indicates the consumer strategy in a grey scale, where

black means �i

= 1, and white means �i

= 0. . . . . . . . . . 87

3.4 The community network for the individuals influence network

in figure 3.3. The size of the vertices indicates the communi-

ties size, which in this case are respectively 8, 12, 6, 14. The

color of the vertices indicates the community strategy in a grey

scale, where black means �i

= 1, and white means �i

= 0.

Again, a red (green) conection represents a negative (posi-

tive) influence weight. Thickness indicates relative strength

of influence weights. . . . . . . . . . . . . . . . . . . . . . . . 88

3.5 A influence network where there are only positive interactions

but still a high negative social propensity. . . . . . . . . . . . 89

3.6 Equilbrium demand in a simplistic case of 6 consumers. Rep-

resented are the thresholds for pure strategies, and the mixed

strategies in red. Highlighted is a particular local pure price

equilibrium. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

3.7 Equilbrium demand in the case of conformity effects. Shad-

owed are the multiple equilibria not chosen in the admissble

demand. The consumer bias parameter c⇤
b

indicates the choice

of consumers in the region where the three type-symmetric

equilibrium exist. . . . . . . . . . . . . . . . . . . . . . . . . . 110



x LIST OF FIGURES

3.8 The benchmark case and monopoly areas. Note the Bertrand

paradoxical zero profit equilibrium is at the origin. A11 =

A22 = A12 = A21 = 0. . . . . . . . . . . . . . . . . . . . . . . 112

3.9 The effect of one positive intertype interactions. A12 > 0 and

A11 = A22 = A21 = 0. The monopoly regions intersect and

there is a region with zero profit equilibrium for both firms. . 113

3.10 The effect of one negative intertype interactions. A12 < 0 and

A11 = A22 = A21 = 0. The monopoly regions get separated

and there is a region with no equilibrium. . . . . . . . . . . . 114

3.11 The effect of intertype interactions with different signs. A12 >

0, A21 < 0 and A11 = A22 = 0. There is a region with no

pure equilibrium for consumers. . . . . . . . . . . . . . . . . . 115

3.12 The effect of positive intertype or intratype interactions. Both

produce the same effect. In the case A12 > 0, A21 > 0 and

A11 = A22 = 0. There is a region where there is multiplicity

equilibria, and the lighter colored areas of monopoly will only

exist depending on the choice of consumers on the areas where

multiple equilibria exist. Furthermore, in the middle square

the consumer bias parameter will decide the position of the

line corresponding to the competitive equilibria. . . . . . . . . 116

3.13 The effect of negative intratype interactions. The shaded re-

gions around monopolies mean that the monopoly region will

depend on the consumers choice on the area of intersection,

that has multiple Nash equilibria. A12 < 0, A21 < 0 and

A11 = A22 = 0. . . . . . . . . . . . . . . . . . . . . . . . . . . 117

3.14 All parameters turned on. A12 > 0, A21 < 0 and A11 < 0,

A22 < 0. The shaded areas are contain the socially prone

outcomes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118



LIST OF FIGURES xi

A.1 The interface for the referendum game built in Netlogo, the

part of main controls. The colors represent the players strate-

gies: red means voting against, green in favor, white means

voting blank, and grey abstention. . . . . . . . . . . . . . . . 131

A.2 The interface for the referendum game built in Netlogo, input

part. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

A.3 The interface for the referendum game built in Netlogo, input

part. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132



xii LIST OF FIGURES



Chapter 1

Introduction

The image chosen to feature on the cover page of this thesis is a work by

portuguese painter Amadeo Souza Cardoso, called Os Galgos. In the 1911

painting, the sugestion of action about to unroll relates to two main ideas

behind the present work. Interaction can be seen through the eyes of the

symmetry effect it induces between the characteristics of actors and actions.

As context changes, interaction induces a dynamic interdependence on the

change of actions. The first part of this work develops the first idea and

studies the dependence of actions on the symmetries that the social charac-

teristics of individuals and their interactions impose on the space of personal

profiles. This is done through the equilibrium notion on a decision game.

The second part of the work builds on the second idea, finding local pure

price solutions for a duopoly derived from the implicit changes that inter-

actions provoke, and proposing a classification of markets according to an

index of social interdependence of its consumer choices.

1
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The decision game

A decision is in general a course of action resulting from a process which

involves selecting among several possible alternatives. The collective co-

existence and constant interaction of individuals necessarily creates a social

frame in which decisions are made and a social context to which the decision

leads. Regardless of whether these interactions are voluntary or not, they

play a significant role in the global patterns of behavior that emerge from the

individual decisions. Understanding what underlies a global behavior means

understanding not only the interactions among decision-makers, the personal

evaluations of alternatives and the interdependence between the two, but also

having a grasp on the relation between the characteristics of the decision-

makers and the characteristics of the global outcome. In fact, each decision

composing this outcome, conveys information about the decision maker, as

it reveals a choice, be it either a selection of a product to buy or a public

service; be it an economic strategy, a political option or a social behavior;

be it a life changing choice or a daily life decision, like choosing a bar to go

to friday night. Thus, the study of the global behaviour both presupposes

and enhances an understanding of what governs individual decisions. This

is particularly relevant if it is assumed that individuals act rationally and

the choice is a best response over the evaluation of the alternatives, in the

sense of the existence of a Von Neumann-Morgerstern utility (1944).1 At

the core of a game theoretical approach to the problem is the modelling

of interactions between decision-makers. Assuming decisions as a global

mutual best response, one may use the concept of Nash equilibrium (1951)

to retrieve information not only on a global interacting level, but also on

an internal individual level, by analysing the interdependence of these social

1
The issue of rationality is beyond the scope of this work, nevertheless, as we will be

looking at the outcome and not at the decision process itself, and as we will be working in a

complete information setting where the parameters are open to interpretation, underlying

is in fact a very mild rationality assumption.
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characteristics and the individual personal evaluation processes. The focus

of the first chapter is the relation between the characteristics of individuals

and the characteristics of the outcome, where the outcome is seen as the set

of Nash equilibria of a finite non-cooperative game.

Positioning the approach

The study of the dependence of global behaviour (as an equilibrium) on the

characteristics of individuals, and in particular the study of the dependence

of individual decision rules on the strategies of others, has a long tradition.

Namely, in the work of Schelling (1971, 1973, 1978) where, for example, dif-

ferent distributions of the level of tolerances of individuals lead to residential

segregations with different properties; or in the work of Granovetter (1978),

where small differences on the distribution of individual thresholds can lead

to completely different collective behaviour; or in Mas-Collel (1984), Pascoa

(1993) where an atomless distribution of types leads to symmetric equilibria;

or other symmetry properties as in Wooders, Cartwright and Selten (2006)

and Wooders and Cartwright (2014), which, as in this work, describe parti-

tions of the set of players into groups that arise in equilibrium.

Our approach is to model the outcome of a decision process as the Nash

equilibria of a finite (both in players and strategies) non-cooperative, si-

multaneous move game. The value of a given decision is measured through

an utility function that is an additive combination of two components: (i)

how much the individual personally values the decision, independently of the

strategies of others; (ii) the externalities arising from social interactions with

those individuals who make that same decision. This is, of course, a very

broad class of utility functions included in many models in the literature.

The crucial aspect is the choice of how to model the form of dependence

on the strategies of others, i.e. how to model social interactions. Let us

highlight three main features of our approach to this choice, and position
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our work in relation to the different approaches in the literature.

A first key feature we consider is dyadic interactions (see for example [8],

[20]). Dyadic means that, for any given strategy, the influence/impact of an

individual i on an individual j is independent of the decisions of others. A

class of games that focuses only on this kind of interactions is for example

the class of polymatrix games, see [23], [35].2 Another option would be to

introduce (also or instead) a dependence of this influence on the whole strat-

egy profile. In general, excluding such a component usually means excluding

some form of non-linear anonymous aggregate dependence on the strategies

of others. In fact, many games can be captured by an appropriate dyadic

component by using such an excluding assumption, as for example by mak-

ing the appropriate restriction on singleton weighted congestion games, or

on the games presented in [8], [10], [36]. The dyadic component is sometimes

refered to as the local component of social interactions and the latter depen-

dence as the global component.3 Focusing on dyadic interactions seems like

a suitable approach for the case we wish to study.

A second feature is assuming the influence from interactions to be presence-

based. Presence, means social interactions have a dichotomic nature, in the

sense of being restricted to whether individuals are using the same strat-

egy or a different one, a type of Independence of Irrelevant Alternatives

assumption [37]. In this work it can be better described and motivated in

the following manner: given a strategy profile, if an individual i changes her

decision, the change only affects those in her new decision, because she will

start interacting with them, and those in her old decision, because she will

no longer interact with them. Her influence on the rest of the individuals

was that she was making a different decision, and that hasn’t changed. This

is also in the spirit of Independence of Irrelevant Choices as in [27], or no
2
A first formal reference appears to be due to E. B. Yanovskaya in 1968.

3
The use of the terms local and global in this context seem amenable to critique, since

one could think of ‘global dyadic components’ or ‘local aggregative components’, hence

we prefer the terms dyadic and aggregative.
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spillovers as in [28]. This assumption is important for some of our results in

the first chapter, which would not hold without it.

The third feature is that we will allow for social interactions to give rise

to both positive and negative externalities, and then study their effects on

equilibria and society formation. The question here could be whether to

restrict the dependence to be in some sense ‘positive’ or complementary,

leading to a conformity effect; or ‘negative’ leading to a congestion effect.

On the strand of literature that treats conformity effects (those leading to

a common (or symmetric) action which may overcome personal or intrinsic

preferences) are for instance the works on behavioral conformity by Wooders,

Cartwright and Selten [52], a theory of conformity by Bernheim [7], a model

of herd behavior by Banarjee [5], the threshold models of collective action

as in Granovetter [21], or even the equilibrium symmetry in supermodular

games as in Cooper and John [15]. On the strand of literature focusing

on congestion effects is for example the class of congestion games as first

proposed by Rosenthal [38], later generalized by Milchtaich [30]; or the works

of Quint and Shubik [36], Konishi, Le Breton and Weber [27], to name a few.

Social interactions, regardless of whether they exhibit a conformity or

congestion effect, should depend not only on the number of individuals in

each choice, but also on the characteristics of those individuals. This is a cru-

cial aspect in the works of Wooders ([49, 50, 51]) and of Conley and Wooders

([12, 13, 14]). Wooders’s earlier papers allow preferences to depend on the

characteristics of agents (their types), while Conley and Wooders separate

two sorts of characteristics: crowding characteristics, which determine the

effects of a player on others, and tastes. In our model we will use a type

profile that characterizes individuals, or distinguishes, according to three dif-

ferent aspects, or attributes. (Keep in mind though that for us type does

not mean Bayesian type, as we will be working on a complete information

setting and the type profile is something completely determined a priori.)
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Following the work of Conley and Wooders, we will start with the use of a

crowding space, which distinguishes individuals by their impact on the util-

ity of others. The use of a crowding space has the advantage that allows the

characterization of classes of strategies where the relevant information is the

number of individuals with the same crowding type in each decision. Observe

that there is no restriction here: depending on the choice of the crowding

space individuals may be all distinguishable or totally anonymous. We then

characterize individuals according to their utility function, i.e. taste type,

but we will subdivide the taste type into two components, using the two

additive components of the utility function. This allows the characterization

of Nash equilibria according to the restrictions imposed on the relation be-

tween these two components. Furthermore, dividing the taste type in this

way, separates the social part of the model, that captures the social interac-

tions, from the ‘personal’ part given by the valuation component (sometimes

called intrinsic preference, which we wittingly avoid). A key advantage of

the separate analysis of the valuation component is that, besides comprising

the intrinsic and personal perceived benefit of the decision, it captures exo-

geneous changes and/or characteristics associated to each decision. Namely,

dependending on the decision in question, it may represent prices, taxes,

product quality, road quality, marketing, political campaings, bribes, etc...

In particular, for the second part of this thesis, the valuation component

reveals how individual choices depend on prices.

The work on the first chapter starts as an extension of the two types di-

chotomic model by Soeiro et al. [43] to a wider finite setting where there may

be any number of types of individuals facing a choice among any number of

possible alternatives, and is primarily based on Soeiro et al. [42]. The former

work finds its inspiration from Brida et al. [9], a socio-economic model that

analyses how the choice of a service is influenced by the profile of users of that

same service; and, on a different line, from Almeida et al. [2], where game
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theory and the field of social psychology are related through the theories of

Planned Behavior or Reasoned Action, proposing the Bayesian-Nash equi-

librium as one of the many possible mechanisms behind the transformation

of human intentions into behaviors.

The duopoly game

A main driver of the study of price competition in oligopoly theory has been

the determination of factors that, within a simple analytical framework, can

sustain a pure price equilibrium with firms earning positive profits. In the

context of a Bertrand competition, with price as the only strategic variable

and uniform pricing (the same for all consumers), the search for asymmetric

equilibria assumes particular relevance. In general, the departure from the

paradoxical zero profit equilibrium involves either breaking the symmetry

on the firms side or on the consumers side, by introducing some degree of

heterogeneity. These are the general Hotelling vs Edgeworth approaches. An

asymmetry on the firms side of the market is usually introduced through the

Edgeworthian approach, by allowing different cost structures or capacity con-

straints, which often leads to indeterminateness of prices and non-existence

of pure price equilibrium. This is dealt with some appropriate continuity

assumptions and produces mixed strategy price solutions, which are in gen-

eral hard to compute and often face critiques as to their interpretation. On

the consumers side of the market (what we abusively called the Hotelling

approach), the asymmetry usually relies on some heterogeneity, either from

the usual vertical or product differentiation, or from other sources like search

or switching costs, incomplete information or different price sensitivities. In

some cases pure price solutions are known to exist, although also depending

on appropriate assumptions which essencially rely on heterogeneity and some

further continuity assumption (see for example [11] and references therein).

Other general approaches to the problem would involve leaving the stan-
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dard Bertrand framework and considering other strategic variables for firms,

for example by allowing firms to also compete by choosing quantities as in

Cournot, choosing/investing in quality, or others. Note that solutions based

on the temporal dimension can in fact be seen as introducing timing as a

strategic variable. 4

From a game theoretic perspective though, there is an inherent strategic

asymmetry in the original Bertrand framework: the set of players is com-

posed of firms and consumers, and while firms play strategically and their

best response depends on the whole strategy profile (prices and consumer

choices), consumers best response depends only on prices, hence ignoring

part of the game’s strategic profile. Notwithstanding that in many markets

this assumption may still be appropriate (like the classical mineral water

example), in most markets today, consumption behavior shows increasing

social propensity. In particular with the growth of internet, the emergence

of social networks and the increase of data availability, the asymmetry of

information between firms and consumers has reduced, and the very role

that consumers play on each others’ choices is today of greater importance.

Moreover, the idea of consumption externalities, its relevance and economic

implications are now better understood and extensively studied (see for ex-

ample [25], [19] or [24]).

The decision game of the first chapter provides a road to close the strate-

gic asymmetry gap and create duopolistic market solutions in pure price

strategies. In a first stage firms simultaneously choose prices and in a sec-

ond stage consumers play a decision game based on those prices. A market

equilibrium will be a subgame perfect equilibrium of this two stage game.

4
For general reviews we refer to the classical book references on industrial organization,

for example [46, 48] or microeconomic analysis, e.g. [47].
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Socially prone duopolies

A decisive main characteristic of a market is how demand changes, in partic-

ular how it reacts to price. The introduction of strategic interaction among

consumers changes the price elasticity of demand and in general disrupts the

zero profit paradox. Whether it is a more intricated form of social influence,

status seeking or a simpler consumption externality, consumers might prefer

or get stuck in a more expensive service, or at least have a smoother reaction

to price undercutting strategies. The effect of a price deviation is mitigated

or amplified by the effect consumers exert upon eachother, and the demand

behavior no longer responds solely to the price difference. We propose a

social propensity index to characterize markets and outcomes according to

how changes are captured by the social component of a market. The in-

terpretation is that it reveals how consumers may change their strategy in

response to local changes in the overall consumer profile, which is reflected

in the demand response to prices. We say that a duopoly is socially prone if

it has a non-null social propensity index.

In the finite case, the drawback in having consumers act strategically is

the coordination problem posed by the multiplicity of equilibria, that now

extends beyond the region where firms charge the same price. Furthermore,

for pure price solutions to exist with both firms earning positive profits, it is

necessary to ensure a continuous demand response to price deviations in the

neighbourhood of an equilibrium. Our approach to solve both these prob-

lems is to assume that, locally, consumers using pure strategies will continue

to use pure strategies, and consumers using mixed strategies will continue

to use mixed strategies. This will implicitly define a unique local continuous

response to small price deviations, which works as a natural coordination

device for firms. Naturally, there are discontinuous alternatives, which are

credible since they are a Nash equilibrium of the consumers subgame, nev-

ertheless they seem less plausible from an economic perspective. It’s hard
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to envision a situation where firms believe that small price changes create

a disruptive consumer behavior, especially when there is a credible smooth

alternative. We prove the existence of local market equilibrium for these

continuous deviations, with shared demand and positive profits. We charac-

terize prices and show that equilibria reveal consumers personal preferences.

The conditions are rather general and rely exclusively on the properties of

the social profile of consumers through the social propensity index. Socially

prone duopolies thus disrupt the Bertrand paradox and provide pure price

solutions. These solutions do not rely on heterogeneity to exist nor to be

asymmetrical.

Social propensity index and local influence network

In the duopoly case under consideration, the social profile is based on a so-

cial externality function whose properties will be inherited by demand, and

reveal how consumers interact and the interdependence of their choices. The

choice and characteristics of the social externality function are thus decisive

to determine the type of duopoly and consequent results. Two main lines

can be identified as crucial in this choice: the degree of social heterogeneity

and its functional form. Nevertheless, to understand demand changes, the

crucial aspect is not the externality function itself, but rather how changes in

some consumer strategy affect the rest of consumers. As an example, think

of a social network like facebook. There may be a large network of conec-

tions between users, which naturally provoke externalities, but the decision

itself depends on how users look and interpret this conections, how they are

influenced by them, which need not be by the whole of their conections. In

our context this superstructure within the actual consumer network struc-

ture is what we call the local influence network. The nodes in the network

are consumers and the edges represent the influence two consumers have

on eachother, which is dependent on the context created by the consumers
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choice. The network is thus directed, weighted and state-dependent. Hence,

consumers may have diferent influence on eachother, and that influence need

not be symmetric nor have the same value throughout the network. Further-

more, it is state-dependent in the sense that the weight will depend on the

consumers choice. A natural way to represent the network is through its

weighted adjacency matrix. In order to use the standard notation and to

provide a more intuitive representation, an weighted directed edge from i

to j should represent the influence i has on j, which should be the value of

the entry ij. The adjacency matrix of the influence network is defined as

the transpose of the Jacobian matrix of social differentiation.5 For a given

consumers choice, social differentiation is the difference between the exter-

nalities consumers incur in each service, at that ‘moment’. The influence

network reveals changes in social differentiation provoked by a change in

consumers strategy. This in turn provokes changes in the consumers utility

differential. Note, however, that for consumers using pure strategies, this

may not result in a strategy change if the Nash equilibrium condition is not

strict. We call consumers using pure strategies, loyal consumers. When a

change needs to be sufficiently high to result in a change of their best re-

sponse, we say that loyal consumers have lower sensitivity. This means that

for interior points the crucial aspect to capture local changes in demand is

the non-loyal consumers influence network. The idea that loyal consumers

may have lower sensibility and not always contribute to social propensity is

rather natural, and intuitive to the very notion of brand loyalty. We observe

though, that loyalty differs from installed base, since being loyal is a strate-

gical behavior (those who opt for pure strategies) and not an exogeneously

imposed choice, or a choice deriving from some switch cost or other stabi-

lizing variable. Each network has a social propensity index which proposes

to give information on how consumers react to changes and classify markets

5
We hope this comment avoids more confusion than it creates. This is just a clarifica-

tion, as it will only be used in the graphical representation.
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accordingly. For markets with social propensity, pure price equilibrium exist

and prices will be dependent on social propensity. A negative index will

slow down demand response to price undercutting strategies, as for some

consumers the incentive of turning to a cheaper service is overcome by the

externality, similarly to a congestion, snob or Veblen effect. A positive index

amplifies the demand response similarly to a conformity, herd or bandwagon

effect, allowing firms to take advantage of the contextual presence of some

consumers and in general leads to monopolistic settings or type-symmetric

consumer response to prices. Interestingly, when consumer interactions are

dyadic the externality becomes additively separable and social propensity

locally constant. In this case equilibrium demand varies linearly with price,

proportionally to social propensity, and the consumers profile determines the

equilibria. So preferences are revealing, besides revealed.

Related literature

The literature on price competition is vast. We will refrain from a gen-

eral review and focus on the main distinguishing features of our approach

in relation to the literature. Rubinsteind and Osborne ([34], page 6) define

the oligopoly problem as centered around the potential indeterminateness of

price equilibria with a few number of competitors. We build up the duopoly

on a finite set of consumers and are able to stabilize prices in pure strategies

by allowing consumers to use mixed strategies, which, with a consumption

externality, exist on a conected price region. The majority of the litera-

ture approaches the existence problem departing from a continuous set of

consumers. This doesn’t mean the approaches have many qualititively dif-

ferent results. Naturally, mixed strategies are linear combinations of pure

strategies, and this poses a limitation to the kind of social externality we are

considering. Nevertheless, our approach seems to hold for any C1 externality

function defined over a continuous space of strategies. An advantage of the
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approach is that pure price solutions based on consumer mixed strategies

provide in general simpler analitical solutions and more natural interpreta-

tions than mixed strategies for firms. Consumption has in many contexts

a smaller temporal frame than pricing strategies, and may be seen as a re-

peated choice on the temporal frame of pricing. Furthermore, one need not

consider loyal consumers as installed bases of non-strategic consumers, but

as consumers using pure strategies, hence being strategic consumers.

In our approach we allow for a general externality function, which can

be either aggregated or based on a network, and we impose no specific fuc-

tional form (nor require). We assume uniform pricing (the same price for all

consumers), negative prices are not allowed and consumption is mandatory

(in the duopoly consumers do not have a third option of not buying). We

characterize local pure price solutions and study the effects of the hetero-

geneity of consumers and the effects of symmetries of the consumer profile.

However, we do not need nor require heterogeneity or homogeneity of con-

sumers. These are the main features that allow to position our work and its

contribution.

An interesting survey including consumer demand under network effects

and social influence can be found in [45]. On the literature and importance of

network economics [24], [19], [25]. The existence of a pure price equilibrium

for example in [11] or [16]. On price competition subject to aggregated con-

sumption externalities, which do not depend on specific consumers but on

an aggregated demand variable, we highlight the conection with the work of

Grilo et al.(2001) [22] that “combine the consumption externality model and

the spatial models of product differentiation”. Nevertheless, the results are es-

sentially derived under a specific functional form, firms have installed bases,

the consumers set is continuous and heterogeneity based on spatial models.

Hackner, Nyberg (1996) [26] study welfare aspects of negative reciprocal ex-

ternalities, of which congestion is a special case. Acemoglu and Ozdaglar
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(2007) [1] analyze price competition and efficiency of oligopoly equilibria

where the allocation of network flows is subject to congestion costs cap-

tured by a route-specific nondecreasing convex latency function. We do not

focus on negative or positive externalities, but allow both forms. On (posi-

tive) network externalities there is strand of literature building on Katz and

Shapiro (1985), but which assumes Cournot competition, rather than price

competition. On price competition with a consumer network Banarji and

Dutta (2009) study the dependence of market segmentation on the under-

lying network structure, consumers have however the option of not buying.

A recent ongoing work by Aoyagi (2013) [4] studies the dependence of the

equilibrium on the underlying network structure, but in this case negative

prices are allowed. An interesting work by Allen and Thisse (1992) in [3], al-

though assuming non-strategic consumers is worth mention due to the study

of pure price equilibria for an homogeneous product oligopoly market where

consumers have different price sensitivities.

Our focus is on uniform pricing, however, there is an interesting growing

literature on price discrimination which does not connect directly to the

present work, but could be an interesting future possibility (see for example

Fainmesser and Galeotti (2015) [17] and references therein).

Organization of the work

The work unfolds as follows: in the next chapter, first section, we set up

the model and present a map characterizing the profile of individuals; in

section 2.1.1 we present a conformity obstruction lemma which allows us to

characterize the conditions in the individuals profile for a given strategy to be

admissible or feasible as a Nash equilibrium; in section 2.2.2 we present the

relation of our model to the concept of society introduced in [52]; in section

2.2.3 we define the Nash domain of a strategy (in terms of utility parameters)

and characterize it completely; in section 2.2.5 we discuss conditions on social



15

profile for the existence problem to be independent of the personal profile;

and finally, in the end of the sections we prove the results.

In the third chapter we start by setting up the duopoly game in the first

section, and in section 3.2 we present our main result characterizing market

equilibria. In the following section 3.3 we study symmetry properties of

the influence weights and the dependence of the underlying network, and in

section 3.4 we study the case where consumer interaction is dyadic.

In the final chapter we present conclusions and directions for future work.

In the appendix we present a game and interface programmed for Netlogo.

Software

The free software R was used for computations, simulations and for the

network figures in the second chapter, where routines where created for future

applications. Netlogo was used for testing with the class of decision games up

to 4 types and 4 possible actions, programming the game in appendix. The

rest of the figures regarding tilings, Nash domains, monopolies and demand

have been made using Adobe Illustrator (except for figure 2.5 which was

computed using Matlab). The option of using Illustrator had the aim of

better conveying ideas, hence improving images which attempt to ilustrate

an idea rather than providing rigourous mathematical statements.

Notation

Throughout the work we will use in general: boldface for variables that

convey information about the whole set of players, called generally profiles;

caligraphic letters for spaces of such profiles and greek letters for specific

parameters of a game. The symbol ⌘ is used for definitions.
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Chapter 2

The decision game

The main idea behind the results in this chapter is that the difference in

payoffs of similar individuals is bounded by the externality they provoke on

eachother. Using the type map this allows us to consider a social profile

and characterize the set of equilibria according to the symmetries imposed on

the space of personal preferences. We study how positive externalities lead

to strong type symmetries, while negative externalities allow the existence of

equilibria that are not type-symmetric and have a stronger dependence and

sensibility to the parameter space.

2.1 Game setup

The decision model we present is based on a finite non-cooperative game.

We consider a finite set of individuals I ⌘ {1, . . . , nI}, each having to choose

independently an element from a finite set of alternatives A ⌘ {1, . . . , nA}

(the common strategy set).1 We describe the decisions of the individuals by

a strategy map s : I ! A associating to each individual i 2 I her decision

s
i

⌘ s(i) 2 A and defining a (pure) strategy profile s = (s1, . . . , snI ) 2 S ⌘

AnI . The strategy profile s has a value for each individual i 2 I determined

1
Later on we show that it is possible to consider that individuals have different set of

actions Ai
and the results will hold.

17
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by an utility function u : I ⇥ S ! R and denoted u(i; s). The game consists

in each individual independently making a choice that maximizes her value.

Personal and social separability (PSS). The utility function has the

personal and social separability property if there are maps ! : I ⇥ A ! R

and e : I ⇥ S ! R such that

u(i; s) = !(i, s
i

) + e(i; s).

With the PSS property the utility becomes an additive combination of:

(i) a personal map !(i, a) which determines how much an individual i 2 I

personally values each alternative a 2 A, independently of the strategies

of the others; and (ii) a social externality map e(i; s) which determines de-

termines the social impact of the strategy profile s on individual i, that is,

the externalities arising from social interactions. In a first look it may look

counterintuitive that the strategy of individual i is still part of both com-

ponents. This is, however, the key point of driving the model into a game

theoretical framework. If the strategy of individual i was not included in

the social component, her best response would not depend on the strategy

of other individuals, which would remove the interaction part of the model.

The idea for the PSS property comes from the theories of planned behav-

ior and reasoned action (see for example [2]), and a main advantage of the

PSS property is allowing a separate analysis on the personal component and

the social component of the decision. The variable also allows to explicitly

acomodate variable transformations, for example, if each individual has its

own action set Ai, we can consider a common strategy set A =

S
Ai and a

personal map such that !(i, a) = �1 whenever a /2 Ai. This leads to the

same set of Nash equilibria since a will never be chosen by i. The separate

study on the properties of the social externality map, means we are able to

focus on the properties of the impact of others on individual’s i decision.
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A first natural property one may consider for the social component is

dyadic interactions. Dyadic means that, for any given strategy, the influ-

ence/impact of an individual i on an individual j is independent of the deci-

sion of others, that is, social externalities are a result of pairwise interactions.

Networks are a natural example of such interactions.

Dyadic interactions (DI). The social externality map is based on Dyadic

Interactions if for every individual i 2 I it is additively separable in the

strategy of the other individuals, i.e. for every strategy profile s it is given by

e(i; s) =
X

j 6=i

e(i, j; s
i

, s
j

).

A second natural property to consider is that social interactions are based

on presence, in the sense of being restricted to whether individuals are using

the same strategy or a different one. This restriction on social interactions

is in line with some common assumptions in the game theoretic literature,

as that of Independence of Irrelevant Choices in [27], or no spillovers in

[28]. These are in general assumptions in the spirit of what’s most com-

monly known as a type of Independence of Irrelevant Alternatives assump-

tion (which has long been used, but sometimes differs depending on the

context, see for example [37]). In our case, the assumption is in fact one

of dichotomic social influence, as we stated in the introduction. That is,

individuals are influenced by other individuals who make the same decision,

and also by those who make a different decision, but just by the fact that

they made a different decision, independently of what decision that is. With

that in mind we call this a presence-based influence.

Presence-based influence (PBI). The social externality map has the

presence-based influence property if e(i, j; s
i

, s
j

) = e(i, j; s
i

, s0
j

) whenever

s
j

6= s
i

6= s0
j

.
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A variable transformation as is done in [43] shows that with DI and PBI

we can consider a map ↵ : I ⇥ I ⇥ A ! R describing pairwise interactions

determined by social weight coordinates ↵ij

a

, which may be interpreted as

how much individual i is influenced by an individual j when they are both

making decision a. (Note that in general this need not be a symmetrical

map.) The component only depending on individual i is called personal

value coordinate and denoted by !i

a

2 R, and may be interpreted as how

much an individual personally likes or dislikes to make a certain decision.2

Let us denote the set of individuals who choose a 2 A in a strategy profile s

by s�1
(a) ⇢ I. An utility function with properties PSS, DI and PBI can be

written as

u(i; s) = !i

si
+

X

j2s�1(si)\{i}

↵ij

si
.

Let U be the space of such utility functions. For a given utility function

u 2 U , we call the decision model with the above properties a decision game

� ⌘ �(I,A, u). We will sometimes refer to decision games where there are

only positive externalities as social conformity games; and to games where

there are only negative externalities as social congestion games.

2.1.1 The profile of individuals

We will study different invariances that arise in a decision game where the

utility function has the PSS, DI and PBI properties, and then characterize

games from different invariance classes. These classes are related to how

individuals may be distinguished in the game, be it either because they

have different utility functions or because they have different impact on the

utility function of others; or both. The interpretation is that an individual

2
The idea is that we may assume e(i, j; si, sj) = 0 whenever sj 6= si and obtain an

isomorphic set of equilibria. Furthermore, we are in fact assuming that ↵ii
a = !i

a. There is

a slight abuse in using the same letter for the personal value coordinate and the personal

map, but it makes things more clear, as they in fact represent the same thing, although

with the variable transformation there might be a displacement.
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is characterized in three main lines: how the individual sees the decisions,

how she sees others and how others see her.

Crowding types

We start by analyzing the invariance derived from those characteristics of

individuals that influence the utility of others. Following the work of Conley

and Wooders ([12, 13, 14]), these are called the crowding type of the indi-

viduals. Let C be the set of possible crowding types and let c ⌘ c(�) =

(c1, . . . , cnI ) 2 C ⌘ CnI denote the crowding profile of individuals in a de-

cision game �. Two individuals j1, j2 2 I have the same crowding type

c
j1 = c

j2 = c 2 C if for all i 2 I and a 2 A we have ↵ij1
a

= ↵ij2
a

⌘ ↵ic

a

.

We will use the standard notation (s
i

; s�i

) to represent strategy profile s,

but highlighting the component of individual i and the remaining strategy

profile s�i

. The utility function for an individual i 2 I can be rewritten

using the crowding space,

ui(s
i

; s�i

, c�i

) ⌘ u(i; s) = !i

si
+

X

j2s�1(si)\{i}

↵
icj
si .

The use of a crowding space in the characterization of a game has the advan-

tage that the utility of an individual i associated with a strategy profile s is

invariant under permutations of strategies of other individuals with the same

crowding type. Thus, the crowding space C induces a natural equivalence

relation in the strategy space S.

Externalities and valuations

The second step in our approach is to distinguish individuals according to

the two additive components of the utility function, namely separating the

part that measures the externality effects from the part that measures the

individual’s personal valuation of the alternatives A. We will categorize indi-
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viduals according to these two components so that we can then characterize

a Nash equilibrium according to the restrictions it imposes on the relation

between these two components. The two components are: (i) the column

vector of personal personal values ~!
i

⌘ !i

(A) 2 RnA ; and (ii) the matrix

of social weights given to each crowding type, the social externality matrix

e
i

⌘ e
i

(A, C) 2 RnA⇥nC ;

~!
i

⌘

0

BBB@

!i

1
...

!i

nA

1

CCCA
, e

i

⌘

0

BBB@

↵i1
1 . . . ↵inC

1
... . . . ...

↵i1
nA . . . ↵inC

nA

1

CCCA
.

We observe that the impact of the personal value vectors ~!
i

in this relation

will not be given by the precise value of their coordinates, but rather by the

relative preferences they induce, namely the difference between each pair of

coordinates. That is, if a given decision d is a best response for an individual

i, then if we changed her vector of personal values by the same amount in each

coordinate, d would still be a best response. We will take this into account

using a valuation space V with the following property: if two individuals

i, j 2 I have the same valuation type v
i

= v
j

⌘ v 2 V , then their vectors of

personal values are in the same relative valuation space. More precisely, the

relative valuation space spanned by ~!
i

is

W (~!
i

) ⌘ {~!
i

+ k~1 : k 2 R}.

Hence, if the two individuals have the same valuation type v, then W (~!
i

) =

W (~!
j

). However, we do not ask the equivalence class to be maximal, i.e.

there might be individuals with diferent valuation types v
i

6= v
j

such that the

corresponding vectores of personal values ~!
i

and ~!
j

satisfy W (~!
i

) = W (~!
j

).

With a slight abuse of notation we will refer to the personal values vector

of individuals with the same valuation type v as ~!
v

. The profile of personal

value vectors of all individuals is denoted by ! ⌘ !(I;A) ⌘ (~!1, . . . , ~!nI ) 2

(RnA
)

nI . The valuation profile is denoted by v ⌘ v(I) ⌘ (v1, . . . , vnI ) 2
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V ⌘ V nI . Note that a profile of personal values might or not be compatible

with a valuation profile. The set of all social externality matrices associated

with the crowding profile c of a given game is described by the externality

profile e ⌘ e(I;A, C) ⌘ (e1, . . . , enI ) 2 E ⌘ EnI ⌘ (RnA⇥nC
)

nI . We will

use ↵
eicj
a

to refer to coordinates ↵
icj
a

of an individual with externality type

e
i

.

Type map

The categorization of individuals can now be done according to their personal

and social profile through a type map t ⌘ t� : I ! T which indicates the type

of an individual in the type space T = C⇥E⇥V . The subscript on the type

map (which we will omit) is there to reinforce that when we say type we do

not mean bayesian type, rather the type map reveals symmetries of the utility

profile, hence of a particular decision game �, and thus it is something known

a priori. The type map defines a type profile for the game given by the triplet

t = (c, e,v) in the space T = (C ⇥ E ⇥ V )

nI , composed of: (i) a crowding

profile c characterizing individuals according to their crowding type; (ii) an

externality profile e characterizing individuals according to their externality

type; and (iii) a valuation profile v characterizing individuals according to

their valuation type. Note that the pair (e
i

, v
i

) is what is usually called

an individual’s taste type. An advantage of separating the taste into two

components is that now the pairs (c
i

, e
i

) are responsible for the ‘social’ part

of the model; they capture the social interactions in the model. We refer to

this pair as the social type of an individual. The valuation type component

v
i

, that represents the way an individual values the possible choices, may be

analysed separately.

The type profile of a decision game conveys information, or imposes re-

strictions, on the characteristics of its Nash equilibria. On the subsequent

sections we will study the information one can retrieve about the structure of
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the utility profile of a decision game from studying the restrictions imposed

by the type profile on the set of Nash equilibria.

A decision game has two main characteristics: (i) the type space, hence

the number of types; and (ii) the number of decisions. We refer to different

decision games by these two distinguishing features and denote the corre-

sponding class of games by �

nT ,nA . Changing one dimension or the other

has diferent impacts and produces different chalenges. Note for example

that it is not possible to construct a game with only two actions without the

presence-based influence property (PBI).
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2.2 Pure Nash equilibria

A strategy profile s is a pure Nash equilibrium, if for every individual i 2 I,

u(i; s
i

, s�i

) � u(i; a, s�i

), for every a 2 A.

2.2.1 Feasibility

A first natural problem is whether individuals of the same type may use

different strategies in a Nash equilibrium, hence, whether all Nash equilibria

are type-symmetric. The first lemma is a result on the relation between a

social type and its valuations in a Nash equilibrium. Let us start by defining

for two individuals i and j the following measure of influence in a strategy

profile s, called their influence relation

R
ij

(s) ⌘ ↵ij

sj
+ ↵ji

si
.

The influence relation reveals the bilateral externalities that two individuals

would incur were they to change their decision. That is, if two individuals

have a positive (resp. negative) influence relation in s, then at least one of

them would incur a positive (resp. negative) externality by changing (unilat-

erally) her strategy and joining the other in her decision. When R
ij

(s) > 0

we say that the individuals i and j have a tendency to conform, given by

a positive externality relation in s. Similarly, if R
ij

(s) < 0 we say that

individuals i and j have a negative externality relation in s.

Let dist(·, ·) be the distance given by the supnorm.

Lemma 1 (Conformity obstruction). Consider a decision game � and a

Nash equilibrium s. If i, j 2 I and s
i

6= s
j

then

dist(~!
vi , ~!vj ) � R

ij

(s)/2� nIdist(ei, ej).

We call this an obstruction because, in the case of positive externalities,
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individuals need to be sufficiently different to make different decisions at a

Nash equilibrium. Thus, their personal valuation of alternatives obstructs

their tendency to conform to the decision of one another. When negative

externalities are in place, this is not the case, since they do not have a ten-

dency to conform. The conformity obstruction lemma leads to the following

theorem for positive externalities.

Theorem 1 (Positive externality). Let i, j 2 I be two individuals of the

same social type (c
i

, e
i

) = (c
j

, e
j

), and s 2 S a Nash equilibrium such that

s
i

6= s
j

. If R
ij

(s) > 0, then

dist(W (~!
i

),W (~!
j

)) � R
ij

(s)/2

The theorem reveals that, in a Nash equilibrium, individuals of the same

social type with a tendency to conform need to have different valuations of

the alternatives in order to make different decisions. We say that a strategy

profile s 2 S is admissible with respect to a type profile t = (c, e,v) if the

following property holds: if i, j 2 I are two individuals of the same social

type (c
i

, e
i

) = (c
j

, e
j

) with s
i

6= s
j

and R
ij

(s) > 0, then they have different

valuation types v
i

6= v
j

. Equivalently, if v
i

= v
j

and R
ij

> 0 then s
i

= s
j

.

Corollary 1 (Nash equilibrium admissibility). A strategy s 2 S to be (c, e,v)

admissible is a necessary condition for s to be a Nash equilibrium.

Note that we have not imposed any condition so far on individuals of

different social types, and we will make that clear. Given a type profile

t = (c, e,v), we say that a strategy profile s 2 S is t feasible, if s satisfies

the following two properties: (i) s is t admissible; and (ii) if i, j 2 I are two

individuals with different social types (c
i

, e
i

) 6= (c
j

, e
j

), then v
i

6= v
j

. (Note

that this does not mean i and j have different personal values, but rather

that they are allowed to have different ones.)
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Theorem 2 (Nash equilibrium feasibility). Given a strategy profile s 2 S

and a type profile t 2 T , if s is t feasible then there is a profile of personal

values ! 2 RnA⇥nI compatible with the valuation profile v 2 V, such that s

is a Nash equilibrium.

We note that given a type profile t and a strategy profile s, to be t

feasible is not a necessary condition for s to be a Nash equilibrium.

2.2.2 Social contexts and equilibrium partitions

The set of Nash equilibria of a decision game can be partitioned according

to the information conveyed by the type map, i.e. according to the individ-

uals profile. The set of characteristics of individuals can be distinguished

between those on a more internal level, the taste of individuals, and those on

a more external, or visible level, the crowding type. It is therefore natural to

start partitioning equilibria according to the crowding profile of individuals.

Given a strategy profile s and a crowding profile c, we define social context as

the pair (s, c). In studying social contexts that are based on a Nash equilib-

rium strategy s, the characterization of the structure of the utility profile is

naturally limited to studying subsets of individuals that are dintinguishable

in that social context, and therefore provide different information. Using

the crowding space, the utility function can be fully characterized by the

following (reduced) utility matrix for each individual i 2 I,

U
i

⌘ U(i;A, C) ⌘

0

BBB@

!i

1 ↵i1
1 . . . ↵inC

1
...

... . . . ...

!i

nA ↵i1
nA . . . ↵inC

nA

1

CCCA
.

The utility matrix defines the taste (or utility) type of an individual, and

the utility profile U ⌘ U(I;A, C) ⌘ (U1, . . . , UnI ) 2 (RnA⇥(1+nC)
)

nI deter-

mines a decision game. The set of Nash equilibria of a decision game will

naturally depend on the utility profile. Nevertheless, different utility profiles
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may lead to the same Nash equilibria. Hence, we will study properties of

utility matrices of decision games for which a given strategy class is a Nash

equilibrium.

Consider a partition P(s, c) of the set of individuals I according to the

social context (s, c), meaning that every pair (d, c) creates a block P (d, c)

of the partition whose elements are all the individuals i 2 I with the same

crowding type c
i

= c and using the same strategy s
i

= d. That is,

P (d, c) ⌘ {i 2 I : (s
i

, c
i

) = (d, c) 2 A⇥ C},

P(s, c) ⌘ {P (d, c) : (d, c) 2 A⇥ C}.

This kind of partitions is particularly interesting to relate to the notion of

society defined in [52], and in fact inspired by it. A society is an element of

a subpartition of a block P (d, c) with an aditional property of convexity as

defined properly below. Let us first denote convex hull by con(·) and without

ambiguity let us use the same notation for the convex hull formed by the

utilities of some individuals J ⇢ I, thus

con(J) ⌘
⇢X

j2J
�
j

U
j

: �
j

2 R+
0 and

X

j2J
�
j

= 1

�
.

A set of individuals S 2 P (d, c) is called a society if it satisfies the following

convexity property: if for i 2 I, c
i

= c and U
i

2 con(S), then i 2 S (see

[52]). The society is maximal if there is no other society S0 2 P (d, c) such

that S ⇢ S0. Given a decision game and a block P (d, c) of a social context,

let us denote by SP (d, c) ⌘ {S1, . . . , S
k

} a partition of P (d, c). Let now

SP(s, c) ⌘
[

i2I
SP (s

i

, c
i

).

The partition SP(s, c) is called a societal partition if its blocks SP (d, c) are
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formed by societies, and it is called a minimal societal partition if it is formed

by maximal societies.

Definition 1 (Global minimum societal partition). A societal partition is a

global minimum if all its societies coincide with the P (d, c) block, i.e. for all

S 2 SP(s, c), S = P (d, c).

We observe that while a partition P(s, c) is based on a combinatorial

concept, societies are based on a topological one. A fundamental question

is understanding the minimal societal partition of a Nash equilibrium, and

in particular if that partition is a global minimum. We will show that, in

the context of our work, when there are only positive externality relations

between the P (d, c) blocks for a given strategy, the societal partition is a

global minimum. In particular, in a conformity game, the minimal societal

partition of a Nash equilibrium is always a global minimum, and thus there

are at most nAnC

societies. That is not the case however for games with

negative externalities. We will show that social congestion games may not

have global minimum societal partitions of its Nash equilibria, and there

may be up to nI maximal societies. For a given block P (d, c), let

U(d, c) ⌘ {U
i

: i 2 P (d, c)}.

We say that two sets of individuals I, J 2 I have a tendency to conform

in strategy profile s, if for all i 2 I and j 2 J , R
ij

(s) > 0. Note that

R
ij

(s) = ↵
icj
sj + ↵jci

si .

Theorem 3 (Positive externalities). Let (s, c) be a social context and s a

Nash equilibrium. If for two distinct decisions d, d0 2 A and a crowding type

c 2 C, the blocks P (d, c) and P (d0, c) have a tendency to conform in s, then

con(U(d, c)) \ con(U(d0, c)) = ;.
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Theorem 3 relates directly to the notion of societies, and in particular to

the concept of global minimum societal partition.

Corollary 2 (Positive externalities). Let (s, c) be a social context and s a

Nash equilibrium. For every c 2 C let P (d, c) and P (d0, c) have a tendency

to conform in s, for every d, d0 2 A, with d 6= d0. There is a global minimum

societal partition.

In particular, for every Nash equilibrium of a social conformity game the

minimal societal partition of a Nash equilibrium is a global minimum.

2.2.3 Strategy classes and Nash domains

The crowding space allows the characterization of classes of strategies where

the relevant information is the number of individuals with the same crowding

type in each decision. We thus define the crowding-aggregate decision matrix

L(s, c) whose coordinates, lc
a

= lc
a

(s), indicate the number of individuals with

crowding type c 2 C who choose alternative a 2 A in strategy profile s,

L(s, c) ⌘

0

BBB@

l11 . . . lnC
1

... . . . ...

l1
nA . . . lnC

nA

1

CCCA
.

We denote by L ⌘ {L(s, c) 2 RnA⇥nC
: s 2 S, c 2 C} the set of all possible

crowding-aggregate decision matrices in a given game. Given a matrix L 2

L, there is always a subset of strategy profiles S 2 S such that, for any

s1, s2 2 S, we have L(s1, c) = L(s2, c) = L. Thus, the set L characterizes

the crowding equivalence relation in the strategy space S induced by the

crowding profile c, and we will refer to the strategy class L 2 L to mean the

equivalence class {s 2 S : L(s, c) = L}.

The utility Nash Domain N (s, c) of a given social context (s, c) is defined

as the set of all utility profiles U for which s is a Nash equilibrium under the

crowding profile c. For an individual i 2 I the best response utility domain
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N
i

(s, c) of a social context (s, c) is the set of all utility matrices U
i

such that

s
i

is a best response of individual i to s�i

under the crowding profile c.

Remark 1 (Nash domain cone structure). Let (s, c) be a social context. We

have,

(i) N (s, c) = N1(s, c)⇥ · · ·⇥N
nI (s, c);

(ii) if U1, U2 2 N
i

(s, c) then �U1 + µU2 2 N
i

(s, c), for all �, µ > 0;

(iii) if s
i

= s
j

and c
i

= c
j

then N
i

(s, c) = N
j

(s, c).

We note that by condition (ii) Remark 1 the best response utility domains

N
i

(s, c) have a cone structure. Let s(I) (the image by the strategy map

s) be the subset of decisions chosen by individuals I ⇢ I in the associated

strategy profile s. Individuals with the same crowding type retrieve the same

information from the aggregated structure of a strategy class L, and if they

are using the same strategy, they in fact share a best response utility domain

(hence (iii)). Therefore, these domains can be described using the crowding-

aggregate matrix, i.e. N
i

(s, c) = N(s
i

, c
i

;L(s, c)), and we can rewrite the

utility Nash domain of a social context as follows

N (s, c) = ⇥
d2s(I),c2CN(d, c;L(s, c))l

c
d .

Given a crowding profile c, a strategy profile s is a Nash equilibrium if, and

only if, for every non-empty block P (d, c) of the partition of the respective

social context (s, c), we have

U(d, c) ⇢ N(d, c;L).

We note that the domains N(d, c;L) do not preserve externalities in the

following sense: given two best response utility domains N(d, c;L) and

N(d0, c;L), there are some utilities in N(d, c;L) which would provoke a ‘posi-

tive externality relation with’ some utilities in N(d0, c;L), and there are some
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utilities in N(d, c;L) which would provoke a ‘negative externality relation’

with some utilities in N(d, c0;L). That is, the influence relation is not pre-

served. Since it will be useful to study sets that preserve these relations, we

will add an externality profile to the social context, extending it so that we

can fiber the best response and utility Nash domains by the externality pro-

file e. Let (s, c, e) be the social context extension to externality profile e. For

an individual i 2 I the best response valuation domain N(s
i

, c
i

, e
i

;L(s, c))

of a social context extension (s, c, e) is the set of all vectors ~!
i

such that

s
i

is a best response to s�i

, in the profile context c, e. We observe that if

~!
i

2 N(s
i

, c
i

, e
i

;L(s, c)), then W (~!
i

) ⇢ N(s
i

, c
i

, e
i

;L(s, c)). Furthermore,

the sets N(s
i

, c
i

, e
i

;L(s, c)) are convex, non-empty and preserve externali-

ties. The Nash valuation domain of a social context extension (s, c, e) is thus

given by the cartesian product

N (s, c, e) = ⇥
i2IN(s

i

, c
i

, e
i

;L(s, c)).

Theorem 4 (Positive externalities). Let i, j 2 I be two individuals of the

same social type (c
i

, e
i

) = (c
j

, e
j

) and s 2 S a Nash equilibrium with s
i

6= s
j

.

If i and j have a tendency to conform in s, then

N(s
i

, c
i

, e
i

;L(s, c)) \N(s
j

, c
j

, e
j

;L(s, c)) = ;.

Let I
t

be set of individuals with type t 2 T , and recall that individuals

of the same type have the same valuation of alternatives. For a given type

t = (c, e, v) 2 T , the type best response valuation domain is

N(t;L(s, c)) ⌘
\

i2It

N(s
i

, c, e;L(s, c)).

In a strategy profile s, individuals of type t 2 T are using best responses if

~!
v

2 N(t;L(s, c)). If type t has a tendency to conform, Theorem 4 poses a
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problem for strategies for which s(I
t

) is not a singleton. Recall that being

admissible required different valuations for individuals of the same social type

with a tendency to conform but making a different decision. It is now more

clear that being admissible with respect to the type profile, is a necessary

condition for a strategy profile to be a Nash equilibrium (Corollary 1).

Theorem 5 (Nash domain characterization). If s is t admissible then for

every t 2 T , N(t;L(s, c)) is a (non-empty) convex set that is the closure of

an open set and

N (s, c, e) = ⇥
t2TN(t;L(s, c)) 6= ;.

Furthermore, if s is t feasible then every ! 2 N (s, c, e) 6= ; is compatible

with v.

Theorem 2 follows from the above theorem. Let I
c

be the set of individ-

uals with a given crowding type c 2 C. Theorem 5 provides an interesting

conection to the number of societies in a minimal societal partition of a Nash

equilibrium. Take for instance for all the individuals i 2 I, ↵ic

d

= �1, for

every d 2 A and c 2 C. Hence, all individuals have the same social type

given by the externality matrix with all entries �1. Since for any given

c 2 C, N(t;L(s, c)) contains an open set, it is possible to choose an utility

profile so that we can order the utilities of all the individuals along a line

in N(t;L(s, c)) with the order that we prefer. Each order of the individuals

along the line creates a number of societies that only needs to be compatible

with the combinatorics imposed by the number of individuals of I
c

that are

in each block P (d, c). Thus, taking

M
c

= min{2(n
c

� p̄
c

) + 1, n
c

},

where n
c

= #I
c

and p̄
c

is the cardinality of the largest set P (d, c) ⇢ I
c

, we

obtain the following corollary.
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Corollary 3 (Negative externalities). Given a social context (s, c), for every

c 2 C choose q
c

such that #s(I
c

)  q
c

 M
c

. There are utility profiles

U 2 N (s, c) such that the minimal societal partition has cardinality
P

c2C q
c

.

As such, for any given social context (s, c), the following minimal societal

partitions can arise:

- (global minimum) there are utility profiles U 2 N (s, c) such that the

minimal societal partition is the global minimum societal partition;

- (no global minimum) if for some c 2 C there are decisions d, d0 2 A,

with d 6= d0, #P (d, c) � 1 and #P (d0, c) > 1, then there are utility

profiles U 2 N (s, c) such that there is not a global minimum societal

partition;

- (maximality) if
P

c2C q
c

= nI , then there are utility profiles U 2

N (s, c) such that the cardinality of the minimal societal partition is

nI , and thus it is maximal.

2.2.4 Conformity thresholds and decision tiling

For the explicit characterization of the Nash valuation domains of a social

context extension, let us start by the analysis of the individual’s best re-

sponses. We will then define thresholds for the valuation domains of those

best responses in terms of the personal values. For this analysis it will be

useful to rewrite the utility function using the strategy classes L. Recall

that in this section when we say Nash equilibrium we always mean pure

Nash equilibrium. As it is natural when dealing with pure Nash equilibria,

we will have to make comparisons between pairs of decisions, and this can

be done comparing lines in the utility matrices, since each line d of those

matrices is associated with the utility of the individual i when using strategy

s
i

= d. Hence, it will be useful to introduce a notation for the line vectors

associated with each decision. When the choice of an individual i 2 I is
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d 2 A, the social influence that she is subject to, in a given strategy profile

s 2 S, may be summarized by two vectors: the social preferences vector

~↵
i

(d) 2 RnC , comprised of the social weights given by individual i to the

aggregates of each crowding type in decision d; and the crowding-aggregate

vector ~l(d) 2 RnC whose coordinates correspond to the line d of matrix L,

and thus indicate the number of individuals with crowding c 2 C who make

decision d in a given strategy class L,

~↵
i

(d) ⌘ (↵i1
d

, . . . ,↵inC
d

), ~l(d) ⌘ (l1
d

, . . . , lnC
d

).

The utility function can now be rewritten for strategy classes through the

above vectors. For an individual i 2 I it is given by

u
i

(s
i

, c
i

;L) ⌘ u
i

(s
i

; s�i

, c�i

) = !i

si
+ ~↵

i

(s
i

) ·~l(s
i

)� ↵ici
si

where · denotes the usual inner product. Note that determining the utility

of an individual using a strategy class L instead of a specific strategy profile

s, forces the need to add some extra information. Namely, each individual

needs to know her own crowding type due to the subtraction of coordinate

↵ici
si

. This is a consequence of removing individual i from the aggregate lci
si

and assigning social weight to lci
si
� 1 instead. However, this only means

that individual i has no social weight on her own utility, rather she has an

individual value for that decision, !i

si
(which might nevertheless encompass

a social interpretation of personal values). The aforementioned need for the

knowledge of an individual’s own crowding type, reveals how individuals

may retrieve different information from the same aggregated structure of a

strategy class.

Given a decision game � and a strategy profile s, the best response of
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individual i 2 I is

br

i

(s�i

) ⌘ br(c
i

, e
i

, v
i

;L(s, c)) = argmax

d2A
{!vi

d

+ ~↵
ei(d) ·~l(d)� ↵eici

d

}.

A strategy profile s is a (pure) Nash equilibrium if, for every i 2 I, s
i

=

br

i

(s�i

). In a given social context extension, individuals with a same social

type (c
i

, e
i

) = (c
j

, e
j

) = (c, e) that make the same decision s
i

= s
j

= d

have the same individual best response valuation domain N(d, c, e;L) ⌘

N(s
i

, c
i

, e
i

;L(s, c)). Note that the best response utility Nash domains of

social contexts are characterized by the best response valuation domains of

social context extensions, since

N(d, c;L) =
[

e

N(d, c, e;L).

To characterize the best response valuation domains, we are going to define

for a given strategy profile s conformity thresholds T
ei(si ! d; s�i

), that

represent the surplus quantity that individual i has from social externalities,

that could create an incentive for her to change from her current decision

s
i

to decision d. This threshold does not depend on the valuation type of

the individual, but rather on the externality context (s, c, e). In particular,

as referred, it depends on the individual social type and the strategy class

to which s belongs. Let us first define the auxiliar externality type-threshold

between two decisions d, d0 2 A,

¯T
e

(d0, d;L) ⌘ ~↵
e

(d) ·~l(d)� ~↵
e

(d0) ·~l(d0).

Given a strategy profile s, the conformity thresholds are given for each in-

dividual i 2 I with externality type e
i

and for all decisions d 2 A \ {s
i

},

by

T
ei(si ! d; s�i

) ⌘ ¯T
ei(si, d;L(s, c)) + ↵eici

si
,
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which will be useful to rewrite using strategy classes,

T(ci,ei)(si ! d;L(s, c)) ⌘ T
ei(si ! d; s�i

).

The notation reflects the idea of social incentive towards decision d from

strategy s
i

. Thus, this is the quantity by which !vi
si

(the value of decision

s
i

) has to overcome !vi
d

(the value of decision d), so that decision s
i

is

still ‘preferable’ for an individual with social type (c
i

, e
i

) in the externality

context (s, c, e). Observe that when we talk about incentives for player i

to change her decision, we might be talking about desincentives, depending

upon the sign of the conformity threshold T(ci,ei)(si ! d;L(s, c)). Two

opposite extreme cases appear when ~↵
ei(si) has only positive coordinates

and ~↵
ei(d) has only negative coordinates, making the threshold negative,

thus a desincentive to change; or when the opposite happens, making the

threshold positive, thus an incentive to change. Concluding, incentives or

desincentives are provoked by the relation between negative and positive

coordinates in the social preference matrix.

Lemma 2 (Best response valuation domains characterization). The best

response valuation domains N(d, c, e;L) consist of all ~! 2 RnA with the

following properties:

(i) !
d

2 R;

(ii) !
d

0 2 R satisfying the following threshold inequality

!
d

0  !
d

� T(c,e)(d ! d0;L) (2.1)

for every decision d0 2 A \ {d}.

Hence, N (s, c, e) is non-empty and contains an open set in the space

(RnA
)

nI .
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Decision tilings.

The characterization of the Nash valuation domains for every strategy profile

s, provides the full characterization of the relation between valuations and

strategies for a given social profile (c, e). That is, for any given valuation

profile we know what are the possible Nash equilibrium strategies under that

social profile. This characterization is summarized in the decision tiling

DT (c, e) ⌘
[

s

N (s, c, e).

By theorem 5 we can describe the decision tiling according to the type map

and strategy classes as the union of the product of convex sets,

DT (t) =
[

L

⇥
t2TN(t;L(s, c)).

In figures 2.1, 2.2, 2.3 and 2.4 we show examples of decision tilings for

the class of decision games �2,2. The interaction variables are summarized

by A
tt

0 ⌘ ↵tt

0
1 + ↵tt

0
2 which characterize the domains. The axis are given

by x = !t1
1 � !t1

2 and y = !t2
1 � !t2

2 . The advantage of dimension 2 is the

geometric representation allowing a visualization of the results. Note that

for all i, j 2 I, R
ij

2 {A11, A12, A22, A21}. The strategies are characterized

by the pair (l1, l2) which indicate, respectively, the number of individuals of

type 1 and type 2 in decision 1. There are n
t

individuals of each type. This

is based on [43] where the full characterization of these decisions tilings is

done.

2.2.5 Reciprocal relations and cycles

A natural follow-up question is whether the decision tiling covers the whole

valuation space RnA . This amounts to the question of existence of a pure

Nash equilibrium and can be formulated more precisely in the following
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Figure 2.1: The benchmark decision tiling for the class of �2,2 decision games.
There are no interactions: A11 = A22 = A12 = A21 = 0. There are only
type-symmetric strategies, except on the axis.

way: given a social profile (c, e), when is the problem of existence of a Nash

equilibrium independent of the choice of the personal profile? Are there

conditions that can be imposed on the social profile so that a pure Nash

equilibrium always exist?

The question of existence is one of the major issues in game theory. In

finite games, since a mixed equilibrium always exists, as proven by Nash [32],

the question is whether a pure equilibrium exists. A major class of games that

has drawn considerable atention in the literature for always possessing a pure

Nash equilibrium is the class of potential games, introduced by Rosenthal

[38], and later classified and generalized by Monderer and Shapley [31]. We

will look at the problem of asking whether it is possible to impose symmetries

in the relation of influences between individuals and guarantee the existence

of a pure equilibrium, independent of their personal valuations. Note that if
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Figure 2.2: The decision tiling for a �2,2 decision game when A11 > 0,
A22 > 0, A12 > 0 and A21 > 0. All equilibria are type-symmetric. There are
multiple equilibria in the intersection areas.

it would be possible to choose their personal valuation, then the first sections

completely solve the problem.

Definition 2 (Strong reciprocity). A social profile has strong reciprocity if

↵ij

a

= ↵ji

a

for every individuals i, j 2 I and for every action a 2 A.

A decision game has strong reciprocity if its social profile has strong

reciprocity. Note that this is a strong symmetry property imposed on ev-

ery pairwise relation of individuals. The effect is that when an individual

changes its decision she will provoke the same externalities as she will incur,

which leads improvements on best replies to ‘flow’ on the same direction,

and ultimately to the existence of a potential function.

Result 1. A decision game with strong reciprocity is a potential game.
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Figure 2.3: The area of the decision tiling for a �2,2 decision game where
non-type symmetric Nash domains will lie. In this case we considered 4

individuals in each type to show the non-type symmetric domains. Here
there are only intra-type influences. A22 < A11 < 0, A12 = A21 = 0.

Result 2. Every decision game with strong reciprocity has a pure Nash equi-

librium.

The two results are interconnected. Result 2 is a consequence of Result 1,

as every potential game has a pure Nash equilibrium. The proof of existence

is derived directly from a theorem by Le Breton and Weber in [8], and their

proof, which is for a more general class of games is done by direct construction

of a potential. The proof of result 1 in our case could be done directly from

corollary 2.9 in [31] by Monderer and Shapley, without explicit construction

of the potential, but we will omitt such a proof. Observe that a consequence

of Result 2 is that for every social profile (c, e) with strong reciprocity the

decision tiling covers the valuation space, i.e. DT (t) = RnA . The strong

reciprocity condition is a rather strong symmetry condition, which works as
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Figure 2.4: The area of the decision tiling for a �2,2 decision game where
non-type symmetric Nash domains will lie and inter-type interactions are
turned on. In this case A11 < 0, A22 < 0, A12 < 0, A21 = 0.

a sufficiency condition for the existence, but is far from necessary, much in

the same way being a potential game is a sufficient condition for existence,

but not necessary. The next question we will focus is: under which conditions

is it possible to relax the assumption, i.e. unbalance the relation ↵ij

a

6= ↵ji

a

,

and still guarantee a Nash equilibrium? Naturally, we need at least two

types of individuals to do this, and then look at the intertype relations,

since intratype relations are by definition symmetric. Hence, the following

corollary holds for all games �1,nA .

Corollary 4. Every decision game with only one type of individuals has a

pure nash equilibrium.

The idea behind potential games guaranteing a Nash equilibrium, inde-

pendently of the valuation profile, builds upon the fact that when an individ-
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ual changes her decision she affects the utility of the remaining individuals

the same exact same way she is affected by them. When that’s not the case,

an incentive for her to change could be a desincentive for other individuals

to accept the change. Nevertheless, when only positive externalities are in

place, the idea still holds, since the utility of every individual grows with

each unilateral change and eventually individuals will stop changing, if not

before, at least when they have made the same decision. This is the basic

idea behind the proof of the next theorem.

Theorem 6. Every social conformity game has a pure Nash equilibrium.

Recall that social conformity games have only positive externalities, and

as we have proven in previous section, there will be only type symmetric

equilibria. Type-symmetry itself, however, does not play a relevant part,

and is not a base for a sufficient condition. When we increase the number

of types, the intertype externalities may be strong enough to prevent an

equilibrium. When the number of types increase, the interactions between

individuals of different types may be unbalanced (not strongly reciprocal)

or with different signs, and this is where a new condition must work. Note

that even if the interactions are balanced but with a different sign (hence

introducing negative externalities) an equilibrium might not exist. The next

example, although in a more informal language, gives a precise idea of the

type of problems that can occur when the number of types grows, and we

loosen the strong reciprocity condition. This also sets up the motivation for

our next definition.

Example 1 (Cat and mouse externalities). Suppose there are two players

(the cat and the mouse) and two possible actions (locations). Both players are

personally indiferent between one action or the other. The mouse wants to

choose a different strategy than the cat, and the cat wants to choose the same

strategy as the mouse. No strategy can be an equilibrium, as one of them
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Figure 2.5: The time evolution of the probabilities of individuals under the
replicator dynamics forming a stable cycle for a �2,2 decision game. There
are 2 individuals of each type and the parameters are A11 = �0.1, A12 = 3,
A21 = �10, A22 = 0; n1 = n2 = 2, x = 0.4, y = 0.6. The initial probabilities
are p1(0) = 0.5, p2(0) = 0.6 for type 1 and q1(0) = 0.4 and q2(0) = 0.3 for
type 2.

always has an incentive to deviate. This is essencially general for decision

games �2,2 (with two types of individuals and two actions) where A12 > 0

and A21 < 0. No type-symmetric strategy will prevail, and non-symmetric

strategies will require a balance between the remaining parameters. Similar

examples can be found in a game leading to a limit cycle of the replicator

dynamics in (Soeiro et al 2014 [43] which is shown in figure 2.5), and in an

example where a celebrity and the public must choose locations in (Wooders

2006 [52]).

In such games with ‘cat chases mouse’ like externalities, if the utilities

are based solely on externalities, there is no pure Nash equilibria. Note

however, that using the results from the previous sections it is easy to find,

for any of the players, a set of personal values for each decision such that an

equilibrium exist. (Say the cat values action a1 relative to a2 high enough

that is indiferent to the externality. Any allocation can be an equilibrium

with the right set of personal values; those inside the Nash domains found
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Figure 2.6: A relation between the non-type-symmetric Nash domains for
the decision tiling for a �2,2 decision game without weak reciprocity. In
this case A12 > 0 and A21 < 0 which creates a space between the domains
containing valuations for which there is no pure Nash equilibrium.

before.)

Definition 3 (Weak reciprocity). A social profile has weak reciprocity if for

every individuals i, j 2 I and actions a, a0 2 A, sgn(↵ij

a

) = sgn(↵ji

a

0).

The condition of weak reciprocity implies that changes in the strategies

of individuals will provoke externalities in the same direction, and thus break

the type of ‘cat chases mouse’ externalities. This will prove to be crucial to

decision games in �2,2, such as that of the previous example.

Theorem 7. A weakly reciprocal decision game with two types and two de-

cisions has a pure Nash equilibrium.

An example of a part of the decision tiling for the class of �2,2 with

and without weak reciprocity is shown in figures 2.6 and 2.7. The examples
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Figure 2.7: A relation between the non-type-symmetric Nash domains for
the decision tiling of a �2,2 decision game with weak reciprocity. In this case
A12 < 0 and A21 < 0 which provokes the intersection of the domains creating
multiplicity of equilibrium instead of an empty space.

ilustrate that externalities may create a hole on the decision tiling, i.e. ilus-

trate the cases when there will be a space between Nash domains with no

equilibrium, and why weak reciprocity covers that space.

Corollary 5. Social congestion games with two types and two actions have

a pure Nash equilibrium.

The fact that weak reciprocity does not hold when the number of types or

decisions increases is because the type of ‘cat chases mouse externalities’ can

be constructed on a second level of reasoning. Say there are three individuals

and only negative externalities. The absolute value of externalities may

induce that individual 1 is running away from individual 2, individual 3 is

running away from individual 1, and individual 2 is running from 3. When

there are only two possible actions, this creates a similar effect as if individual
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1 was pursuing individual 3 (similar to following a positive externality). The

same idea can be developped based on 3 decisions and 2 types. This is better

explained in the next example.

Example 2 (The hermitt, the politician and the crowd.). Consider the

following game construction. Suppose there are only negative externalities,

so the game is weakly reciprocal. We will be working on the absolute values

of those externalities. There are three types of players and two locations,

the city and the countryside. The hermitt hates the crowd, and wants to be

alone. The politician wants to build a society, so he hates the hermitt. The

crowd is misinformed, so they hate the politician. The rest of externalities

are negligible. All of them are indiferent between city and countryside. There

is no pure Nash equilibrium, because no two types together can be a mutual

best response. (Note that there are only type-symmetric best-responses, and

even so there is no equilibrium.)

Although the example shows why weak reciprocity does not hold as a

sufficient condition in games with a higher number of types, it is in fact a

necessary condition if the parameters of the game that are left free, include

the values in the social profile. Just observe that in that case example 1 can

always be constructed if weak reciprocity fails. For any number of players.
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2.2.6 Proofs

The proofs are essencially divided into three groups. The first part is based

on the idea of conformity obstruction, or tendency to conform, and uses

a general version of lemma 1. The second part is based on the relation

between best responses and conformity thresholds. The third part relates to

the problem of existence and is based on improvement of best responses.

We start with an auxiliar result. Let us define for any two individuals

i, j 2 I and d 2 A, the following vector,

~"
ij

(d) ⌘ ~↵
ei(d)� ~↵

ej (d).

Lemma 3. Consider a decision game � and a Nash equilibrium s. For every

i, j 2 I, if s
i

6= s
j

then

!vi
si
� !

vj
si + !

vj
sj � !vi

sj
� ↵

eicj
sj + ↵

ejci
si + ~"

ij

(s
j

) ·~l(s
j

)� ~"
ij

(s
i

) ·~l(s
i

).

Proof. Consider a decision game � and let s be a Nash equilibrium of �. We

have that

u
i

(s
i

; s�i

) � u
i

(s
j

; s�i

)

and

u
j

(s
j

; s�j

) � u
j

(s
i

; s�j

).

Now observe that

u
i

(s
j

; s�i

) = u
j

(s
j

; s�j

)� !
vj
sj + !vi

sj
+ ~"

ij

(s
j

) ·~l(s
j

) + ↵
eicj
sj

and similarly

u
j

(s
i

; s�j

) = u
i

(s
i

; s�i

)� !vi
si
+ !

vj
si � ~"

ij

(s
i

) ·~l(s
i

) + ↵
ejci
si .
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which concludes the proof.

Proofs based on confomity obstruction

Lemma 1

Proof. Lemma 3 imples that

!vi
si
� !

vj
si + !

vj
sj � !vi

sj
� ↵

eicj
sj + ↵

ejci
si � 2nIdist(ei, ej)

and for d equal to s
i

or s
j

2|!vi
d

� !
vj

d

| � ↵
eicj
sj + ↵

ejci
si � 2nIdist(ei, ej).

Thus,

dist(~!
vi , ~!vj ) � R

ij

(s)/2� nIdist(ei, ej).

Theorem 1

Proof. Theorem 1 can be restated as follows: let s be a Nash equilibrium

and i, j 2 I be two individuals of the same social type (c
i

, e
i

) = (c
j

, e
j

), such

that s
i

6= s
j

and R
ij

(s) > 0. For all !̂
i

2 W (~!
j

) and !̂
j

2 W (~!
i

) and for

all 0 < " < R
ij

(s)/2, the open balls, in the l1 norm, centered at !̂
i

and !̂
j

,

with radius " and R
ij

(s)/2� " do not intersect,

B
"

(!̂
i

) \B
Rij(s)/2�"

(!̂
j

) = ;.

This follows directly from Lemma 1.

Theorems 3 and 4

Proof. (of Theorem 3) Let (s, c) be a social context and s be a Nash equi-
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librium. Observe that for an individual i 2 P (d, c), if her utility is replaced

by any utility in con(U(d, c)), it follows from the cone structure of the Nash

domain (see Remark 1) that s
i

= d is still a best response. Now note that

if for two distinct decisions d, d0 2 A and crowding type c 2 C, individ-

uals in P (d, c) and P (d0, c) have a tendency to conform in s, then for all

U
i

2 con(U(d, c)) and U
j

2 con(U(d0, c)), the individuals i and j would also

have a tendency to conform. Thus, by Lemma 1, their utilities must differ

at least in decision d and d0.

Theorem 4 follows from Theorem 3.

Proofs based on conformity thresholds

Lemma 2

Proof. The strategy profile s is a Nash equilibrium if, and only if,

u
i

(s
i

, s�i

) � u
i

(d, s�i

)

for every d 2 D and i 2 I. Let t
i

= (c
i

, e
i

, v
i

) = (c, e, v), the utility function

can be rewritten explicitly as

u(i; s) = !v

si
+ ↵ec

si
(lc
si
� 1) +

nCX

c

0 6=c

↵ec

0
si
lc

0
si
(s).

Letting t = t
i

and lt
d

= lt
d

(s), we get

!v

si
� ↵ec

si
+

nCX

c

0=1

↵ec

0
si
lc

0
si
� !v

d

+

nCX

c

0=1

↵ec

0
d

lc
0
d

.

Rearranging the terms, the previous inequality is equivalent to

!v

si
� !v

d

+ ↵ec

si
+

nCX

c

0=1

⇣
↵ec

0
d

lc
0
d

� ↵ec

0
si
lc

0
si

⌘
.
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Hence, s
i

is a best response for i if for every decision d

!v

d

 !v

si
� T(c,e)(si ! d;L).

Theorems 2 and 5

Start with the following construction. Let t be a type profile and s be a t

admissible strategy profile, and denote its strategy class by L ⌘ L(s, c). For

every t 2 T , let S
t

⌘ {s
i

2 A : i 2 I
t

} and let us use the superscript t on

the parameters to mean the corresponding coordinate of t, for example, if

t = (c, e, v), then ↵tt

d

means ↵ec

d

. Since s is t admissible, for each type t 2 T ,

there is at most one decision d 2 S
t

such that ↵tt

d

> 0 (if there were two,

they would violate the admissibility condition on the valuation map). Let

us start by defining, for every type t 2 T ,

d⇤
t

⌘ argmax

d2St

{↵tt

d

}.

Let i⇤ 2 I
t

be an individual such that s
i

⇤
= d⇤

t

, and let

✏
t

(s) ⌘

8
>>>><

>>>>:

0 if ↵tt

d

⇤
t
� 0;

�
↵tt

d

⇤
t

2

if ↵tt

d

⇤
t
< 0.

Let ⌦ ⌘ ⇥
t2T⌦t

, where for a given type t 2 T , ⌦
t

are the open sets of all !
t

with the following properties:

(i) !t

d

⇤
t
2 R;

(ii) if A \ S
t

6= ; then, for every d 2 A \ S
t

,

!t

d

 min

si2St

{!t

si
� T(c,e)(si ! d;L)}; (2.2)
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(iii) if S
t

\ {d⇤
t

} 6= ;, then, for every s
i

2 S
t

\ {d⇤
t

}

!t

d

⇤
t
+ T(c,e)(si ! d⇤

t

;L) + ✏
t

(s)  !t

si
 !t

d

⇤
t
� T(c,e)(d

⇤
t

! s
i

;L)� ✏
t

(s).

(2.3)

Proof. (of Theorem 5) The proof is constructed over one type t = (c, e, v) 2 T

by showing that ; 6= ⌦

t

2 N(t;L), which holds for all t 2 T , and thus

⌦ 2 N (s, c, e). As we will be refering always to the same type and to the

same strategy, let us, for simplicity of notation, omit the subscript and the

strategy class, hence, denote

T (d ! d0) ⌘ T(c,e)(d ! d0;L)

Let’s start by showing that ⌦

t

6= ;. Observe that it is enough to show that

equation (2.3) in the defintion of ⌦

t

refers to a non-degenerated interval,

which translates into

�T (d⇤
t

! s
i

)� T (s
i

! d⇤
t

) � 2✏
t

(s).

Hence, as

�T (d⇤
t

! s
i

)� T (s
i

! d⇤
t

) = �↵tt

si
� ↵tt

d

⇤
t
,

we get

�↵tt

si
� ↵tt

d

⇤
t
� 0 when ↵tt

d

⇤
t
� 0,

and

�↵tt

si
� ↵tt

d

⇤
t
� �↵tt

d

⇤
t

when ↵tt

d

⇤
t
< 0.

Now recall that being t admissible implies that for individuals i and j of

the same type using different strategies R
ij

(s) = ↵tt

si
+ ↵tt

sj
 0. As s is t

admissible, there is for each type t 2 T at most one decision d 2 S
t

such

that ↵tt

d

> 0, and that decision is by definition d⇤
t

, hence, ↵tt

si
 0.
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To see that ⌦ ⇢ N (s, c, e) we will show that the two equations setforth

in the definition of the sets ⌦

t

are sufficient to guarantee that inequalities

(2.1) in lemma 2 are satisfied for every individual and every decision. It

is straightforward to see from equation (2.2) that no individual wants to

change to decisions d /2 S
t

. Let’s now check that equation (2.3) implies that

individuals do not want to change between decisions within S
t

. Individuals

choosing d⇤
t

do not want to change to other decisions in S
t

, since ✏
t

(s) � 0

and

!t

d

⇤
t
� !t

si
+ T (d⇤

t

! s
i

) + ✏
t

(s).

An individual i 6= i⇤ 2 I
t

doesn’t want to change to d⇤
t

, since ✏
t

(s) � 0 and

!t

si
� !t

d

⇤
t
+ T (s

i

! d⇤
t

) + ✏
t

(s).

Finally, to see that an individual i 6= j 2 I
t

does not want to change to any

decision s
j

6= d⇤
t

,

!t

si
� !t

sj
� T (s

i

! d⇤
t

) + T (d⇤
t

! s
j

) + 2✏
t

(s),

but

T (s
i

! d⇤
t

) + T (d⇤
t

! s
j

) = T (s
i

! s
j

) + ↵tt

d

⇤
t
,

hence,

!t

si
� !t

sj
+ T (s

i

! s
j

).

Theorem 2 follows from 5.



54 CHAPTER 2. THE DECISION GAME

Proofs based on type improvement paths (existence of NE)

The following will be used in the proofs:

1) We call t-rearangement to a strategy profile s⇤ obtained from strategy

s by changing all individuals of type t 2 T to their best response, while

maintaining the remaining I \ I
t

players fixed. Note that by corollary 4 this

is always possible.

2) Given a game with PBI and a strategy profile s, add a new player i

of type t
i

, and place her in her best response a to strategy profile s: i) for

all other players only the payoff associated to action a has changed; ii) no

individual of the same type that is also choosing a has an incentive to change

(since they are of the same type, same payoffs).

Theorem 6

Proof. The proof follows by induction. By corollary 4 �1,nA always has a

pure Nash equilibrium. We will now add one more player of a different type.

Recall that there are only positive externalities. Place the new individual

i1, of the second type, in her best response, say it’s action a. After a t1-

rearangement individuals of type t1 can only change their decision towards

decision a. But this increases the payoff of i1, so she is still in her best

response and we’ve reached an equilibrium. Add now a second player. If

she also chooses a, the reasoning goes as before. If she chooses a0, then,

after a t1-rearangement the only question is whether individual i1 wants to

move. If she does, it must be towards action a0 for this is the only payoff

that has increased. So let her change and we’ve reached an equilibrium,

as before. The reasoning continues ad infinitum. Note that this reasoning

did not depend on the type of the players added, nor on the number of

decisions.
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Theorem 7

Proof. The proof follows by induction as before. By corollary 4 �1,nA always

has a pure Nash equilibrium. We will now add a player of type t2. Place the

new individual i, of the second type, in her best response, say it’s action a1.

After a t1-rearangement individuals of type t1 can only change their decision

in two ways: i) out of decision a1 if ↵12
a1

< 0; or ii) towards decision a1 if

↵12
a1

> 0. In both cases the payoff of i increased, since the game is weakly

reciprocal and sgn(↵21
a1
) = sgn(↵21

a2
) = sgn(↵12

a1
). Hence, we’ve reached an

equilibrium. Add now a second player of type t2. Two cases: (i) if she also

chooses a1, after a t1-rearrangement, the reasoning goes as before; (ii) if she

chooses a2, after a t1-rearangement the only question is whether individual

i wants to move to decision a2. If she does, we are in case (i).
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2.3 Mixed Nash equilibria

A mixed strategy is a probability distribution over the space of pure strate-

gies A. The space of mixed strategies is thus the simplex �

nA . We represent

the mixed strategy of an individual i by a vector ~�
i

= (�i

1, . . . ,�
i

nA) where

~�
i

(a) ⌘ �i

a

is the probability that ~�
i

assigns to a 2 A, and
P

a2A �i

a

= 1.

The support of a mixed strategy, supp(~�
i

), is the subset of pure strategies to

which ~�
i

assigns positive probability. A mixed-strategy profile of the game is

an element of � ⌘ (�

nA
)

nI with its coordinates being the mixed strategies

of every individual i 2 I, denoted � = (~�1, . . . ,~�nI ).

The payoff to individual i of the mixed-strategy profile � is the expected

value with respect to � of the pure strategy payoffs, which, with the standard

slight abuse of notation, is denoted u(i;�) ⌘
P
s2S

Q
nI
j=1 �

j

sju(i; s). In a deci-

sion game with the PSS property, the personal part will remain separable,

and only the social component will have terms depending on the remain-

ing strategies. Therefore, the payoffs for the mixed strategy profile can be

written using general social externality functions ei : A⇥ [0, 1](n�1) ! R as

u(i;�) =
X

a2A
�i

a

�
!i

a

+ ei
a

(��i

)

�

Consider a non-degenerate mixed-strategy Nash equilibrium �⇤ 2 �.

Regarding the relation between the payoffs associated to each underlying

pure strategy two general properties are useful:

u(i;�⇤
) = !i

a

+ ei
a

(�⇤
�i

), 8a 2 supp(~�⇤
i

) (2.4)

u(i;�⇤
) � !i

a

+ ei
a

(�⇤
�i

), 8a /2 supp(~�⇤
i

). (2.5)

Remark 2 (Personal and social balance). Consider a non-degenerate mixed-

strategy Nash equilibrium �⇤ 2 �. The following holds for every i 2 I and

a1, a2 2 A,
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(i) if a1, a2 2 supp(~�
i

), �!i

(a1, a2) = �ei(a2, a1;��i

);

(ii) if a1 2 supp(~�
i

) and a2 /2 supp(~�
i

), �!i

(a1, a2) � �ei(a2, a1;��i

).

The remark is useful when looking at individuals with the same type, as

differences in their personal and social balance will be given by differences

in their strategy through the externality function.

2.3.1 Type symmetries under DI and PBI

Proposition 1. In a decision game with PSS, DI and PBI properties, the

expected value of ~�
i

with respect to ��i

is given by

u(i;�) =
X

a2A
�i

a

0

@!i

a

+

X

j 6=i

↵ij

a

�j

a

1

A .

Lemma 4. Let � 2 � be a mixed-strategy Nash equilibrium and i, j 2 I two

individuals of the same social type (c
i

, e
i

) = (c
j

, e
j

) ⌘ (c, e). For any action

a 2 supp(~�
i

) \ supp(~�
j

) we have

u(i;�)� u(j;�) = !i

a

� !j

a

� ↵ec

a

�
�i

a

� �j

a

�

The above lemma relates to that of conformity obstruction. Note that

for two individuals of the same type (i.e. individuals that besides the same

social type, have the same valuation type) we have !i

a

= !j

a

. Therefore, the

diference in their payoffs in a Nash equilibrium is bounded by the externality

they provoke on eachother, if their supports intersect. Consider the following

partition of the set of pure strategies according to the influence individuals

of type t have on eachother,

A�
t

⌘ {a 2 A : ↵tt

a

< 0}; A0
t

⌘ {a 2 A : ↵tt

a

= 0}; A+
t

⌘ {a 2 A : ↵tt

a

> 0}.

The set A�
t

is formed by the subset of pure strategies where individuals of
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type t do not like to be together. The subsets A0
t

and A+
t

are formed, re-

spectively, by those pure strategies where individuals of type t are indifferent

to eachother, and where they like to be together. Let us now partition the

support of a mixed strategy ~�
i

of individual i 2 I according to these subsets.

Define supp(~�
i

)

� ⌘ supp(~�
i

) \ A�
t

, and analogously, define supp(~�
i

)

0 and

supp(~�
i

)

+. Putting together the result of lemma 4 and the above partitions

leads to the following counterintuitive observations.

Remark 3 (Type utility ordering). Let � 2 � be a mixed-strategy Nash

equilibrium and i 2 I
t

. The following comparisons hold for all j 2 I
t

,

(i) if a 2 supp(~�
i

)

+, then �i

a

< �j

a

) u(i;�) > u(j;�);

(ii) if a 2 supp(~�
i

)

�, then �i

a

> �j

a

) u(i;�) > u(j;�);

(iii) if a 2 supp(~�
i

)

0, then u(i;�)  u(j;�);

(iv) if a 2 supp(~�
i

)

0 and supp0(~�
j

) 6= ; then u(i;�) = u(j;�);

(v) if a 2 supp(~�
i

) \ supp(~�
j

) \ A0
t

, then u(i;�) = u(j;�) , �i

a

= �j

a

.

Lemma 5 (Type-asymmetry obstructions). Let � 2 � be a non-degenerated

mixed-strategy profile that is a Nash equilibrium. Consider two individuals

of the same type i, j 2 I
t

such that ~�
i

6= ~�
j

and u(i;�) > u(j;�). The

following holds

(i) supp(~�
i

)

+ ✓ supp(~�
j

)

+;

(ii) supp(~�
i

)

0
= ;;

(iii) supp(~�
i

)

� 6= ;.

Furthermore, if supp(~�
i

) = supp(~�
j

) ⌘ a, then

X

a2a

1

↵tt

a

= 0. (2.6)
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The difference in individual strategies is limited by the choice of supports.

In particular, when for some game the condition given by equation 2.6 never

holds, then individuals choosing the same support will have to play the same

strategy. The next definition and results are based on this idea.

Definition 4 (Mixed Type-Symmetry condition MTS). A support a ✓ A

of a mixed strategy satisfies the mixed type-symmetry condition (MTS) for a

given type t if
X

a

⇤2a

Y

a 6=a

⇤

↵tt

a

6= 0.

Note that the MTS is in fact broken in equation 2.6 of lemma 5. As an

example of why this condition can be useful, think of a game with only two

possible actions, which leads to only three possibilities of distinct supports

(including singletons). Individuals of the same type can either play a pure

strategy or the same non-degenerate mixed strategy.

Remark 4. Consider a decision game with only two possible actions A =

{a1, a2}. If for some type t we have ↵tt

1 +↵tt

2 6= 0, then all individuals of type

t either play a pure strategy or the same strictly mixed strategy.

Let us now go back to the general case and define a notation for the

difference in payoffs for any two decisions chosen by an individual i, without

considering the influence of another individual j1,

�ui(a1, a2;��{j1}) = �!i

(a1, a2) +
X

j 6=i,j1

↵ij

a1
�j

a1
�

X

j 6=i,j1

↵ij

a2
�j

a2
.

Note that for two individuals of the same taste type, i.e. (v
i

, e
i

) = (v
j

, e
j

) =

(v, e), this difference is the same3
�ui(a1, a2;��{j}) = �uj(a1, a2;��{i}).

Using lemma 5 we will prove that for individuals of the same type, that is

when we add the restriction of the same crowding for these individuals, the

MTS condition will in fact force them to play the same, unique, strategy.
3
This can be seen by writing �ui(a1, a2;��{j}) = �!v(a1, a2) +�e(a1, a2;��{i,j}).
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Let us first define for two individuals i, j 2 I
t

, the quantity

ht(a1, a2;��{i,j}) ⌘ �ui(a1, a2;��{j}).

Theorem 8 (Type-symmetry). In a Nash equilibrium, if two individuals of

the same type i, j 2 I
t

choose the same support a ⇢ A, and the support sat-

isfies the MTS condition for type t, then ~�
i

= ~�
j

. Furthermore, the support

a uniquely determines their (equilibrium) strategy in terms of the strategies

of the other individuals ��{i,j}. In the case of non-singleton supports it is

given by

�
a

⇤
=

1 +

P
a

ht(a, a⇤;��{i,j})/↵
tt

a

1 +

P
a 6=a

⇤ ↵tt

a

⇤/↵tt

a

for all a⇤ 2 a.

Note that the strategy characterized above is an intersection of best re-

sponses, not exactly the unique best response for the individuals. That’s why

in the theorem we mention it as an equilibrium strategy and not the best re-

sponse to ��{i,j}. Observe also, that by the MTS condition, the denominator

is not zero and the strategy is well defined. Naturally it must satisfy being

a probability. Another interesting remark is that the theorem does not hold

for individuals of the same taste type but with different crowding types.

Similarly to what we’ve done in the case of pure strategies, let us de-

fine the mixed type-aggregate decision matrix M(�) with coordinates, M t

a

⌘

M t

a

(�) ⌘
P

j2It �
j

a

,

M(�) ⌘

0

BBB@

M1
1 . . . MnT

1
... . . . ...

M1
nA . . . MnT

nA

1

CCCA
.

Let us denote the number of individuals of type t using a mixed strategy by

m
t

(�) ⌘ {i 2 I
t

: 0 < �i

a

< 1, a 2 A}.
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The mixed conformity threshold excluding type t is defined as

T
t

(a1, a2;M�t

) ⌘
X

t

0 6=t

↵tt

0
a2
M t

0
a2

�
X

t

0 6=t

↵tt

0
a1
M t

0
a1

+ ↵tt

a2
(m

t

� 1).

Recall that

T
t

(a1, a2;L) =
X

t

0

↵tt

0
a2
lt

0
a2

�
X

t

0

↵tt

0
a1
lt

0
a1
.

Using Remark 4 we have the following corollary for �

nT ,2 games.

Corollary 6 (Dichotomous games). Consider the class �

nT ,2 of decision

games with only two possible actions A = {a1, a2}. If for some type t we

have ↵tt

1 + ↵tt

2 6= 0, then in a Nash equilibrium, the strategy of type t must

be composed by a subset of individuals in pure strategies and a subset of

individuals playing with the following mixed strategy,

�
a1 =

T
t

(a1, a2;L) + T
t

(a1, a2;M�t

)��!
t

(a1, a2)

(↵tt

a2
+ ↵tt

a1
)(m

t

� 1)

and �
a2 = 1� �

a1 .

Note that the subsets mentioned in the above corollary might be empty.

In particular, by theorem 4, if ↵tt

1 + ↵tt

2 > 0 then m
t

2 {0, n
t

}, that is, all

strategies are type-symmetric in equilibrium. The next corollary is just a

simplification of the above, but will be useful later. Let us denote for the

class of homogeneous dichotomous case �1,2 (only one type of individuals

and two actions) the decision threshold

T (l1) ⌘ �(↵1 + ↵2)l1 + ↵2(n� 1).

Corollary 7 (Homogeneous dichotomous games). Consider the class �1,2

of decision games with only one type of individuals and two possible actions

A = {a1, a2}. If ↵1 + ↵2 6= 0, then in a Nash equilibrium, there is a subset

of individuals in pure strategies and a subset of individuals playing with the
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following mixed strategy,

�
a1 =

T (l1)��!(a1, a2)

(↵2 + ↵1)(m� 1)

with �
a2 = 1� �

a1 .

As in the non-homogeneous case, by theorem 4, if ↵1 + ↵2 > 0 then

m 2 {0, n}, where n is the number of individuals.

In the general case, if individuals use different probabilities, then the

intersection of their support must be contained in some ‘null externality

set’. This is concretized in the next remark.

Remark 5. Let A⇤ ✓ supp(~�
i

) \ supp(~�
j

) be the maximal subset for which

the MTS condition holds. If ui = uj, then for all a 2 A⇤ players must use

the same probability, that is �i

a

= �j

a

.

2.3.2 Proofs

Proposition 1

Just observe that because of the DI property the payoff of each pure strat-

egy where i and j interact is the same whatever are the strategies of other

individuals. By linearity of the expected value, the product can be separated

into a sum of all the strategies, which equate to 1 since they are a probability

distribution.

Lemma 4

Proof. Observe that in a Nash equilibrium � for all actions a, a0 2 supp(~�
i

),

the payoffs equate u(i; a,��i

) = u(i; a0,��i

) (see Equation 2.4). Now, for

two individuals i, j 2 I of the same social type (c
i

, e
i

) = (c
j

, e
j

) ⌘ (c, e), this
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means that, for i,

!i

a

+

X

j

0 6=i,j

↵ej

0
a

�j

0
a

+ ↵ec

a

�j

a

= !i

a

0 +
X

j

0 6=i,j

↵ej

0

a

0 �
j

0

a

0 + ↵ec

a

0�
j

a

0

and for j

!j

a

+

X

j

0 6=i,j

↵ej

0
a

�j

0
a

+ ↵ec

a

�i

a

= !j

a

0 +
X

j

0 6=i,j

↵ej

0

a

0 �
j

0

a

0 + ↵ec

a

0�i

a

0

Lemma 5

Let us start by fixing a notation for the value of a given pure strategy a for

individuals of type t not taking into account individuals i and j,

V t

a

(��{i,j}) ⌘ !t

a

+

X

j

0 6=i,j

↵tj

0
a

�j

0
a

.

Now observe that if � is a Nash equilibrium, for all a 2 supp(~�
i

) the utility

of individual i of type t is u(i;�) = V t

a

(��{i,j}) + ↵tt

a

�j

a

.

Proof. Consider a Nash equilibrium � where ~�
i

6= ~�
j

and u(i;�) > u(j;�).

Proof of (i). Suppose there is a 2 A such that a 2 supp(~�
i

)

+ and

a /2 supp(~�
j

)

+. Let’s observe that player j would have an incentive to

change to the pure strategy a, which concludes the proof. As � is a Nash

equilibrium and a /2 supp(~�
j

)

+ we have u(i;�) = V t

a

(��{i,j}) + ↵tt

a

0. Since

individuals i and j are of the same type, if j changes to a, then u
j

(a,��j

) =

V t

a

(��{i,j}) + ↵tt

a

�i

a

and ↵tt

a

> 0. Hence, u
j

(a,��j

) > u(i;�) > u(j;�).

Proof of (ii). Suppose a 2 supp(~�
i

)

0. Then, by the same reasoning

u
j

(a,��j

) = u(i;�) > u(j;�).

Proof of (iii). Suppose supp(~�
i

)

�
= ;. From (i) and (ii) we have

supp(~�
i

) ✓ supp(~�
j

). Furtermore supp(~�
i

) = supp(~�
i

)

+. By Remark 3,
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�i

a

< �j

a

for all a 2 supp(~�
i

). This is impossible since
P

i

�i

a

=

P
j

�j

a

= 1.

Let us now prove the last part of the theorem. First, note that as each

individual earns the same in every pure strategy contained in the support

of its mixed strategy, the following must hold for every pair of decisions

a, a0 2 supp(~�
i

),

↵tt

a

0�
j

a

0 � ↵tt

a

�j

a

= V t

a

(��{i,j})� V t

a

0(��{i,j}).

Furthermore, this must hold both for i and j, since V does not depend on

either. Suppose now that supp(~�
i

) = supp(~�
j

). This originates a unique

system of equations for the strategy of both individuals. If the strategies of

two individuals of the same type are differente, i.e. ~�
i

6= ~�
j

, this implies that

the system associated to the above equations, together with the constraint
P

i

�i

a

= 1, does not have a unique solution. Let us label the elements

of the support supp(~�
i

) = {1, . . . , n
�

}. Let us use the variable reduction

�
n� = 1 �

P
a

�
a

. The system can be reduced, and its coeficients can be

represented by the following (n
�

� 1)⇥ (n
�

� 1) square matrix

B ⌘

0

BBBBBBBBBBBBB@

↵tt

1 �↵tt

2 0 · · · · · · 0

↵tt

1 0 �↵tt

3 0 · · · 0

...

... . . .
0

↵tt

1 0 · · · · · · 0 �↵tt

n��1

↵tt

1 + ↵tt

n�
↵tt

n�
· · · · · · · · · ↵tt

n�

1

CCCCCCCCCCCCCA

The first term of the determinant of the above matrix, calculated in terms

of the last row, is

(�1)

n��1+1
(↵tt

1 + ↵tt

n�
)(�1)

n��2
Y

a 6={n� ,1}

↵tt

a

,
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and the remaining terms are (changing column 1 to ‘place’ a⇤ � 1)

X

a

⇤2{2,...,n��1}

(�1)

n��1+a

⇤
↵tt

n�
(�1)

1+a

⇤�1↵tt

1 (�1)

n��3
Y

a 6={n� ,a
⇤
,1}

↵tt

a

.

Rearranging the last expression, (noting all exponents of the �1 terms even

out) we get
X

a

⇤2{2,...,n��1}

Y

a 6=a

⇤

↵tt

a

,

hence,

det(B) = (↵tt

1 + ↵tt

n�
)

Y

a 6={n� ,1}

↵tt

a

+

X

a

⇤2{2,...,n��1}

Y

a 6=a

⇤

↵tt

a

,

therefore

det(B) =

Y

a 6=n�

↵tt

a

+

Y

a 6=1

↵tt

a

+

X

a

⇤2{2,...,n��1}

Y

a 6=a

⇤

↵tt

a

,

and finally

det(B) =

X

a

⇤2supp(~�i)

Y

a 6=a

⇤

↵tt

a

.

To conclude observe that for two players of the same type to play differ-

ent strategies with the same support we wanted det(B) = 0. Noting that

supp(~�
i

)

0
= ;

det(B) = 0 )
X

a2supp(~�i)

1

↵tt

a

= 0.
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Theorem 8

Let us start by the following auxiliar result

Claim 1. Let A be a matrix with zero in all entries except in the diagonal

and columns j1 and j2. We have that

det(A) = (a
j1j1aj2j2 � a

j2j1aj1j2)
Y

i 6={j1,j2}

a
ii

Proof. Start by observing that a diagonal matrix with one non zero column

has as its determinant the product of the diagonal entries. Now, for the case

with two columns non-zero j1 and j2, we will observe that the only minors

with non-zero determinant are of the form mentioned before. Let’s say we

develop the determinant by column j1. There are only two minors that do

not have a column with zeros, and thus non-zero determinant. These are the

ones with coefficient a
j1j1 and a

j2j1 . The first minor is in the aforementioned

case. The second minor, with a change of the (old) column j2 to the place of

the (old) column j1 (which was eliminated), becames also the aforementioned

case.

Proof. (of Theorem 8) The proof follows from the proof of Lemma 5 by

finding the solution of the system

↵tt

a

0�
j

a

0 � ↵tt

a

�j

a

= V t

a

(��{i,j})� V t

a

0(��{i,j})

using Cramer rule.4 Note that it is sufficient to write the system in terms of

4
This is probably not the simplest nor the more elegant approach.
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decision 1. Let

Ba

⇤ ⌘

0

BBBBBBBBBBBBBBBBBBBBBB@

↵tt

1 �↵tt

2 0 · · · 0 V t

2 � V t

1 0 · · · 0

↵tt

1 0 �↵tt

3 0 V t

3 � V t

1 · · · 0

↵tt

1 0

. . .
0

...
... · · · 0

... �↵tt

a

⇤�1

... · · · 0

... 0

... 0 · · · 0

... 0 · · ·
... �↵tt

a

⇤+1 · · · 0

... 0 · · ·
...

... 0

. . .
0

↵tt

1 0 · · · · · · 0

... 0 0 �↵tt

n��1

↵tt

1 + ↵tt

n�
↵tt

n�
· · · · · · ↵tt

n�
V t

n�
� V t

1 + ↵tt

n�
↵tt

n�
· · · ↵tt

n�

1

CCCCCCCCCCCCCCCCCCCCCCA

For a subset A⇤ ⇢ A let us define P (A⇤
) ⌘

Q
a2A\A⇤ ↵tt

a

. We will omitt

the superscripts relative to type t since the proof is done over type t only.

Developping the determinant by the last row, there are two terms not in

↵
n� . These are (as before changing column 1 to the pl‘place’ a⇤ � 1 in the

corresponding non-diagonal minor)

(�1)

n�1+1
(↵1 + ↵

n�)(Va

⇤ � V1)P (a⇤, 1, n
�

)(�1)

n�3

+(�1)

n�1+a

⇤
(V

n� � V1 + ↵
n�)(�1)

a

⇤�2P (a⇤, n
�

)(�1)

n�3.

This leads to

�(↵1 + ↵
n�)(Va

⇤ � V1)P (a⇤, 1, n
�

) + (V
n� � V1 + ↵

n�)P (a⇤, n
�

),

and finally

P (a⇤)� (V
a

⇤ � V1)P (a⇤, n
�

)� (V
a

⇤ � V1)P (a⇤, 1) + (V
n� � V1)P (a⇤, n

�

).



68 CHAPTER 2. THE DECISION GAME

Now the other terms are (adjusting the matrix columns and using Claim 1)

X

a 6=1,a⇤,n�

(�1)

n�1+a↵
n�(�1)

a�2
(↵1(Va

⇤ � V1)� ↵1(Va

� V1))P (1, a, n
�

, a⇤)(�1)

n�4

so we get
X

a 6=1,a⇤,n�

((V
a

� V1)� (V
a

⇤ � V1))P (a, a⇤)

rearanging

X

a 6=1,a⇤,n�

(V
a

� V1)P (a, a⇤)� (V
a

⇤ � V1)
X

a 6=1,a⇤,n�

P (a, a⇤).

Putting all terms together

det(Ba

⇤
) = P (a⇤) +

X

a 6=a

⇤

(V
a

� V1)P (a, a⇤)� (V
a

⇤ � V1)
X

a 6=a

⇤

P (a, a⇤)

and finally

det(Ba

⇤
) = P (a⇤) +

X

a

(V
a

� V
a

⇤
)P (a, a⇤).

The solution, by Cramer rule, is

det(Ba

⇤
)

det(B)

=

P (a⇤) +
P

a

(V
a

� V
a

⇤
)P (a, a⇤)P

a

Q
a

0 6=a

↵tt

a

0

when there are no zeros,

det(Ba

⇤
)

det(B)

=

1 +

P
a

(V
a

� V
a

⇤
)(↵tt

a

)

�1

↵tt

a

⇤
P

a

(↵tt

a

)

�1

Note that V
a

� V
a

⇤
= �!

t

(a, a⇤) + �e
t

(a, a⇤;��{i,j}). Thus V
a

� V
a

⇤
=

ht(a, a⇤;��{i,j}).
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Computations for corollaries of Theorem 8

Theorem 8 yields

�
a1 =

1 + ht(a2, a1;��{i,j})/↵
tt

a2

1 + ↵tt

a1
/↵tt

a2

With two types, ht(a2, a1;��{i,j}) is given by

��!
t

(a1, a2)�
X

j 6=i,j

↵ij

a1
�j

a1
+

X

j 6=i,j

↵ij

a2
�j

a2

which by type

��!
t

(a1, a2)�
X

t

0 6=t

↵tt

0
a1
(lt

0
a1

+M t

0
a1
) +

X

t

0 6=t

↵tt

0
a2
(lt

0
a2

+M t

0
a2
)

+↵tt

a2
lt
a2

+ ↵tt

a2
(m

t

� 2)(1� �
a1)� ↵tt

a1
lt
a1

� ↵tt

a1
(m

t

� 2)�
a1

therefore

��!
t

(a1, a2)�
X

t

0 6=t

↵tt

0
a1
(lt

0
a1

+M t

0
a1
) +

X

t

0 6=t

↵tt

0
j

a2
(lt

0
a2

+M t

0
a2
)

+↵tt

a2
lt
a2

� ↵tt

a1
lt
a1

+ ↵tt

a2
(m

t

� 2)� (↵tt

a2
+ ↵tt

a1
)(m

t

� 2)�
a1

so we get

�
a1 =

��!
t

(a1, a2) +
P
t

0
↵tt

0
a2
lt

0
a2

�
P
t

0
↵tt

0
a1
lt

0
a1

+

P
t

0 6=t

↵tt

0
a2
M t

0
a2

�
P
t

0 6=t

↵tt

0
a1
M t

0
a1

+ ↵tt

a2
(m

t

� 1)

(↵tt

a2
+ ↵tt

a1
)(m

t

� 1)

which can be written using the thresholds

�
a1 =

T (a1, a2;L) + T�t

(a1, a2;M)��!
t

(a1, a2)

(↵tt

a2
+ ↵tt

a1
)(m

t

� 1)

.
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Chapter 3

Socially prone duopolies

The main idea in this chapter is that small price changes are captured by con-

sumers using non-degenerate mixed strategies (called non-loyal consumers).

If pure strategy consumers (loyal consumers) are held constant, a change

in price implicitly determines a unique continuous deviation for non-loyal

consumers and this works as a coordination device for firms. Furthermore,

as it is continuous it stabilizes firms in pure price equilibria. We define an

influence network among consumers based on partial derivatives, and an in-

dex relating to its structural properties, which determines prices and personal

preferences based on the existence of these solutions. When interactions are

dyadic, the index is locally constant, demand depends linearly on prices and

personal valuations determine the equilibrium demand and prices.

3.1 The duopoly setup

We consider the duopoly as being a two stage game. In the first stage,

the firms subgame, two firms independently and simultaneously set a price

for the service they provide: p1 for the service provided by firm 1, p2 for

the service provided by firm 2, defining the price profile p ⌘ (p1, p2). We

assume firms have no costs in providing the service (neither variable nor fixed

71
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costs).1 In the second stage, the consumers subgame, a finite set of consumers

(individuals) I ⌘ {1, . . . , n} observe the prices set in the first stage and each

consumer i 2 I independently decides the probability �i

1 and �i

2 of using

each one of the two services S ⌘ {s1, s2}, provided, respectively, by each

one of the two firms. The choice is mandatory i.e. �i

1 + �i

2 = 1 (there is no

reservation price set exogeneously), which means that given a pair of prices

from the first stage, the choice of a consumer is a probability distribution over

the set of services S provided by firms, i.e. over the space of pure strategies.

Consumers are thus assumed to use standard mixed strategies in the space

S ⌘ Sn. For simplicity of notation we will identify the distribution by a single

parameter (�i, 1 � �i

) ⌘ (�i

1,�
i

2) and as such the space of mixed strategies

can be identified with [0, 1]n. The consumers choice is summarized in the

profile of consumer (mixed) strategies denoted by � ⌘ (�1, . . . ,�n

) 2 [0, 1]n.

An outcome of the game is a pair (p,�) 2 (R+
0 )

2⇥ [0, 1]n formed by a pair of

prices p and a consumers choice �. The characterization of outcomes that

can arise in a market equilibrium will be done according to the notion of

subgame perfect equilibrium, hence by characterizing the Nash equilibria of

both stages.

3.1.1 Firms

The demand for each firm stems from the profiles of consumer choices that

maximize their utility, and it is therefore contained in the set of Nash equi-

librium of the consumers subgame. The equilibrium choices EC(p) of the

consumers subgame is the set of consumers choices � that are a Nash equi-

librium of the consumers subgame for a given pair of prices p from the

first stage. We say that an outcome (p,�) is credible if � 2 EC(p). In

characterizing demand it is useful to use the partition of the set of individ-

uals for a given consumers choice � according to whether they use a pure
1
Introducing a fixed cost structure does not change the results as it leads to an iso-

morphic set of equilibria through a change of parameters.
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strategy or a nondegenerate mixed strategy. Let us call loyal consumers to

those consumers who choose firm 1 or 2 with probability one, and non-loyal

consumers to those using a nondegenerate mixed strategy. The partition is

given by L1(�) [ L2(�) [ M(�), where L1(�) ⌘ {i 2 I : �i

1 = 1} and

L2(�) ⌘ {i 2 I : �i

2 = 1} are the sets of consumers respectively loyal to each

firm and M(�) ⌘ {i 2 I : 0 < �i

1 < 1} is the subset of non-loyal consumers

(those that play with non-integer probabilities). The cardinalities are respec-

tively denoted by l1(�) ⌘ #L1(�), l2(�) ⌘ #L2(�), and m(�) ⌘ #M(�).

Note that l1(�) + l2(�) +m(�) = n. We call (l1, l2) the loyalty characteri-

zation of the outcome (p,�), omitting the dependence when it is clear what

outcome we are refereing to. The demand for each firm is, respectively, given

by

D1(�) ⌘ l1(�) +
X

i2M(�)

�i, D2(�) ⌘ l2(�) +
X

i2M(�)

(1� �i

).

Note that, as the choice is mandatory it always leads to full market coverage

D1(�)+D2(�) = n. The profit function ⇧ : (R+
0 )

2⇥ [0, 1]n ! R2 determines

the profit of each firm, respectively, given by

⇧1(p1,�) = p1D1(�), ⇧2(p2,�) = p2D2(�).

Local deviation beliefs. For the characterization of price equilibria it is

necessary to understand the dependence of consumer behavior on prices. In

particular, to figure out if a given price is a best response, each firm needs

to know how consumers would react to a price change. In this regard, we

consider that firms have local deviation beliefs: given an outcome (p⇤,�⇤
)

and a neighbourhood P1(p
⇤
1) ⇥ P2(p

⇤
2) ⇢ (R+

0 )
2 of the outcome prices p⇤

=

(p⇤1, p
⇤
2), local deviation beliefs are maps �1 : P1 ! EC(P1, p

⇤
2) and �2 :

P2 ! EC(p⇤1, P2) that represent how firms believe consumers will respond

to small price deviations. That is, firm 1 believes that a deviation from

charging price p⇤1 to charging price p 2 P1 will lead consumers to respond
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with a change from the given consumer choice �⇤ to a consumer choice

�1(p) 2 EC(p, p⇤2), producing demand D1(�1(p)). Analogously for �2, the

deviation belief of firm 2. By definition �1(p
⇤
1) = �2(p

⇤
2) = �⇤.2 As deviation

beliefs are a way for firms to evaluate if a deviation is profitable, and we will

define market equilibrium through the notion of subgame perfect equilibrium,

it is natural that we have restricted beliefs to credible outcomes. We say

that a local deviation belief � preserves loyalty if we have L1(�) = L1(�⇤
)

and L2(�) = L2(�⇤
); and we say that firms have a common local belief if

�1(p
⇤
1 + ") = �2(p

⇤
2 � "). The profit expected from a small price deviation,

taking into account local deviation beliefs, is ⇧

⇤
1(p1,�1) = p1D1(�1(p1)) for

firm 1, and ⇧

⇤
2(p2,�2) = p2D2(�2(p2)) for firm 2.

3.1.2 Consumers

Given an outcome (p,�) the payoff of a consumer is built on the utility

derived from the use of each service which depends on three components:

(i) the price of each service; (ii) the personal benefit derived from the use of

each service; and (iii) the externality arising from the social influence exerted

at each service by the choice of the other consumers. We assume that the

utility has the PSS property and that the personal and social components

are commensurable with money. Therefore, we can characterize the payoff

a consumer i derives from the use of a service s through: (i) the personal

component !(i; s) = �p
s

+ bi
s

, which is additively separable in price and

personal benefit bi : S ! R; and (ii) the social component measured by a

social externality function ei : S⇥ [0, 1](n�1) ! R. With this, the use of each

service respectively induces the following payoffs

ui1(p1;��i

) = �p1 + bi1 + ei1 (��i

) , ui2(p2;��i

) = �p2 + bi2 + ei2 (��i

) .

2
This is not entirely a new concept, just a reinterpretation of mixed strategy in the

context of multistage games (see for example [34] p103). In our case we only want the

local part of deviation beliefs.
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The utility function u : I ⇥ (R+
0 )

2 ⇥ [0, 1]n ! R is given by

ui(p,�) = �i

1u
i

1(p1;��i

) + �i

2u
i

2(p2;��i

).

Product differentiation and types. The form of duopoly in considera-

tion and consequent results are naturally heavily dependent on the choice of

the consumers utility function, since the relation between the personal and

social parameters, and prices, will determine the Nash equilibria of the con-

sumers subgame, and ultimately market equilibria. Nevertheless, whether

a consumers choice is a Nash equilibrium or not is invariant to changes of

parameters that do not affect the utility differentials �ui = ui1 � ui2. Con-

sequently, the characterization of equilibria can be done up to isomorphism

through the differentials induced by �u, namely, the price differential

�p ⌘ p1 � p2, (price difference).

and the differentials of personal benefit and social externalities, which char-

acterize product differentiation and are given by

�bi ⌘ bi1 � bi2 (standard product differentiation);

�ei(��i

) ⌘ ei1(��i

)� ei2(��i

) (social product differentiation).

Observe that while standard product differentiation is ‘intrinsic’ to a con-

sumer, social product differentiation has a contextual nature, in the sense of

representing how consumers differentiate the product taking into account its

momentaneous consumption profile.

Recall the type profile characterization of individuals in the beggining

of chapter 1. A consumers type is defined by three characteristics: (i) her

crowding type ci; (ii) her social externality function ei; and (iii) her personal

benefit function bi. This is given by a type3 map t : I ! C ⇥ E ⇥ B and

defines the type profile of consumers given by the triplet t = (c, e,b) in the
3
The type of an individual is something known a priori, not a bayesian type.
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space T = (C ⇥ E ⇥ B)

n, where c ⌘ (c1, . . . , cn) is the crowding profile of

individuals; e ⌘ (e1, . . . , en) is the externality profile; and b ⌘ (b1, . . . , bn) is

the valuation profile. Note that the pair (ei, bi) is what is usually called an

individual’s taste type, and the pair (e,b) determines the consumers product

differentiation profile.

Local influence network. An advantage of separating the taste into

two components is that the pairs (ci, ei) are responsible for the ‘social’ part

of the model, and we refer to this pair as the social type of individuals. The

personal benefit each consumer, or type, derives from her choice may be an-

alyzed separately from social interactions. The profile pair (c, e) captures

the social interactions in the model and is called the social profile. Based

on the social profile we can build a local network of influences that reveals

how small changes in the consumers strategy change social differentiation,

and thus payoffs. Note however that for loyal consumers this may not result

in a strategy change. When the best-reply contains a pure strategy and the

Nash equilibrium condition is strict, a change needs to be sufficiently high to

result in a change of their best response. When the best-reply is constant in

the neighborhood of the outcome (p,�) , i.e. br

i

(p,��i

+ ") = br

i

(p,��i

)

for some " > 0, we say that loyal consumers have lower sensitivity. The cru-

cial aspect to capture local changes in demand is the non-loyal consumers

strategy. Let us define the network: the nodes are non-loyal consumers and

the edges represent the influence two consumers have on eachother, which is

captured by the partial derivatives (@�ei/@�j

)(�) (which are well defined for

interior points of non-loyal consumer strategies). The network is thus defined

by the non-loyal Jacobian matrix J�e

(�;M) ⌘
⇥
(@�ei/@�j

)(�), i, j 2 M
⇤
.

Note that the network is directed, weighted and state-dependent. Hence,

consumers may have diferent influence on eachother, and that influence need

not be symmetric nor have the same value throughout the network. Further-

more, it is state-dependent in the sense that the weight will depend on the
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consumers choice.

3.1.3 Social propensity and communities

For a matrix M let M (i) denote the matrix obtained by replacing column i

with 1 (from Cramer’s rule).

Definition 5 (Social propensity index). The social propensity index  of a

consumers choice � with det [J�e

(�;M)] 6= 0, is defined as

(�) ⌘

P
i

det

h
J
(i)
�e

(�;M)

i

det [J�e

(�;M)]

.

The local influence network and the associated index of social propensity

can be compactely represented and studied using invariances in the type

profile.

Definition 6 (Community). Given a strategy profile �, a community is a

subset of individuals Q ✓ I of a same social type (c, e) that choose the same

strategy q 2 [0, 1]. That is, Q ⌘ {i 2 I : (ci, ei) = (c, e) ^ �i

= q}.

A strategy profile induces a partition of the set of individuals into commu-

nities Q(�, c, e) ⌘ {Q1, . . . , QnQ}. In particular there are loyal and non-loyal

communities. The advantage of communities is that strategy profiles that

induce the same community partitions produce the same social externalities.

Individuals within communities are not socially distinguishable so they in-

still the same externality to others, and they incur the same externality from

others.4 Thus, this induces an equivalence relation on the space of strategy

profiles and the network needs only to be built on top of communities.

Given a comunity partition Q(�, c, e), let m ⌘ (m1, . . . ,mnQ) denote

the number of individuals in each community and let q ⌘ (q1, . . . , qnQ) be

the respective probabilities associated to each community. The communities
4
The idea for the designation communities comes from the definition of societies in

[52].
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externality profile is given by f : Q⇥({0, . . . , n}⇥[0, 1])nQ ! R, and for every

individual i 2 Q, �ei(��i

) = f
Q

(m,q) which characterizes social product

differentiation and the influence provoked by other communities. Note that

this is just a reduction of the space needed to characterize social interactions,

and not an imposition of any form. Consider a strategy profile � and let

Q
i

and Q
j

be two communities. The influence between the communities is

A
ij

(m,q) ⌘ (@f
Qi/@qj)(m,q). Note that for i 2 Q

i

and j 2 Q
j

we have

A
ij

(m,q) = (@�ei/@�j

)(�). Let us define the community influence matrix

A(m,q) ⌘

0

BBBBBBB@

A11(m,q)m1�1
m1

A12(m,q) · · · A1nQ(m,q)

A21(m,q) A22(m,q)m2�1
m2

· · · A2nQ(m,q)
... . . . ...

A2nQ(m,q) · · · · · · A
nQnQ(m,q)

mnQ�1

mnQ

1

CCCCCCCA

.

In figure 3.1 is a depiction of the relation between two communities in a

community influence network.

Proposition 2 (Community social propensity index). Let det [A(m,q)] 6= 0.

The social propensity index  of a consumers choice � is determined by

communities

(�) = (m,q) ⌘
P

i

det

⇥
A(i)

(m,q)
⇤

det [A(m,q)]
.

The proof is left for the end of the next section. Social propensity is

a measure of how changes are captured by the social component of a mar-

ket. The interpretation is that it reveals how consumers may change their

strategy in response to local changes in the overall consumer profile. When

 > 0 changes in demand are amplified by social differentiation (similar to a

conformity, herd or bandwagon effect). When  < 0 changes in demand are

mitigated by social differentiation (similar to a congestion, snob or Veblen

effect). Hence, the response of demand to prices is amplified or mitigated

by social differentiation, acording to the social propensity of non-loyal con-
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Figure 3.1: Depiction of the influence relation between Two communities Q1

and Q2.

sumers. We are interested in duopolies with some social propensity.

Socially prone duopolies. We say that a duopoly is socially prone if there

is a non-empty set of consumer choices Sp ⇢ [0, 1]n with the following prop-

erties: for every � 2 Sp

(i) Loyal communities have lower sensitivity;

(ii) Non-loyal communities are socially prone: (m,q) 6= 0.

Socially prone outcomes are non-monopolistic. Property (i) means that

in a neighborhood of the outcome the best-reply of a loyal individual is

constant, i.e. for i 2 L(�), br
i

(p + ",��i

+ �) = br

i

(p,��i

). Furthermore,

by the results of the first chapter, there is an open set of personal preferences

b such that (i) holds. The set of consumer choices such that (ii) holds is

dense in [0, 1]n. So Sp is a well behaved set, and in general Sp 6= ;.
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There are some natural restricions that non-zero social propensity im-

poses on the network of non-loyal consumers. Namely, the strong components

of the network cannot be singletons, i.e. there are no sinks or sources. The

idea that loyal consumers may have lower sensibility and not contribute to

social propensity is rather natural, and intuitive to the very notion of brand

loyalty. Note however that loyalty differs from installed base, since being

loyal is a strategical behavior (those who opt for pure strategies) and not an

exogeneously imposed choice, or a choice deriving from some switch cost or

other stabilizing variable. In figure 3.2 is an example of a small local influence

network with two strong components and negative social propensity. A red

(green) conection represents a negative (positive) influence weight. Thick-

ness indicates relative strength of influence weights. The color of vertices

indicates the consumer strategy in a grey scale, where black means �i

= 1,

and white means �i

= 0.
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Figure 3.2: A small influence network with two strong components, posi-
tive and negative influences, and negative social propensity. A red (green)
conection represents a negative (positive) influence weight. Thickness indi-
cates relative strength of influence weights. The color of vertices indicates
the consumer strategy in a grey scale, where black means �i

= 1, and white
means �i

= 0.
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3.2 Local Market Equilibria

An outcome (p⇤,�⇤
) with associated local deviation beliefs �1,�2 forms a

local market equilibrium if it is a subgame-perfect equilibrium for an open

set containg p⇤, that is, if �⇤ 2 EC(p⇤
) and p⇤ is a local Nash equilibrium

for the firms subgame taking into account their deviation beliefs. More

formally, the prices p⇤ are a local pure price equilibrium for firms if there is a

neighbourhood P1⇥P2 of prices, in which, for j = 1, 2, and for all p
j

2 P
j

(p⇤
j

),

we have ⇧
j

(p
j

,�
j

)  ⇧

j

(p⇤
j

,�⇤
). Although we are using standard definitions,

let us define local market equilibrium formally to emphasize the notion that

it is local in prices and subgame-perfect.

Definition 7 (Local market equilibrium). An outcome (p,�) with local devi-

ation beliefs �1,�2 is a local market equilibrium if (i) � is a Nash equilibrium

of the consumers subgame, i.e. � 2 EC(p); and (ii) p is a local pure price

equilibrium for the firms subgame.

Recall that both demand and beliefs must come from strategies contained

in the Nash equilibria of the consumers subgame, hence as price is the unique

strategic variable for firms, the characterization of local market equilibrium

is essentially dependent on the local structure of EC(p). Namely, through

the characterization of admissable local deviation beliefs, which rely on the

existence or non-existence of multiple equilibria, the relation between loyal

and non-loyal consumers and the price regions where they hold.

Main result

Suppose there is no product differentiation, meaning that �bi = 0 and

�ei = 0 for all i 2 I. The game becomes essencially the original Bertrand

framework. The paradox arises since EC(p) is a singleton except when

�p = 0, which induces the following unique demand beliefs: D1(�
⇤
1) = n
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if �p < 0; D1(�
⇤
1) = 0 if �p > 0. 5 This means the only credible non-

monopolistic outcomes have associated discontinuous beliefs, which leads to

the paradox. Since I is finite, introducing standard product differentiation

�bi 6= 0 for some subset of consumers I ✓ I, but no social differentiation

�ei = 0, for all i 2 I, may lead to a shift to a monopoly equilibrium, but the

behavior of consumers is identical. The set EC(p) still a singleton except for

a finite set of prices where �p = �bi for at least some consumer i 2 I. For

all other prices, consumers best response is unique and consumers will use

pure strategies, which will again lead to beliefs that are either discontinuous

or constant in a neighbourhood of the outcomes candidate for equilibria,

thus creating an incentive for firms to deviate. The introduction of a social

component will give rise to conected price regions where, not only are there

multiple Nash equilibria for the consumers subgame, but these include non-

degenerate mixed strategy equilibria with larger domains. This means there

are price regions where the loyalty characterization is constant and small

price changes may be captured by non-loyal consumers, leading to smooth

changes in demand. Nevertheless, although EC(p) is no longer a singleton

almost everywhere, if beliefs are contained in the pure strategy choices of

consumers, a market equilibrium where both firms have positive profits will

still fail to exist.

Lemma 6. If firms beliefs are that consumers use only pure strategies, or

use pure strategies for almost every price, i.e. M(�) = ; a.s., then in a

market equilibrium at least one firm has zero profit.

Naturally, an equilibrium may not exist, but for any outcome, a deviation,

if admissable, is profitable for firms. When we allow consumers to use mixed

strategies, the effect of a price deviation may be captured by smooth changes

in the non-loyal consumers probability through the externality function. The
5
There are multiple equilibria only when �p = 0, and in fact as any choice is a Nash

equilibrium of the consumers subgame EC(p, p) = [0, 1]n.
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properties of the externality function will be inherited by demand and allow

the existence of continuous deviation beliefs that stabilize prices and create

market equilibria where both firms earn positive profits. The drawback with

these new equilibria for consumers is the coordination problem posed by

the multiplicity of Nash equilibria of the consumers subgame. In particular,

firms will face a coordination problem, since local deviation beliefs are in

general not unique.

Lemma 7 (Demand responsiveness). Consider a socially prone duopoly and

a credible outcome (p⇤,�⇤
) with a socially prone consumer choice �⇤ 2 Sp.

There is a unique continuous local deviation belief �⇤. Furthermore, this

belief preserves loyalty, is common for both firms, and in equilibrium

@D
s

@p
s

(�⇤
(p)) = (�⇤

), s 2 S.

Although discontinuous beliefs are credible alternatives, since they are

contained in the set of Nash equilibria of the consumers subgame, they are

hard to justify from an economic perspective. It’s hard to envision a situation

where firms will believe that small price deviations provoke a disruptive

behavior in consumers, when there is a credible smooth alternative. The

second part of lemma 7 shows why outcomes with positive social propensity

will in general not allow for equilibria with positive profits, while negative

social propensity will create the effect of slowing the demand response to

price changes, opening the possibility of a shared market equilibrium. When

social propensity tends to infinity it leads towards jumps, meaning consumers

will be highly sensitive to changes, which may prevent firms from finding

an equilibrium. On the other hand if social propensity gets close to zero,

consumers will have low sensitivity to changes, which leads to the opposite

effect, also preventing firms from finding non-monopolistic equilibria.
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Theorem 9 (Local Market Equilibrium). Consider a socially prone duopoly

and let � 2 Sp. The outcome (p,�) is a local market equilibrium with

continuous deviation beliefs and positive profits for both firms if, and only if,

(�) < 0, prices are given by

p1 = � l1 +m · q
(m,q)

p2 = � l2 +m · (1� q)

(m,q)

and personal preferences for non-loyal communities are

�bQ =

l2 � l1 +m · (1� 2q)

(m,q)
� f

Q

(m,q).

Furthermore, there is a unique continuous local deviation belief, which is

common for both firms and preserves communities.

Note that if � 2 Sp then 0 < D1(�), D2(�) < n. The theorem, which is

the main result of this chapter, not only proves the existence of local market

equilibria with shared demand and positive profits, but also characterizes

completely its prices and reveals consumer personal preferences. The condi-

tions are rather general and rely exclusively on the properties of the social

profile through the social propensity index. Socially prone duopolies thus

disrupt the Bertrand paradox and provide pure price solutions These solu-

tions do not rely on heterogeneity to exist or to be asymmetrical. Note that

this work focuses on local equilibria, so in order to obtain a global solution,

one would need to discuss firms beliefs farther away from the local behavior

of consumers. In these cases, firms need not coordinate on the same belief.

In figures 3.3, 3.4 and 3.5 are three ilustrative examples of local influence

networks and the respective values of a local market equilibrium. In figure 3.3

an influence network with 40 consumers and respective social propensity and

equilibrium values. In figure 3.4 is the reduced community network of figure
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3.3. Note that the values are exactly the same. The size of the vertices

represent the size of communities. A red (green) conection represents a

negative (positive) influence weight. Thickness indicates relative strength

of influence weights. The color of vertices indicates the consumer strategy

in a grey scale, where black means �i

= 1, and white means �i

= 0. In

figure 3.5 is an example of an network comprised only of positive interactios,

but that, nonetheless, produces a shared equilibrium due to a high negative

social propensity, which drives price close to zero.
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Figure 3.3: A influence network with 40 individuals and the respective social
propensity and local market equilibrium. It’s nearly impossible to uncover
relations in such a condensed set of relations, nevertheless this can be dealt
with using communities, as can be seen in figure 3.4. A red (green) conection
represents a negative (positive) influence weight. Thickness indicates relative
strength of influence weights. The color of vertices indicates the consumer
strategy in a grey scale, where black means �i

= 1, and white means �i

= 0.
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Figure 3.4: The community network for the individuals influence network in
figure 3.3. The size of the vertices indicates the communities size, which in
this case are respectively 8, 12, 6, 14. The color of the vertices indicates the
community strategy in a grey scale, where black means �i

= 1, and white
means �i

= 0. Again, a red (green) conection represents a negative (positive)
influence weight. Thickness indicates relative strength of influence weights.
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Figure 3.5: A influence network where there are only positive interactions
but still a high negative social propensity.

Proofs

Lemma 6

Proof. Suppose by reductio ad absurdum there is an equilibrium where both

firms charge positive profits. As demand is almost surely based on pure

strategies and the game is finite, there is " > 0, as small as desired, such

that demand for p⇤1 ± " is either constant or a jump. In both cases there is

an incentive to deviate.
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Lemma 7

Proof. Recall that �ui(p,�) = �bi � �p + �ei(��i

). Since � is a Nash

equilibrium for consumers and � 2 Sp (loyals have lower sensitive), we must

have the following,

(i) �ui(p,�) > 0 for i 2 L1(�)

(ii) �ui(p,�) < 0 for i 2 L2(�)

(iii) �ui(p,�) = 0 for i 2 M(�)

Hence for i 2 L(�) the best response is constant in a neighbourhood V
p

(�).

Let m = #M(�) (number of mixed players), with m > 1. Index the players

in the set M(�) ⌘ {1, . . . ,m}. Consider the function

�U : (R+
0 )

2 ⇥ (0, 1)m ! Rm

(p,�) 7! �u1(p,�), . . . ,�um(p,�)

Let (p⇤,�⇤
) be an outcome in the conditions of theorem. By (iii), and the

fact that for loyals the best response is locally constant, any outcome in the

neighbourhood of (p⇤,�⇤
) such that �U(p,�) = 0 is a Nash equilibrium for

consumers. Note now that �U is C1 and recall that

J�e

(�) ⌘
⇥
(@�ei/@�j

)(�), i, j 2 M(�)
⇤
,

Observe that the jacobian determinant for �U is

det [J
�

�U(p⇤,�⇤
)] = det [J�e

(�⇤
)] 6= 0 (by assumption).

Therefore, using the Implicit Function Theorem, there exists an open set

V
p

⇥ V
�

⇢ (R+
0 )

2 ⇥ (0, 1)m and a unique C1 function � : V
p

! V
�

such that
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�U(p,�(p)) = 0. Furthermore, in that neighbourhood

X

i

@�U

@�i

(p)
(p,�(p))

@�i

@p1
(p) =

@�U

@p1
(p,�(p))

Recall now that �ui(p,�) = �bi��p+�ei(��i

). Hence in the neighbour-

hood, �ei(��i

) = �p��bi, and

J�e

(�(p))
@�

@p1
(p) = 1

m

Using Cramer rule

@�i

@p1
(p) =

det

h
J
(i)
�e

(�(p))
i

det [J�e

(�(p))]

where J
(i)
�e

(�(p)) is obtained by replacing column i with 1 in J�e

(�⇤
). As

such in that neighbourhood

@D1

@p1
(�(p)) =

P
i

det

h
J
(i)
�e

(�(p))
i

det [J�e

(�(p))]

Theorem 9

Proof. The isoprofit functions for outcomes (p⇤,�⇤
), where p1, p2 6= 0 are

given, respectively, by

h1(p1;p
⇤,�⇤

) =

p⇤1D1(�⇤
)

p1
, h2(p2;p

⇤,�⇤
) =

p⇤2(n�D1(�⇤
))

p2
.

which we abreviate to h1(p1) and h2(p2) when there is no ambiguity to which

outcome we are refreing to. The isoprofit for firm 1 results from solving the

following equality (p⇤1 + �)h1(p
⇤
1 + �) = p⇤1D1(�⇤

) (and analogously for firm
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2). The derivatives are

h01(p1) = �p⇤1D1(�⇤
)

p21
, h02(p2) = �p⇤2(n�D1(�⇤

))

p22
(3.1)

For an outcome to be a market equilibrium, it must satisfy the following

conditions:

(i) @D1(�⇤)
@p1

= h01(p
⇤
1);

(ii) @D2(�⇤)
@p2

= h02(p
⇤
2);

(iii) h01(p
⇤
1) = h02(p

⇤
2);

(iv) D1(�1(p1, p
⇤
2))  h1(p1);

(v) D2(�2(p
⇤
1, p2))  h2(p2).

Furthermore, since D1 +D2 = n, we have that

@D2(�⇤
)

@p2
= �@D1(�⇤

)

@p2
.

From (iii), (iv) and 3.1 we get

p⇤1 = � D1(�⇤
)

@D1(�⇤
)

@p1

; p⇤2 =
n�D1(�⇤

)

@D1(�⇤
)

@p2

.

Now observe that by lemma 7 this characterizes prices. To conclude the

proof observe that �bi = �p��ei(��i

).

Proposition 2 (page 78)

Proof. Note that by lemma 7, the social propensity index is the unique so-

lution to a system.
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3.3 Underlying network structure and homogeneities

The influence network allows the characterization of symmetries, and thus

heterogeneity, based on the social type (c
i

, e
i

) of individuals. There are two

main lines in analyzing the impact of social heterogeneity of a consumers

social profile: (i) the underlying structure of the influence network, meaning

the unweighted digraph (directed graph); and (ii) the distribution of weights

in the network. In this section we analyze how social propensity will rely on

the structural properties of the underlying network when there are strong

symmetries (or homogeneities) on the influence weights. This will allow so-

cial propensity to be seen as a functional. For any given underlying network,

with the appropriate choice of weights, the index can attain any value, ei-

ther positive or negative. The idea works vice-versa, in terms of weights and

underlying network.

Let G ⌘ G(c, e) be the underlying unweighted network of consumer

interactions. Let det [G] be the determinant of the correspondent adjacency

matrix and det [G
ij

] be determinant of its ij minor. Let det[G(i)
] be, as

before, obtained from det[G] by replacing entries in column i by 1.

When the crowding space C is a singleton, there is crowding anonymity.

This means individuals do not distinguish between one another and they are

influenced by every individual equally. Nevertheless, different individuals

might be influenced differently. In terms of the influence network it implies

that for every individual i 2 I

@�ei/@�j1
= @�ei/@�j2 , 8j1, j2 2 I.

Let ✓i(�) ⌘ @�ei/@�j be the weight for individual i associated to the change

of other individual j (the crowding homogeneous weight). Note that the

influence matrix has an horizontal symmetry, as all individuals influence i

by the same amount ✓i.
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Proposition 3 (Crowding anonymity). Given a social profile with crowding

anonimity, the social propensity index is given by


ca

(�) =

P
i

P
j

(�1)

i+j

det [G
ij

] /✓i(�)

det [G]

.

Example 3 (Aggregated externality). The simplest form of externality with

crowding anonimity is probably when social influence is exerted through the

aggregate choice of other consumers, thus, when the externality is derived

from a function which looks only at the aggregate behavior. In that case, social

differentiation can be measured through an aggregated externality function

gi : S ⇥ [0, n � 1] ! R. The social differentiation in this case becomes

�ei(��i

) = gi (D�i

) where D�i

⌘
P

j 6=i

�j.

The same reasoning as the one presented in propostion 3 can be done with

a vertical symmetry on the influence network matrix. In fact just replace i by

j in the above expression. This is an interesting homogeneity property, since

it means that every individual, in that strategy context, is being influenced

in the same ‘way’, that is

@�ei1/@�j

= @�ei2/@�j , 8i1, i2, j 2 I.

Nevertheless, this does not have a counterpart on the externality types of

individuals, as it does with an horizontal symmetry and the crowding type.

This is essencially due to the fact that the same externality type need not

induce type symmetric strategies. The crowding type, however, is defined

‘outside’ the utility function. We define this as a social differentiation ho-

mogeneity. Let ✓
j

(�) ⌘ @�ei/@�j .
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Proposition 4 (Social differentiation homogeneity). Given a social profile

with social differentiation homogeneity, the social propensity index is


eh

(�) =

P
i

det

⇥
G(i)

⇤
/✓

i

(�)

det [G]

.

Although from the point of view of firms both horizontal and vertical

symmetries appear as very similar, from a consumers best response point of

view, they are quite distinct. In fact the following result does not hold for

crowding anonimity.

Lemma 8 (Complete network with social differentiation homogeneity). When

the network is complete and there is homogeneity of social differentiation, the

social propensity index is


eh

(�) =

P
i

(✓
i

)

�1

m� 1

.

Let’s go back to the aggregated example, and assume all individuals have

the same externality type, hence, they all look at the aggregate through

the same aggregated externality function g : S ⇥ [0, n � 1] ! R. Social

differentiation becomes

�ei(��i

) = g (D�i

) .

Note that whilst the function is common, each consumer may be applying it

in different points according to the aggregate they face, which, in this finite

case, need not be the same. The next theorem shows how social propensity

still depends on the individual i.
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Theorem 10 (Aggregated externality). In a socially prone duopoly with

socially homogeneous consumers and a C1 aggregated externality function g,

the social propensity index for � 2 Sp is


g

(�) =
1

m� 1

X

i

(1/g0(D�i

)).

This does not exclude that when there is total symmetry (both horizontal

and vertical) the social propensity index will rely essencially on the properties

of the underlying network.

Proposition 5 (Total weight symmetry). When the influence matrix has all

entries with the same weight ✓(�), then  relies essencially on the properties

of the underlying network, and is given by


ts

(�) = �
P

i

P
j

(�1)

i+j

det [G
ij

]

det [G] ✓(�)
.

Example 4. In the complete network case, total weight symmetry leads to


ts

(�) =
m

(m� 1)✓(�)
.

Observe however that in the case of a total symmetry, although individ-

uals all have the same social type, and are thus socially homogeneous, this

does not mean they derive the same personal benefit from the use of each

service, i.e. there may be i, j with �bi 6= �bj .
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Proofs

Proposition 3

Proof. Observe that every non-zero entry of every column has the same

value, ✓i, except for the columns on the numerator, whose entries have been

replaced by 1.


ca

(�) =

P
i

P
j

(�1)

i+j

Q
i 6=j

✓i(�) det [G
ij

]

Q
i

✓i(�) det [G]

,

which can be rewritten


ca

(�) =

P
i

P
j

(�1)

i+j

Q
i

✓i(�)/✓j(�) det [G
ij

]

Q
i

✓i(�) det [G]

,

and


ca

(�) =

P
i

P
j

(�1)

i+j

det [G
ij

] /✓j(�)

det [G]

.

Proposition 5

Proof. Observe that every non-zero entry has the same value, ✓ ⌘ ✓(�),

except for the columns on the numerator whose entries have been replaced

by 1.


ts

(�) =

P
i

✓m�1
det

⇥
G(i)

⇤

✓m det [G]

,

which can be rewritten


ts

(�) =

P
i

P
j

(�1)

i+j

det [G
ij

]

✓ det [G]

.
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Lemma 8

Proof. For a complete graph G
m

with m vertices, we have that det(G) =

(�1)

m�1
(m � 1). Observe now that G(i) just adds 1 in entry ii, and the

minor G
ii

is a replica of the complete graph with one less vertex. Thus,

det(G(i)
) = det(G

m

) + det(G
m�1) = (�1)

m�1
(m� 1) + (�1)

m�2
(m� 2),

which equates to

det(G(i)
) = (�1)

m�1
(m� 1�m� 1 + 1) = (�1)

m�1.

The proof of the lemma follows from direct aplication of the above result in

the following expression


eh

(�) =

P
i

det

⇥
G(i)

⇤
/✓

i

det [G]

.

which is


eh

(�) =

P
i

(✓
i

)

�1

m� 1

.

Theorem 10

The proof of the theorem follows straightforward from Lemma 8 by con-

structing the influence matrix and showing it has social differentiation ho-

mogeneity, which follows directly from social homogeneity. Nevertheless we

leave an alternative proof based on the implicit function theorem.6

6
The reason we leave the proof is because it was the starting proof of this work, later

generalized for higher dimensions and heterogeneity in the main theorem. With the use

of the determinant of a complete graph it becomes trivial.
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Proof. Consider �u : (0,+1)

2 ⇥ (0, n� 1) ! R, which is given by

�u(p, D�i

) = �b��p+ g(D�i

),

(Observe that �u is C1 and defined on an open set which excludes prices

equal to zero and imposes that at least one player different from i is playing

in non-integer probability.)

Note that @�u

@D�i
= g0(D�i

). If there is a point (p⇤, d⇤) 2 (0,+1)

2⇥ (0, n�1)

such that �u(p⇤, d⇤) = 0 and g0(d⇤) 6= 0, then (by the IFT) there are a

ball B(p⇤, �) 2 (0,+1)

2 and an interval J = (d⇤ � ", d⇤ + ") such that

�u�1
(0) \ (B ⇥ J) is the graphic of a function y

i

: B ! J of class C1. For

all p 2 B we have

@y
i

@p
s

(p) = �@�u

@p
s

(p, y
i

(p))/
@�u

@D�i

(p, y
i

(p)), s = 1, 2

as
@�u

@p
s

= ⌥1, thus,

@y
i

@p
s

(p) = ±1/g0(y
i

(p)), s = 1, 2

hence D�i

= y
i

(p) is defined implicitly by �u(p, D�i

) = 0 and for every

p 2 B there is a unique D�i

= y
i

(p) 2 J such that �u(p, D�i

) = 0.

For an equilibrium with m players using nondegenerate mixed strategies,

provided above is, for every i 2 M(�), the solution to the system

X

j 6=i

�j

= y
i

(p)� l1

with 0 < �i,�j < 1 and 0 < y
i

(p)�y
j

(p) < 1 hence the equilibrium demand

is

D1(�) =

P
i

y
i

(p)�ml1
m� 1
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and
@D1(p)

@p1
=

1

m� 1

X

i

(1/g0(D�i

)).



3.4. DYADIC INTERACTIONS 101

3.4 Dyadic interactions

In this section we study the case of a social externality function based on

dyadic interactions, i.e. we assume the utility function has the DI property.

By proposition 1 the utility function u : I ⇥ (R+
0 )

2 ⇥ [0, 1]n ! R is given by

the weighted combination of the following pure strategy payoffs

ui1(p1;��i

) = �p1+bi1+
X

j

↵ij

1 �
j , ui2(p2;��i

) = �p2+bi2+
X

j

↵ij

2 (1��j

).

The externality function is thus additively separable, which means the entries

in the influence matrix, that is the partial derivatives, depend only on every

pair of players. Social differentiation becomes

�ei (��i

) =

X

j

(↵ij

2 + ↵ij

1 )�
j �

X

j

↵ij

2

The influence network is locally constant and given by the following coordi-

nates

(@�ei/@�j

)(�) = ↵ij

1 + ↵ij

2 .

In the case of dyadic interactions, it is particular useful to study the sym-

metries imposed by the type profile.

Proposition 6. In a duopoly with dyadic interactions, if the MTS condition

holds for all types, each type has at most one non-loyal community.

Proof. Recall that by corollary 6, if the mixed type-symmetric condition

(MTS) holds for some type t 2 T , then all individuals of type t must be

using the same strategy at a Nash equilibrium.

The community influence matrix does not depend on the probability

chosen in the strategy, namely, for types t, t0, we can define A
tt

0 ⌘ ↵tt

0
1 +↵tt

0
2 .

The MTS in this case is A
tt

6= 0, and the type influence is given by the
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matrix

A(m) ⌘

0

BBBBBB@

A11
m1�1
m1

A12 · · · A1nT

A21 A22
m2�1
m2

· · · A2nQ

... . . . ...

A2nT · · · · · · A
nQnT

mnT �1
mnT

1

CCCCCCA
.

In particular this means the socially propensity index is locally constant


↵

(m) ⌘
P

i

det

⇥
A(i)

(m)

⇤

det [A(m)]

,

and equilibrium demand varies linearly with price,

D⇤
1 = ⇤

↵

p⇤1.

Being locally constante, the influence network induces an invertible property

on the set of local market equilibria.

Theorem 11 (Revealing preferences). In a socially prone duopoly with dyadic

interactions the personal profile b and non-loyal characterization m fully de-

termine the local market equilibrium.

We note that by theorem 9 det[A(m)] 6= 0 is a necessary condition for

the existence of a local market equilibrium with both firms earning positive

profits. The equilibrium strategy for the consumers subgame is, in this case,

given by the type solution to a linear system. Furthermore, by theorem 11,

when det(A(m)) 6= 0 the system has a unique solution. When the personal

profile is such that the solution is in fact an interior point of a probability

distribution, that is all coordinates lie in the interval (0, 1), the equilibrium

will be a duopoly equilibrium with positive profits as given by socially prone

outcomes. As such, for every strategy class the loyal characterization (l1, l2)

and the type non-loyal characterization m completely determine the local
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solution to the duopoly problem given by theorem 9. Therefore, given a pro-

file of product differentiation (e,b) if firms have some previous information,

or some ideia on what loyalty characterization to expect, they know exactly

what are the local market equilibria. This is a rather reasonable assumption

for any market, especially if there areprevious consumption moments for the

services firms provide. Furthermore, this is the most natural interpretation

for a ‘loyal’ consumer.

However, from a game theoretic point of view, when the choice of a con-

sumer includes no previous information and must be made simultaneously

with all other consumers, a coordination problem on the loyal characteriza-

tion remains. Having multiplicity of equilibria and no coordination device,

in the moment of choosing a strategy, consumers are left with the question

of deciding which is the best strategy given that they don’t know what the

others will do. The following result provides a possible alternative solution

to that of previous information. Let AL(b) be the set of admissable loyal

characterizations under personal profile b.

Proposition 7 (Focal equilibrium). In a socially prone duopoly with dyadic

interactions, the following loyal characterization is a focal point for con-

sumers,

(i) if A
tt

< 0 then (lt1, l
t

2) = (0, 0);

(ii) if A
tt

> 0 then

(lt1, l
t

2) =

8
>>><

>>>:

(n, 0) if �bt ��p > 0

(0, n) if �bt ��p < 0

(0, 0) if �bt ��p = 0

.

Furthermore, this equilibrium is fair for consumers and leads to a unique

focal market equilibrium.
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The notion of focal point is that of Schelling from [41], and is based

on the idea that without communication and in the presence of multiple

equilibria, players may coordinate in an equilibrium whose salience appears

as a unique possible coordination device. The notion of fair equilibrium, is

an equilibrium where individuals of the same type receive the same payoff.

Establishing a focal equilibrium is always amenable to critiques, nevertheless

it is yet another way of completing theorem 11.

Proofs

Theorem 11

Recall that given a matrix H we denote by H(i) the matrix obtained from

matrix H by replacing column i by 1.

Claim 2. Let H be a n ⇥ n matrix and 1
n

the n ⇥ n matrix with 1 in all

entries. For any r 2 R,

det(H + r1
n

) = det(H) + r
X

i

det

⇣
H(i)

⌘

Proof. Let ˆh
i

be column i of matrix H. Note that

det(H + r1
n

) = det(

ˆh1 + rˆ1, . . . , ˆh
n

+ rˆ1)

We start by separating the first column

det(H + r1
n

) = det(

ˆh1, ˆh2 + rˆ1 . . . , ˆh
n

+ rˆ1) + det(rˆ1, ˆh2 + rˆ1, . . . , ˆh
n

+ rˆ1)

Now observe that the second term det(rˆ1, ˆh2 + rˆ1, . . . , ˆh
n

+ rˆ1) leads to

det(rˆ1, ˆh2, ˆh3 + rˆ1, . . . , ˆh
n

+ rˆ1) + det(rˆ1, rˆ1, ˆh3 + rˆ1, . . . , ˆh
n

+ rˆ1)
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and det(rˆ1, rˆ1, ˆh3 + rˆ1, . . . , ˆh
n

+ rˆ1) = 0. Hence

det(rˆ1, ˆh2 + rˆ1, . . . , ˆh
n

+ rˆ1) = det(rˆ1, ˆh2, ˆh3, . . . , ˆhn) = r det
⇣
H(1)

⌘

The reasoning continues for every column.

Proof. (of theorem 11) In equilibrium, by theorem 9 the following holds for

non-loyal consumers �bi = ��D(�)/(�)��ei(��i

). Note that �D(�) =

D2�D1 = n�2D1. Furthermore, with dyadic interactions, social propensity

is locally constant, i.e. (�) = 
↵

(m), furthermore,
@D1

@�j

= 1 and
@�ei

@�j

=

A
ij

. We want to show that the following has a unique solution

@�bi

@�j

= �2/
↵

�A
ij

Hence we want to show that det(J�b(�)) 6= 0 ( the jacobian for �b). Now

note that

det(J�b(�)) = det

✓
�A(m)� 2


↵

1
m

◆

By claim 2

det(J�b(�)) = � det(A(m))� 2


↵

X

i

det

⇣
A(i)

(m)

⌘

but using the definition of 
↵

(m), we get (supposing
P

i

det

�
A(i)

(m)

�
6= 0)

det(J�b(�)) = �3 det(A(m)),

and det(A(m)) 6= 0.

Proposition 7

Proof. Note that consumers of the same type are indistinguishable, so what-

ever is the reasoning behind trying to antecipate the behavior of other in-

dividuals, the conclusion must be the same. Hence, they would all end up
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in a type symmetric strategy, which is in fact the one where they all play a

mixed strategy, since, by corollary 6, if the mixed type-symmetric condition

(MTS) holds all individuals of type t must be using the same strategy at a

Nash equilibrium, which is precise. In the case of positive externalities, as

there are three type-symmetric strategies, they can in fact choose the one

they all prefer.

3.4.1 The case with DI and homogeneous consumers

In this subsection we take the example of homogeneous consumers. The

results are basicly aplications of all previous results and thus proofs are

omitted. The purpose is to give cleaner explicit analytical expressions for

prices and demand. Let the social externality function be formed by DI

and consider socially homogeneous consumers, i.e. all individuals i, j 2 I

have the same personal profile �bi = �bj = �b, and the same social profile

↵ij

1 = ↵1 and ↵ij

2 = ↵2. The influence network is complete and determined

by a single weight parameter ↵1 + ↵2. Let us suppose the MTS condition

holds, that is ↵1+↵2 6= 0. The mixed strategy equilibria, by corollary 7, are

given by some loyalty characterization (l1, l2) and a unique probability used

by non-loyal consumers. Let m = n � l1 � l2 be the number of non-loyal

consumers, and q
m

the probability used by non-loyal consumers. Demand is

given by D1(�⇤
) = l1+mq

m

. The social propensity index is thus completely

determined locally by ↵1 + ↵2 and m, and given by


↵

(m) =

m

(m� 1)(↵1 + ↵2)
.

Remark 6 (Linear aggregate). Consider a linear aggregated externality func-

tion g1(d) = ↵1d and g2(d) = ↵2(n � d) where d 2 [0, n � 1]. Then, the

consumers game amounts to this same game with homogeneous consumers

and dyadic interactions (which can be seen by theorem 10).
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When m > 0 let us define the consumers behavior loyalty indices, respec-

tively the market loyalty index L, and the (marginal) firms loyalty indices

L1, L2,

L(�) ⌘ l1 + l2
m

; L1(�) ⌘
l1
m
, L2(�) ⌘

l2
m
.

When m = 0 define L = n and analogously for L1, L2. Note that the loyalty

indices are in the range 0  L  n, n being full market loyalty. When L = 0,

there are only non-loyal players. Naturally, a shared market equilibrium only

exists if L < n.

Recall the decision threshold T (l1) ⌘ �(↵1 + ↵2)l1 + ↵2(n� 1).

Lemma 9 (Congestion effects). Let ↵1 + ↵2 < 0. The admissible demand

for each (l1, l2) characterization is given by

D⇤
1(p) = l1 +m

�b��p� T (l1)

�(↵2 + ↵1)(m� 1)

Proof. Follows directly from corollary 7.

Theorem 12 (Congestion equilibrium prices). Let ↵1+↵2 < 0. The market

equilibrium prices for each loyalty characterization are given by

p⇤1 = �1

3

(↵1 + ↵2) (n� L⇤ � L⇤
1 � 1) +

1

3

(�b� ↵2(n� 1)) ;

p⇤2 =
1

3

(↵1 + ↵2) (n� L⇤ � L⇤
2 � 1)� 1

3

(�b+ ↵1(n� 1)) .

Note that the price difference is

�p⇤ =
1

3

((↵1 + ↵2)�L+ 2�b+ (n� 1)�↵)

When the market grows, the main responsibles for price asymmetries are so-

cial product differentiation and changes in the market loyalty indices, which

are also proportional to the social weights. In particular, it would be natural

that a market grows and the loyalty indices are kept constant. The role of
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Figure 3.6: Equilbrium demand in a simplistic case of 6 consumers. Rep-
resented are the thresholds for pure strategies, and the mixed strategies in
red. Highlighted is a particular local pure price equilibrium.

standard product differentiation in creating price asymmetries is overcome.

Note that under congestion efects, heterogeneity is not necessary to resolve

the classical Bertrand paradox, nor to achieve asymmetric pure price equi-

libria. In figure 3.6 is depicted equilibrium demand for the case of congestion

effects.

Lemma 10 (Conformity effects). Let ↵1 + ↵2 � 0. The admissible demand

has only one discontinuity which is the equilibrium point, and it is continuous

out of equilibrium. It is of the form

D⇤
1(p) =

8
>>><

>>>:

n if p1 < p2 � c⇤
b

nq
m

if p1 = p2 � c⇤
b

0 if p1 > p2 � c⇤
b
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where c⇤
b

2 [�↵1(n� 1),↵2(n� 1)].

We call c⇤
b

the consumer bias parameter, as it indicates how consumers

will choose between two firms, when both monopolies are in their best re-

sponse. Note that in the case where ↵1 + ↵2 � 0 the strategy of consumers

is completely determined by the consumer bias parameter. When c⇤
b

= 0

we are in the Bertrand framework (consumers essentially ignore the multiple

‘possibilities created by externalities).

Theorem 13 (Conformity equilibria). Let ↵1 + ↵2 � 0. The market equi-

librium is

(i) a monopoly for firm 1 with price p = (|c⇤
b

|, 0) if c⇤
b

< 0;

(ii) a monopoly for firm 2 with price p = (0, c⇤
b

) if c⇤
b

> 0;

(iii) a Bertrand zero profit equilibrium with p = (0, 0) and demand D⇤
1 2

{0, n/2, n} if c⇤
b

= 0.

Note that in the positve case the price difference is

�p⇤ = c⇤
b

.

In figure 3.7 is depicted equilibrium demand for the case of conformity effects.

3.4.2 Pure strategies and monopolies

When consumers have biased personal preferences �b, i.e. they are con-

tained in pure type-symmetric Nash domains, firms have the possibility to

have monopoly, or at least type-monopolies, meaning all individuals of the

same type. Furthermore, the demand behavior results from the relative pref-

erences �bt ��p induced by the pair of prices set by the firms in the first

stage, and must be based on a strategy whose Nash domain contains the rel-

ative preferences. On one hand, there is a limited set of relative preferences
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Figure 3.7: Equilbrium demand in the case of conformity effects. Shad-
owed are the multiple equilibria not chosen in the admissble demand. The
consumer bias parameter c⇤

b

indicates the choice of consumers in the region
where the three type-symmetric equilibrium exist.

that can be induced by a pair of prices, namely, as �bt ��p, we have that

for every pair of prices set by the firms, they will be in {�b+m1
nT }. On the

other hand, these preferences need to be resistent to price deviations, and

its neighbourhood must intersect the Nash domain of a different strategy,

as the smallest price change must provoke a change in consumers behavior,

or else it would be profitable to deviate. A pair of prices p⇤ is part of a

subgame-perfect equilibria only if the relative preferences profile is in a sin-

gleton given by the intersection of �bt ��p with the boundary of the pure

Nash domain. This is because in interior points demand is constant. We are

thus able to identify the price candidates to a firm equilibrium geometrically.

In the benchmark case, when there is no consumer network, there are
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only pure strategies for individuals. The monopoly/competitive regions are

characterized by

M1 ⌘
⇢
�b 2 (R+

)

nT
: 8t, t0 2 T ,

n
t

n
 �bt

0

�bt
 n

n
t

0

�

M2 ⌘
⇢
�b 2 (R�

)

nT
: 8t, t0 2 T ,

n
t

n
� �bt

0

�bt
� n

n
t

0

�

Z = {0}

Note that, in the previous homogeneous case, if A = 0 then M1 ⇢ (R+
)

nt ,

M2 ⇢ (R�
)

nt and M1 \M2 = {0}.

The equilibium will be

(i) monopoly for firm 1 if �b 2 M1 ⇢ N (n, 0) with prices p = (min�bt, 0);

(ii) monopoly for firm 2 if �b 2 M2 ⇢ N (0, n) with prices p = (0,min |�bt|);

(iii) a equilibrium with zero profits if �b = 0, with p = 0;

(iv) no equilibrium if �b /2 M1 [M2.

Before we set out for the geometric example, note that adding inter-type

interactions, while leaving intra-type at zero (A
tt

= 0 )has the following

effect on the monopoly regions.

M1 ⌘
⇢
�b 2 (R+

)

nT
: 8t, t0 2 T ,

n
t

n
 �bt

0 � ↵t

0
t

1

�bt � ↵tt

0
1

 n

n
t

0

�

M2 ⌘
⇢
�b 2 (R�

)

nT
: 8t, t0 2 T ,

n
t

n
� �bt

0 � ↵t

0
t

2

�bt � ↵tt

0
2

� n

n
t

0

�

Z = ⇥
tt

0

h
min{�↵tt

0
1 ,↵tt

0
2 },max{�↵tt

0
1 ,↵tt

0
2 }

i
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Figure 3.8: The benchmark case and monopoly areas. Note the Bertrand
paradoxical zero profit equilibrium is at the origin. A11 = A22 = A12 =

A21 = 0.

The case with two types of consumers (�2,2)

Consider two types t1, t2 of consumers. The reduced influence network is de-

termined by the parameters A11, A12, A21, A22. The social propensity index

is


↵

(m) =

A11(m1 � 1)/m1 +A22(m2 � 1)/m2 �A12 �A21

A11A22(m1 � 1)(m2 � 1)/m1m2 �A12A21
.

In figures 3.13, 3.8, 3.12, 3.9, A.3, 3.11 and 3.14 are depicted the monopoly

regions and their relation with changes in the parameters of the social profile.
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Figure 3.9: The effect of one positive intertype interactions. A12 > 0 and
A11 = A22 = A21 = 0. The monopoly regions intersect and there is a region
with zero profit equilibrium for both firms.
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Figure 3.10: The effect of one negative intertype interactions. A12 < 0 and
A11 = A22 = A21 = 0. The monopoly regions get separated and there is a
region with no equilibrium.
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Figure 3.11: The effect of intertype interactions with different signs. A12 > 0,
A21 < 0 and A11 = A22 = 0. There is a region with no pure equilibrium for
consumers.
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Figure 3.12: The effect of positive intertype or intratype interactions. Both
produce the same effect. In the case A12 > 0, A21 > 0 and A11 = A22 = 0.
There is a region where there is multiplicity equilibria, and the lighter colored
areas of monopoly will only exist depending on the choice of consumers on the
areas where multiple equilibria exist. Furthermore, in the middle square the
consumer bias parameter will decide the position of the line corresponding
to the competitive equilibria.
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Figure 3.13: The effect of negative intratype interactions. The shaded re-
gions around monopolies mean that the monopoly region will depend on
the consumers choice on the area of intersection, that has multiple Nash
equilibria. A12 < 0, A21 < 0 and A11 = A22 = 0.
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Figure 3.14: All parameters turned on. A12 > 0, A21 < 0 and A11 < 0,
A22 < 0. The shaded areas are contain the socially prone outcomes.



Chapter 4

Conclusions and future work

We have set forth an idea of how to build up market equilibria with pure

price strategies, and classify markets according to solutions based on an

index of the interdependence of social interactions in consumption, called

social propensity. This allows the departure from the paradoxical zero price

equilibrium and the characterization of prices, demand and personal prefer-

ences using social propensity. Naturally, further study of the properties of

the index, the dependence on particular parameters of a market, the study

of what happens when the market changes, namely when it grows, or how

it behaves for particular types of networks and canonical network examples,

besides the complete network, should be develpped. Namely, for special con-

figurations like small-world networks. In particular, an econometric analysis

on real market data would be an interesting source of validation or refu-

tation, and it could provide insights on whether to adjust the definition or

create different indices. In this regard, the reduction of the influence network

to communities appears as very useful. This was done based on exact com-

munities, but it would naturally be more interesting to loosen the exactness

and study the case where communities are comprised of similar individuals,

up to some error, and see what this could produce in terms of the error in

the index and computation of equilibria. The work on the notion of societies

119
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on the first chapter and the proof of the conformity obstruction lemma could

set the pace for such an approach.

Another natural extension comes to mind: the extension of the duopoly

situation to an oligopoly. On the one hand this is a natural extension and

provides the basis for a more close connection to an econometric analysis;

on the other, this would allow to relax the imposition that consumers use

standard mixed strategies over the space of firms, and thus to relax the

hypothesis of mandatory consumption. The option of not buying would nat-

urally introduce some exogenous reservation price, and firms might, in some

situations, be led to that boundary, and get stuck in shared market situa-

tions with pure consumer strategies, which we do not have in the mandatory

consumption case. A natural departure point is the general class of deci-

sion games that we have already fully characterized and studied on the first

chapter, where we allowed for any finite set of actions. The extension to an

oligopoly situation would probably also require a new approach to creating a

one valued index, since the natural extension of the one we presented would

be an n-dimensional index.

We have focused this work on uniform pricing. This presents particular

difficulties as to the existence of pure price equilibria. A different direction

would be to allow firms to use price schemes, and with the knowledge of

consumer interdependence, discriminate prices according to the influence

each consumer exerts over other consumers. Furthermore, negative prices

could also be allowed, as a form of subsidizing influential consumers, and

change loyalty characterizations. Some of the results that we have on non-

existence of equilibria for positive social propensity may be dealt with this

approach.

The work has been based on the concept of Nash equilibrium. Naturally

it would be interesting to think about other notions of equilibrium, and one

such example is (social) welfare equilibrium. Our conjecture is that allowing
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a coordination device so that consumers maximize group welfare will lead

them to fixate in pure strategies. In that sense, a natural follow-up would

be to allow firms to use price distributions and try to characterize these

price distribution in terms of the social profile. The change to a cooper-

ative setting, at least to allow some coalitions to form for some groups of

consumers, provides an approach with interesting interpretations for some

particular contexts, and the study of bounds on the price of anarchy and

price of stability would be interesting.

A generalization to consumer games with continuous space of strategies

appears also as a possible road. The duopoly results seem to hold for C1

social externality functions, as we have not used any special property of the

finite case in their proofs. Beyond generalizations, there is yet a large body

of work which is still to be done, and this includes, for example, marketing

strategies, values of a market study, loyalty characterizations, static analysis

or introducing uncertainty on the consumers or firms subgames.

In the first chapter, which was based on the characterization of the set

of pure and mixed Nash equilibiria of a decision game with three essencial

properties, a natural extension is the study of how breaking the properties

assumed for the utility function impact the results. For the duopoly this

has essencially been done. The question remains as to the Nash equilibria

set forth in the first chapter. Dyadic interactions can be relaxed to study

aggregative of forms of influence. Namely, the intertwining of the two and

the study of the relative impact of close friendship dyadic relations and gen-

eral aggregative influence seems fruitful. Breaking PBI will provoke a high

impact on the existence of pure Nash equilibria, and an interesting approach

is using it as a road to chaos. In fact, relaxing both assumptions has a

particular high impact regarding the section based on reciprocal relations.

Nevertheless, even maintaining the three essential properties, the study of

somewhat reasonable symmetry properties to impose on the social profile to
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guarantee existence of pure Nash equilibria, independent of personal space,

could be pursued in further detail, but we would recommend caution. We

have proposed some approaches, namely based on reciprocal relations and

potential games, and these aimed at finding a sufficiency condition. A condi-

tion based on the relation of absolute values should be further investigated.

The existence of a necessary and sufficient condition which is relatively sim-

ple (at least simpler than what is supposed to ensure) and useful, does not

seem plausible due to the examples mentioned (see also for example [29]).

Nevertheless, there can be special cases of interest. The referendum game in

appendix already provides a tool for an experimental study of games with

and without these properties. Furthermore, it introduces the mixture when

consumers care (possibly differently) about the general outcome of the game.
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Appendix A

The referendum game.

We have built on Netlogo a game with an action set A = {Y,N,B,A} to

mean the votes yes, no, blank and abstention and that can have up to four

types of individuals. This allows the study of the classes of �4,4. We added

the possibility of breaking all properties of the utility function by adding the

following possibilities:
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The two interior parameters "
o
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strateginess. The new utility function becomes

ū(i;�) ⌘ u(i;�) + f
ti(si) + g

ti(si).
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Figure A.1: The interface for the referendum game built in Netlogo, the
part of main controls. The colors represent the players strategies: red means
voting against, green in favor, white means voting blank, and grey abstention.
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Figure A.2: The interface for the referendum game built in Netlogo, input
part.

Figure A.3: The interface for the referendum game built in Netlogo, input
part.
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