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ABSTRACT:
o In this report we develop an approach analogous to the Discriminant Analysis to

classify new variables into previously defined groups of variables and give the
misclassification probabilitics estimates.
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RESUMO:

e Neste trabalho procurou desenvolver-se uma abordagem andloga a Analise
Discriminante para classificar novas variaveis em grupos de variaveis previamente
definidos e obter estimativas das probabilidades de erro de ma classificagfo.
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1. INTRODUCTION

One of the most important questions of Discriminant Analysis tries to solve 1s
the affectation of new individuals into previously defined groups of individuals. We
consider the dual problem of the affectation of new variables into previously defined
groups of variables. While in Discriminant Analysis, we usually associate the
Multivariate Normal distribution to cach group of individuals for defining the
affectation rules, in our approach we associate the Bingham distribution on the sphere
to each group of variables for defining the affectation rules. In our study we suppose
that the groups of variables were been previously identified. The identification of
those groups can be done using the k-means method (Gomes, 1987) or the KM
algorithm of Estimation-Maximization type (Gomes ¢ Figueiredo, 1995). Additionally
it’s important to give the estimate of the misclassification probability.

In our approach, we suppose that the n individuals are fixed and the p variables,
previously normalised, are randomly selected from a population of variables. Then, we

associate to cach variable a 1x 7 random vector (X DX, X ,f) where X/ 1s a

random variable that represents the value of the j” variable for the i individual. In the
classical approach the p variables are fixed and we select randomly the individuals and

associate to each individual a 1x p random vector (X DX XT )Where X/ isa
random variable that represents the value of the ;* variable for the i* individual.

In section 2, we adapt to our approach the classification rules used in
Discriminant Analysis, and section 3 applies the rules to the case of a Bingham
distribution on the sphere. Some methods to the calculation of the estimates of the
misclassification probabilities are described in section 4 and an example is given in
section 5. Finally, section 6 contains the conclusion.

2. CLASSIFICATION RULES

Consider our data with n individuals and p variables and suppose that the p
variables are divided in two groups. We associate to the groups of variables, two
subpopulations G, and G,. The variables taken from subpopulation G, have the
density function on the sphere f(x) and the variables from subpopulation G, have the
density function on the sphere f3(x).

Let ', be the surface of the sphere:

S .= {x eR": x| = l}

We divide S, | into mutually exclusive and exhaustive regions R, and R,
Variables falling in region R, are classified into subpopulation 1 and those falling in

region R, are classified into subpopulation 2. The likelihood-ratio rule is the
following:
Assign a variable x to Gy if
1) = f£,(x) (M)

and assign x to (5, otherwise.
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The classification regions R; and R, are defined by

A CY,
Rl—{x Snlfz()Ml}

. )
R, —{x eS, fz(X) 1}

We now mention a rule based on the Statistical Decision Theory where the
misclassification costs and the prior probabilities are considered.

Let 7z, be the probability of a given variable belonging to group 1, denoted by

prior probability, i = 1,2 and C(itj) the cost of misclassifying a variable from group j
into group 1, 7,/ = 1.2. The probability of misclassification is given by

Pilj) = P(X eR, ].) - j £, (x)dx

Then, 7Z'1.P( j‘l) is the probability of choosing a variable from G; and wrongly
classifying it into G;, 7, j, = 1,2.

Denoting by C the total cost of misclassification, we have

E(C) = C(2N).z,. P(2N) + C(12). z,. P(1]2).
The rule used to minimize E (C), known as Bayes rule, is the following:

Assign a variable x to Gy if

C(21).7,.f,(x) = C(1

2)‘ 7, 1, (x)

and assign x to (5, , otherwise.

The classification regions R, and R, are defined by

. A (i) }
K“% R AR CTIE
).

) FACI el
&“{ RN MDm}

If we have equal misclassification costs and equal prior probabilities, the
Bayes rule and the likelihood-ratio rule will be the same.

[3\

Suppose now, we have k subpopulations G, , G, ,..., Gy with density functions
on the sphere f, (x), 5 (x),-- f . (x), respectively. We divide S,.; into Ry , R, ..., Ry
mutually exclusive and exhaustive regions. Any given variable is classified into the
subpopulation in which region the variable falls. The likelihood-ratio rule is the
following:




Assign a variable x to G;if
J,(x) = max f,(x)

We now consider the Bayes rule.

Let 7, be the prior probability of a given variable belonging to G, and let

C ( j‘i) be the cost of misclassifying a variable from G; into G; . The misclassification

probability is given by P(j'i) = P(X eR].‘X € GI.) = IR‘fi(x)dx

The total cost of misclassifying a variable belonging to G; is given by

Z];:l P( ]‘Z) C( ]IZ) and the expected total cost of misclassifying variables belonging
J#i

to G; will be 7, [ZflP( ]rl)C(]]l)J The resulting total expected cost of
J#i

misclassification, for all subpopulations 1s defined by

EO)=Y" & (Z%} P(jl) C(j(z'))

The rule for minimizing £ (C), Bayes rule, is the following:

Assign a variable x to G; if

Zzzi.ﬁ(x).c(jﬁ) <2 SXCW) 1=k 17 (2)

i#] il

21 POSTERIOR PROBABILITIES

In addition to the affectation group of each variable, we will give more
information about each variable if we determine its posterior probability.

The posterior probability of a variable X belonging to population 1 is

f,(x).7, o
—t— p=1ek
me:(x)ﬁf l

where 7, = P(X € GZ) is the prior probability of population 1.

Based on the posterior probabilities, we can affect a variable x to the
population G; ., for which the posterior probability (3) or 7,. f, (x) is the largest. It is
equivalent to using the Bayes rule with equal misclassification costs.

P(X cGlX =x)= 3)
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3. APPLICATION OF THE CLASSIFICATION RULES

We use a particular case of the Bingham distribution on the sphere whose
density function is given by

f(x) = {Jﬂ(%,g,f}}'l ,exp(é’.l u.x.’ x.u) xeS

where | /1] is a confluent hipergeometrical function defined by

1 71 n-3
Oe*’f‘z 2(1-1) 2 dt

(3

This probability distribution denoted by B, (u, f) , has two parameters:

- u s a directional parameter (I uu = l)

- & (> 0) - concentration parameter around the directional parameter

If we associate axes to the variables the Bingham distribution will be
appropriate for modelling the group of variables because its density function satisfies
the antipodal symmetric property f{x) = f{-x).

The maximum likelihood estimators of the parameters u and & from the

Bingham distribution Bn(u,é), based on a random sample of p wvariables
X = (xl

- u is the eigenvector associated to the largest eigenvalue of the matrix X'.X.
that is

X, |- xpj , were obtained by (Gomes, 1987) and are following:

X'Xa=wnu 4)

where w is the largest eigenvalue of X.°X. Then, the maximum likelihood estimator for
u and the first principal component associated to the group of variables are coincident.

~

- & is the solution of the equation
w

W@:;

where
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We refer only the Bayes rule because the rule based on the likelihood ratio is a
particular case.

Suppose that the population 1 is Bingham B, (u1 , fl) and that the population 2
is Bingham B, (u2 ; 52) A

Let

| —

)| et
,@ﬂl.eﬂ‘% f

When the parameters u,,u,,& and & are unknown, they may be replaced by

NI

WAON {F(z
‘fQ(x)‘[lFl(

U

2

N | —
| X

their maximum likelihood estimates.
The Bayes rule is:

Assign x to population 1 if

nl -1 ), o
) T

or

"xAx +In

where

y, ~(\/§T.ﬁ1 +\[§ﬁ2)f(\/§ﬁl —@.ﬁz)

and assign x to population 2, otherwise.




Let the discriminant function be

1 n -
i35
. Hilypee c(12).x,
W, ="xAx +1n —In (6)
TR
1E 575’ 1
the discriminant regions R; and R, are given by
R = {x:W12 > O}
R, = {x:le < O}
3.2 MORE THAN TWO GROUPS
Suppose the k subpopulations are Bingham Bn(uZ , é) ,i=1---k. whose
density function is given by
1 n B
g & ‘uix ; o
fZ(X):{lﬁ[E,E,é)} € ( ) X€bn4
The Bayes rule is
Classify x as a variable from population j if
k k
> 7 £(x).C(H) = min 7. £,(x).C(l) )
"y i
or
7 [] n AJ
1910 A EE R o il
272 Cli)-m,
‘xAx +1In 1(’) >0 i=1-k, i#] (8)
F(l ﬁ Aj (/(1 -/)ﬂ-J
1 1 2 > 2 > D)
where
~ ”~ t ~ ~
A:(\/gu]—# uz} ( T f_f,ul)
and @,, 0 i éj, .‘3] arc the maximum likelihood estimators of the parameters.
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be the discriminant function.

The region R, is given by

Al )
S S Bilne C(12).z,
W, =¢& xu,. "u,.x-& . "x.u,. u,.x +In In
1 n C(2h). 7,
" 5 > 61

SR

~

N | — [N | —
(ST

_ t o e 7[ At oA
Wsi=¢& xu, u.x-&. x.u,. u;.x+In (

1 n -
11171(97 3) A
~ A C(2]3).
W,=4¢& xu,. t,.x-& . x.0,. a,.x +1n f ’21 R nCE3i|2§z3
2°2
As the condition
cOB).z, ~ c2).z, . C@2B)x,

Wy =W, =W, +1n C(3|]). T, - (7(2“). T, o (?(3I2)‘ 7t

holds, it is enough to use only the two functions W;; and W), for defining the
discriminant regions R;, R, and R;.

c(B).x, . Cc(2).z, = C(2B3)x,
L, =X <0 > - _
% {X W <0 s 2T =In ey ey 2 T e@) =,

c(13). N c(12).x, N n(?(zlz),yz3
Gz ch)a cGR)x,

R, :{X:W13 <0, W,<W,-In
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4. MISCLASSIFICATION PROBABILITIES

In the case of two groups, the misclassification probabilities are

P(ZII) = P (misclassifying a variable from G, into G,) = P(le < OJX € G])
P(1|2) = P (musclassifying a variable from G, into G,) = P(le > O!X € (.}2)

As the distribution for the random variable W), if x €, or if x e, is
unknown, we can not calculate these probabilities, but we can estimate them.

4.1 ESTIMATES OBTAINED BY SIMULATION

~

If we consider two subpopulations of Bingham, B, (ﬁ] ) I) and B, (ﬁz ; 5, ) , We
can simulate an adequate number of variables from each subpopulations. For each
simulated variable, we calculated the value for the random variable W,,. An estimate
of P(2|1) is the proportion of the variables from population 1 for which W, <0 and an
estimate of P(l!Z) is the proportion of variables from population 2 for which
W,=>0.

12 =

4.2 ESTIMATES OF DISCRIMINANT ANALYSIS

In Discriminant Analysis there are three probabilities of correct classification
(i.e., three population hit rates):

- optimal hit rate obtained when a classification rule based on known
parameters is applied to the population.

- actual hit rate obtained by applying a rule based on a particular sample to
future samples.

- expected actual hit rate is the expected proportion of correct classifications
over all possible samples.

The actual hit rate is the most common and can be estimated by using an
internal analysis or an external analysis (i.c., the Holdout method or the Leave-One-
Out Method) or the Bootstrap technique. These methods will be described next.

4.21 INTERNAL ANALYSIS

We use samples of each subpopulation to estimate the unknown parameters of
the subpopulations, and to determine a rule, then, based on the obtained rule, we
classify the units of the same samples. The obtained rates are called apparent or
resubstitution hit rates.

As the apparent hit rate yields a positively biased estimate, we use an external
analysis to validate the classification rule.



4.2.2 EXTERNAL ANALYSIS

Whereas in the internal analysis the units classified are the units used for
defining the rule in the external analysis, the rule is determined from one set of units
and then used to classify another set of units.

Holdout method

We divide the sample (of each subpopulation) in two subsamples: a training
sample and a test sample. We estimate the unknown parameters of the subpopulations
based on the training sample and, therefore, obtain the classification rule. Then, with
the obtained rule we classify the units of the test sample. The proportion of the test
sample units that are correctly classified is a hit rate estimate. This method requires the
use of large samples.

Leave-One-Out method (Lachenbruch, P.A. and Mickey, 1968)

We delete one unit from one of the subpopulations samples and, based on the
remaining units of that sample, we estimate the unknown parameters of that
subpopulation. We also estimate the unknown parameters of the other subpopulations
based on the respective samples. Therefore, we obtain a rule that we use for
classifying the deleted unit into one of the groups. Afterwards, we delete another unit
of the sample and we determine the rule used for classifying the deleted unit. We
repeat the process until all units of each sample have been deleted. The proportions of
deleted units correctly classified are the hit-rate estimates.

423 BOOTSTRAP TECHNIQUE (EFRON, 1987)

After having estimated the unknown parameters based on the training samples
and having determined the rule, we generate samples by choosing units at random and
with replacement from the sample composed by the test samples. For each generated
sample, called hootstrap sample, we classify its units and calculate the hit rate because
we know to which group belongs each variable.

As the hit-rate empirical bootstrap distribution is an approximation to the hit-
rate distribution, an estimate of the true hit rate is the average of the hit rates obtained
with the bootstrap samples.

In our approach, we use the previous estimates of the misclassification
probabilities.

5. EXAMPLE

We considered the data based on the statistic of crime for England and Wales
during the period 1950-1963. See appendix.

Using the method of Principal Components, (Ahmad, 1967), has shown that the
yearly variation in the number of crimes could be explained by a small number of
unrelated factors. They are, mainly, the 1* component, associated with the population
growth, and the 2™ component that seems likely to reflect changes in recording
practice by the police over the period.
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Supposing that the group of variables is composed by two subgroups of
variables, cach one from a Bingham population and identifying a mixture of two
Bingham distributions on the sphere by the k-means method or the E. M. algorithm,
we obtained the following two groups of variables:

Group I-1,3,6,10,13,17
Group I1-2,4578,9,11,12,14,15,16,18

being the variables of group I more associated with changes in the recording of crimes
and the variables of group II more associated with the population growth.

After having identified the two groups of variables, we used the likelihood-ratio
rule for classifying variables into one of the groups.

Firstly, we determined the estimates of the misclassification probabilities, by
simulation. We simulated 1000 variables from each of the Bingham populations

~

B, 4<ﬁ1 ,g;l ) and B, 4(ﬁ2 ) é) where 1, and 51 are the maximum likelihood estimators

based on the sample of dimension 6 from population 1 and 0, and & the maximum

likelihood estimators based on the sample of dimension 12 from population 2. We
obtained the estimates:

P(2]1) =3.9%
P(12) = 5.2%

Secondly we classified the variables of each sample. The results are shown in
the following table:

Origin  group

1 2
Affectation | 1 5 0
group 2 I 12

6 12

i.c., the apparent estimates of misclassification probabilities where:

and the global hit rate was 94,4%

These estimates gives us just an idea of how the groups of variables were
separated. Therefore, we used the Holdout method for validating the rule.

In the Holdout method, we considered about 30% of the sample of each group
for the test sample and about 70% of the sample for the training sample. So, for the
test sample, we chose randomly 2 variables from group I, 4 variables from group II
and the other 12 variables constitute the training sample which was used for defining




the rule. We considered three test samples to avoid biased sampling. The samples
considered are described in the following table:

Group Test samples Training samples
1* Case I 13,17 1,3,6,10
I 11,12,14,15 2,4,5,7,8,9,16,18
2™ Case I 6,13 1,3,10,17
I 48911 2,5,7,12,14,15,16,18
3 Case I 1,10 3,6,13,17
I 2,7,14,15 4589,11,12.16,18

The misclassification probabilities estimates in each case, are:

P(2)) P(1R)
1" Case 0 0
2" Case 0.5 0
3" Case 0.5 0

We can take the average of these estimates of probabilities as estimates of the
misclassification probabilities:
P(21) = 333%
P(12)=0

Finally we used also the method Leave-one-out, where we obtained the
following misclassification probabilities estimates:

P(211) = 16.7%
P(12) =0

6. CONCLUSION

Our approach is concerned with variables selection under a multivariate
statistical analysis, in a data science classification context, where we established,
according to a probabilistic model defined in the R sphere, a decision rule which
enables us to affect a new variable into two or more groups of variables previously
defined through the k-means method or E.M. algorithm.

The misclassification error problem was studied by a simulation method,
afterwards by using apparent estimates and, finally, based on Holdout and on Leave-
one-out methods. The second approach tends to underestimate the misclassification
probabilities. Though, using the Leave-one-out method seems to confirm the results
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obtained by that second approach. The small number of variables included in the
samples suggests the attribution of particular relevance to the estimates of
misclassification probabilitics provided by simulation.
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A APPENDIX
Al VARIABLES

1- Homicide: Murder, attempted murder, manslaughter, infanticide

2- Woundings: Felonious, Malicious, Assault

3- Homosexual offences: Buggery and attempts at Indecency between
males '

4- Heterosexual offences: Rape, indecent assault, unlawful intercourse,
incest

5- Breaking and entering:  Sacrilege, burglary, housebreaking,
shopbreaking, etc.

6- Robbery

7- Larceny: Embezziement, aggravated larceny, etc

8- Frauds and false pretences

9- Receiving stolen goods

10- Malicious injuries to property

11- Forgery, etc

12- Blackmail

13- Assault

14- Malicious damage

15- Revenue laws

16- Intoxicating laws

17- Indecent exposure

18- Taking motor vehicle without consent
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A2 DATA

ind/var

1

L@ 3 N e W

e e e
BOWON = D

ind/var

1

(= N T N 7 N ]

NI "B |

11
12
13
14

1
529
455
555
456
487
448
477
49]
453
434
492
459
504
510

10
4.158
4.993
5.003
5.309
5.251
2.184
2.559
2.965
3.607
4.083
4.802
5.606
6.256
6.935

2
5.258
5.619
5.98
6.187
6.580
7.076
8.433
9.774
10.945
12.707
14.391
16.197
16.43
18.655

11
3.79
3.378
4.173
4.649
4.903
4.086
4.04
4.689
5.376
5.5987
6.59
6.924
7.816
8.634

3
4.416
4.876
5.443
5.68
6.357
6.644
6.196
6.327
5.471
5.732
5.24
5.605
4.866
5.435

12
118
74
120
108
104

119
121
164
160
241
205
250
257

4

8.178
9.223
9.026
10.107
9.279
9.953
10.505

11.9
11.823
13.864
14.304
14.376
14.788
14.722

13
20.844
19.963
19.056
17.772
17.379
17.329
16.677
17.539
17.344
18.047
18.801
18.525
16.449
15.918

5
92.839
95.946
97.941
88.607
75.888
74.907
85.768
105.042
131.132
133.962
151.378
164.806
192.302
219.138

14
9.447
10.359
9.108
9.278
9.176
9.46
10.997
12.817
14.289
14.118
15.866
16.399
16.852
17.003

6
1.021
800
1.002
980
812
823
965
1.194
1.692
1.9 .
2.014
2.349
2.517
2.483

15
24.616
21.122
23.339
19.919
20.585
19.197
19.064
19.432
24.543
26.853
31.266
29.922
34.915
40.434

7
301.078
355.407
341.512
308.578
285.199
295.035
323.561
360.985
409.388
445.888
489.258
531.430
588.566
635.627

16
49.007
55.229
55.635
55.688
57.011
57.118
63.289
71.014
69.864
69.751
74.336
81.753
89.709
89.149

8
25.333
27.216
27.051
27.763
26.267
22.966
23.029
26.235
29.415
34.061
36.049
39.651
44.138
45.923

17
2.786
2.739
2.598
2.639
2.587
2.607
2311
231
2.371
2.544
2.719
2.82
2.614
2777

9
7.586
9.716
9.188
7.786
6.468
7.016
7.215
8.619
10.002
10.254
11.696
13.777
15.783
17.777

18
3.126
4.595
4.145
4.551
4.343
4.836
5.932
7.148
9.772
11.211
12.519
13.050
14.141
22.896




