Abstract (EN):
Private functional encryption guarantees that not only the information in ciphertexts is hidden but also the circuits in decryption tokens are protected. A notable use case of this notion is query privacy in searchable encryption. Prior privacy models in the literature were fine-tuned for specific functionalities (namely, identity-based encryption and inner-product encryption), did not model correlations between ciphertexts and decryption tokens, or fell under strong uninstantiability results. We develop a new indistinguishability-based privacy notion that overcomes these limitations and give constructions supporting different circuit classes and meeting varying degrees of security. Obfuscation is a common building block that these constructions share, albeit the obfuscators necessary for each construction are based on different assumptions. In particular, we develop a composable and distributionally secure hyperplane membership obfuscator and use it to build an inner-product encryption scheme that achieves an unprecedented level of privacy, positively answering a question left open by Boneh, Raghu-nathan and Segev (ASIACRYPT 2013) concerning the extension and realization of enhanced security for schemes supporting this functionality.
Language:
English
Type (Professor's evaluation):
Scientific
No. of pages:
21