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Resumo

Os centros hospitalares têm vindo a assistir a um enorme desenvolvimento ao ńıvel das

suas infra-struturas informáticas, o que levou à criação de uma panóplia de diferentes

aplicações que são, hoje em dia, essenciais para o bom funcionamento das instituições

de saúde. Contudo, inerente a cada uma dessas aplicações, existe um conjunto muito

considerável de informação que está constantemente a ser criada e posteriormente

arquivada pelos mais diversos sistemas de informação hospitalares. Essa mesma in-

formação permite, de uma forma priveligiada aferir importantes métricas relacionadas

com o ńıvel de produtividade dos vários serviços de cada centro hospitalar.

Nesta tese apresentamos uma proposta para um sistema capaz de apresentar métricas

relacionadas com o ńıvel de produtividade de um centro hospitalar através da extracção

e reconstrução passiva de fluxos TCP que contenham mensagens HL7 ou outros tipos

de protocolos utilizados em eHealth. Com base nessas mensagens, o nosso sistema é ca-

paz de extrair informação útil e com ela, construir uma base de dados de conhecimento

relativo à infra-estrutura hospitalar em análise.

As várias mensagens HL7 presentes na rede informática hospitalar contêm informação

útil com a qual é posśıvel produzir importantes dados estat́ısticos relativos à pro-

dutividade dos processos de negócio. A dificuldade de extrair dados de um grande

conjunto de sistemas heterogéneos pode assim ser contornada através da extracção

passiva de pacotes IP, que contenham mensagens HL7, directamente e de uma forma

não intrusiva, a partir da rede hospitalar.

O nosso sistema foi colocado numa infra-estrutura hospitalar de grandes dimensões

localizada na cidade do Porto, em Portugal, onde foram extráıdas mensagens HL7

directamente de rede hospitalar. O nosso sistema extrai e analisa uma média diária de

44.000 mensagens HL7 com vários picos na ordem das 1.100 mensagens por minuto.

Com base neste tráfego, o nosso sistema é capaz de determinar e apresentar de forma

gráfica a distribuição temporal de várias actividades hospitalares como pedidos de

III



análise, marcações de consultas ou ainda informação relacionada com facturação, entre

outros.
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Abstract

Healthcare facilities have been improving their information systems over the past few

years. Such improvements led to the creation of a multitude of different applications

essential to the facilities services. Associated with the various applications, there’s

also a considerable amount of information being produced and stored throughout

the facility. Such data constitutes a privileged way of inferring past and current

performance metrics of a given healthcare facility for it’s different activity domains.

However, complex challenges arise when trying to gather all the different data from

all the systems scattered throughout the facility.

We present a proposal for a system capable of displaying production metrics in a

healthcare facility by passively extracting IP packets from the network and recon-

struction TCP streams containing HL7 compliant messages and other eHealth relevant

network protocols. Based on those messages our system is able to extract meaningful

data and with it, it is possible to produce a knowledge database for a given healthcare

facility.

The HL7 messages moving over the network contain information that can be used to

assess many relevant production metrics for a given infrastructure. The challenge of

having to query a considerable amount of different systems in order to gather such data

can be solved by passively extracting packets containing HL7 standardized messages

or other eHealth related protocols directly from the network.

We have deployed our system in a large healthcare facility located in Porto, Portugal

where we’ve been passively extracting HL7 messages from their network infrastructure.

Our system extracts and analyses a daily average of 44,000 HL7 messages with several

peaks of 1,100 messages per minute. Based on such network traffic, our system has

been able to infer the daily distribution of healthcare related activities such as lab

orders, appointment scheduling and also billing information, among other relevant

business metrics.
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Chapter 1

Introduction

The rapid development of new information technologies and its adoption by healthcare

facilities has made way to the rise of eHealth as a mature new area of research. EHealth

technologies are radically transforming healthcare facilities by revolutionizing the way

they produce and process useful business information, which allows them to improve

their service efficiency, reduce internal costs and more importantly help to provide

better service to its patients [30, 9]. This type of developments are also strongly

backed up by governments searching to invest in ways to improve their healthcare

systems and at the same time reduce their maintenance costs [8, 14].

Recent investments made in eHealth have allowed the development of many Hospital

Information Systems (HISs). Those same technologies have been crucial in helping

deploy tools such as the Electronic Health Records (EHRs), Picture Archiving and

Communication Systems (PACSs) or even electronic prescription systems. While

there is undergoing research evaluating the real impact of these new technologies

in healthcare systems [35, 14], their mere usage has left hospital facilities highly

dependent on numerous different information systems, each playing a different role

in the everyday activities of the facility

Because of their criticity, these systems require effective monitoring mechanisms in

place so that in case of a failure, it is possible to quickly restore them to its normal

performance levels. Monitoring mechanisms also need to be placed and configured

accordingly to the needs of each different system. Bearing in mind that healthcare

facilities already possess a considerable amount of heterogeneous systems, each working

in completely different ways, the development of such a comprehensive monitoring

system constitutes a very costly and complex task.
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CHAPTER 1. INTRODUCTION 2

There is however and indirect complementary way of monitoring those systems. It

consists of directly analysing the network messages they exchange between them in an

unobtrusive way and therefore extract several meaningful metrics that can be used to

build an historic perspective for normal system behaviour. The monitoring of these

systems can then be made by determining whether in a certain point in time, the

current values for production metrics fall within the average values for the historic

values of these metrics.

1.1 Motivation

With each different system, the healthcare facility is also left with a big amount of

heterogeneous data scattered throughout its HISs. Important data such as application

logs, can also be considered as an important source of metrics to assess the good

functioning of the healthcare facility.

Such data can also be used to deduce meaningful information and trends about the

daily activity of the healthcare facility. For example, suppose one of the deployed

systems is used to schedule medical appointments. We could easily use the system’s

logs to try and identify the number of appointments scheduled during a certain period

of time. Such methods when generalized to a considerable number of different systems,

could easily produce significant data that could be used to build a knowledge database

from which meaningful performance metrics for the healthcare facility could be easily

produced [31].

The existence of a knowledge database for healthcare facilities containing performance

metrics for their everyday activities can be considered an important asset not only

from a monitoring point of view, but also from a management perspective. Such

information can be used to support more informed decision making about hospital

day to day management.

In order to build a knowledge database with more meaningful data, one could take

advantage of the logs produced by each system present in the healthcare infrastructure.

However, we would need to develop a system capable of extracting the log files

produced by all the HISs. However, this approach presents some problems. The

data used to build the database would be completely dependent of the quality of the

log files produced, and the extraction system would need to be able to interact with

all the different systems present in the healthcare facility, many of which have very

poor log facilities and cannot be easily improved.



CHAPTER 1. INTRODUCTION 3

Moreover, since heterogeneous systems use the network to exchange relevant business

related information, this presents a valuable extraction point for the data we can use

to build a more meaningful knowledge database from which new system with much

more useful metrics can be derived

1.2 Proposed Solution

The work detailed in this thesis aims to provide healthcare facilities with a system

capable of producing meaningful metrics by passively extracting network packets

directly from the network infrastructure and build a knowledge database with the

collected data from which new overall business metrics can be more easily derived.

Towards this goal, we take advantage of the integration techniques typically employed

by healthcare facilities to promote interoperability amongst their heterogeneous sys-

tems. By directly analysing network IP packets carrying HL7 and other eHealth

protocol messages, our system is capable of extracting meaningful data and build a

knowledge database rich with performance indicators about the healthcare facility.

Based on that same database, our system is then able to produce a series of charts

that can be used to support more informed decision making.

1.2.1 Objectives

The main goals of this thesis is to develop a system capable of extracting relevant data

from an hospital core network, and with it produce a knowledge database about the

performance of the facility. We have the following objectives:

• Technology Research. Identifying the current state of the art technologies

employed by hospital facilities and understanding the way their different com-

ponents interact and communicate.

• Architecture Design. Design a system architecture capable of efficiently

extract relevant data from the core network of an healthcare infrastructure in a

more unobtrusive way.

• Implementation. Develop and code the necessary components in order to

deploy the proposed architecture in a real healthcare facility.
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• Testing. Deploy our system’s implementation in a real large use case scenario

and analyse the results thus obtained.

1.2.2 Features

The main features of our proposed system are as follows:

• Dynamic Data Extraction. The information we are trying to acquire from

the network is gathered and archived in a dynamic way.

• Network Independent. The deployment of our systems’ architecture is inde-

pendent of the underlying network infrastructure of the facility. That is, as long

as we can place a node directly connect to a network where important hospital

business metrics are transmited, our system is capable of extracting the necessary

information without the need to reconfigure any internal hospital system.

• Centralized Data Access. The gathered data can be accessed from a single

point of our infrastructure, thus opening the possibility to create a series of other

subsystems that could use the meaningul data of our system to produce useful

services to the hospital institution.

• Graphical Display. Our system produces a series of actionnable charts from

the gathered information, thus allowing a quick and direct analysis of the col-

lected business related metrics from several hospital systems.

1.3 Outline

The next chapters of this thesis are organized as it follows:

Chapter 2 presents a brief overview of the current state of the art on technologies

typically used in modern healthcare facilities, as well as a series of challenges felt

by such institutions and their approach to solve them. In Chapter 3 we present a

proposal for the architecture of our system followed by its implementation details

and approaches used. The testing scenarios and the results obtained are detailed in

Chapter 4. Lastly Chapter 5 presents some final remarks and lays the ground for

future work.



Chapter 2

State of the Art

In the following sections we present an overview of the set of technologies that play

an important role in the core development of our system and in its architecture.

We present a series of standards used in the HISs and describe their importance

for developing a more integrated monitoring and business intelligence system in the

healthcare infrastructures.

2.1 Towards Integrating Healthcare Systems

Information systems present in modern healthcare facilities are essential tools to

increase the proficiency of medical care services. In fact, Buntin et al. shows that for

considerable larger healthcare organizations, the early investment in new health infor-

mation technologies has led to numerous benefits such as cost savings, improvements

in the overall performance of the facility physicians and even has shown encouraging

potential to increase patients empowerments by promoting the engagement in their

own treatment in more meaningful ways.[12].

Moreover, for academic research, Goldzweig et al. refer a substantial increase in publi-

cations related to the development and impact of healthcare information systems [24].

On the other hand, the authors in [24, 26], also refer the existence of an increasing

number of publications related to “patient-focused applications” which represents a

new side to the HIS, where the usage of such systems can fall almost entirely within the

responsibility of the patient instead of the healthcare professional, thus fully promoting

patient empowerment[20].

5
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On another work, the authors of [10] detail the effort made by the United States of

America to improve their own healthcare service. In fact, the author explains the

substantial monetary investment made to take advantage of the HISs present in each

healthcare infrastructure in order to build meaningful EHRs capable of gathering each

patients clinical history. According to the author, the existence of such an electronic

repository of data promotes each healthcare institution to engage in more communica-

tions and information exchanges processes, therefore allowing the institution, as well

as its workers to share meaningful information, and increasingly become more efficient.

Recent efforts made by worldwide healthcare facilities have also promoted an increase

in the parallel development of tools aiming to assist healthcare professionals in their

everyday activities[18, 32, 26]. However, this particular tendency is seen as the cause

for some problems in the long term. Namely, in [7], Barbarito et al. refer that

healthcare facilities experience major difficulties when trying to exchange data among

so many different and heterogeneous systems.

2.1.1 HL7 Standard

In order to try to solve the interoperability problems being felt in healthcare facil-

ities, developments were made in order to advance and adopt medical Information

Technologies (IT) standards for those type of services [7, 38].

One of the main standards employed for interoperability in medical IT infrastructures

is the HL7 standard [17]. The development of HL7 began in 1987 by an American

National Standards Institute (ANSI) accredited organization whose main goal, among

others, was to implement a standard for the management of patient data that could

be easily used by heterogeneous healthcare systems as a way to exchange data in more

meaningful ways [19].

MSH |^~\&| FRP ||||20130205180519|| OML ^021|68|T|2.5

PID |||495426445|| Doe^Jon ^|||M||| Street ^^City ^^^

OBR ||11112||6^ proteins

OBR ||11111||4^ urea

Figure 2.1: HL7 Version 2 Message Sample

Figure 2.1 represents an example of an HL7 message. According to the standard [27],

each HL7 message is composed by a set of segments (Message Header (MSH), Patient
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Identification (PID), Patient Visit (PV1), etc). Subsequently, each message segment

is composed by a series of fields and sub-fields, that should contain the actual data the

systems are trying to exchange. The HL7 functionality [27] is based on the existence

of certain types of events that trigger the creation of new messages. As such, each

new message created should somehow be the product of an action triggered either

by a healthcare professional or by different systems trying to exchange information

between them. Looking back to Figure 2.1 we can observe that one of the main fields

present in the MSH segment is the message type and message trigger event sub fields,

in this case OML and O21 respectively. By looking at the referred fields, one can easily

determine what type of event triggered the creation of the message. In this specific

case, a laboratory order triggered some system to create the HL7 message and then,

that same message can be used to inform other systems inside the healthcare facility

of the requested order.

Currently, version 2 of the HL7 standard is the most employed version among health-

care facilities worldwide [19]. When employing HL7 V2, the content of each message

is encoded in ASCII, the standard also allows for the creation of a certain level

of flexibility on what type of information passes on the HL7 segment fields. As a

result, many fields are allowed either to contain vague information or contain no

information at all. Although this type of flexibility can sometimes be desirable,

when used without care, it can sometimes invalidate interoperability between different

systems and therefore jeopardize the main intent for why HL7 was initially created. In

order to rectify this situation, the new HL7 version 3 standard now uses a Extensible

Markup Language (XML) language with much more precise syntax and semantics.

2.2 Healthcare Integration Engines

Assuming the existence of a standard for message exchanges in an healthcare IT

infrastructure, the integration between heterogeneous systems can be made in two

different ways. Either the sending system communicates directly to end receiver using

a message standard or an interface integrating engine is introduced at the healthcare

facility in order to interconnect several different systems.

In the first case, the usage of a message standard such as the HL7 may not be sufficient

to assure that heterogeneous systems can exchange information. Such challenge arises

due to the fact that even if software vendors in an healthcare facility both use HL7

as the message standard in their applications, they will hardly agree on the specific
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message and semantics format to use[15]. In practice, it is extremely difficult to

implement an end-to-end integration model that encompasses all software vendors

within an healthcare facility.

To allow different legacy systems to interconnect, healthcare facilities often employ

interface engines[15] to solve interoperability issues between systems even if they

use the same message exchanging standard. Interface engines are deployed as an

intermediary between different systems. Their method of operation can often be

resumed according to Figure 2.2. The interface engine starts by receiving an HL7

message from any HIS present in the healthcare infrastructure, applies a predefined

transformation to the message based on its source and destination and finally proceeds

to send it to one or more receiving entities.

Healthcare Information
Systems

HL7
Messages

Interface Engine

Message Transformer

Message Transformer

Message Transformer

Lab

Radiology

Billing

Figure 2.2: Interface Engine Operation

2.2.1 Mirth Connect Solution

An example of such interface engine is the Mirth Connect interface engine [34]. The

Mirth Connect project is mainly supported by a company whose main goal is to develop

health information systems capable of empowering hospital facilities with the latest

trends in technology and health standards. Also, as an open-source based system,

apart from the official company paid support, the Mirth Connect engine also has the

advantage of being supported by a large worldly community of users and developers.

Among others, Mirth Connect is able to operate under several different network

protocols such as Transmission Control Protocol (TCP), Hypertext Transfer Protocol

(HTTP) and File Transfer Protocol (FTP). More importantly, the system is able to
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understand several eHealh relevant protocols such as the HL7, Digital Imaging and

Communications in Medicine (DICOM) or even the National Council for Prescription

Drug Programs (NCPDP) standards.

One of the main advantages of using the Mirth Connect engine is the fact that apart

from supporting several “official” eHealth standards, the system is also able to operate

with any user customized message standard [11]. The feature of supporting raw ASCII

text allows a developer to create several custom text delimited standards and have the

Mirth connect reading those same messages. In doing so, the interface engine allows

the exchange of meaningul information to be made in a more standard independent

way.

Related to the message transformation and translation capabilities, when using the

Mirth Connect engine users are presented with numerous possibilities [11]. Due to the

fact that the system allows for the direct injection of JavaScript code to read, alter,

and finally rebuild a new message, developers are presented with an easy and efficient

way to apply any necessary transformations to any eHealth standard or custom set of

messages.

2.2.2 Microsoft Biztalk Solution

Another interface engine typically used in eHealth scenarios is the Microsoft Biztalk

server[33]. This server mainly functions as a business to business transaction tool,

contrary to the Mirth Connect interface engine that was especially developed for

eHealth scenarios.

As for supporting network communication protocols, like the Mirth Connect engine,

the Biztalk server is also able to cope with the main protocols used like the TCP and

HTTP protocols. However, one of its main disadvantages is the fact that supporting

the different eHealth protocols is not a functionality provided by its base system.

Instead, in order to provide the necessary support for eHealth related protocols like

the HL7, the Biztalk server needs the instalment of additional modules often called

“accelerators”.

Apart from the monetary costs associated with acquiring the platform, there’s also

the costs of substantially losing the freedom to develop and adapt the base system

according to the needs of hospital facilities since the Biztalk server was not built using

and open-source philosophy.
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2.3 Data Collection On Healthcare Facilities

Apart from difficulties in making different systems to interact together, healthcare

facilities also faced other types of challenges. Namely Konrad et al. in [29] describe

a recommendation system capable of automatically measuring the patients’ variance

from a clinical pathway which consists on the predefined course of treatment a given

patient should take depending on its pathology. As such, in order to track the clinical

pathway followed by each patient, the proposed system refers the need for the existence

of a reliable source of data where clinical information about each patient is fetched

and then analysed by the system. However, the authors point out that one of the main

challenges to the implementation of such a system was precisely encountering a reliable

source of information that already had all the necessary data aggregated for each

patient. Instead, what the authors encountered was a multitude of sources containing

the needed data, each containing the information in several different heterogeneous

structures.

In respect to the collection and aggregation of patient data present throughout an

entire healthcare infrastructure, authors in [36] address the challenges felt when try-

ing to acquire meaningful data from across multiple systems’ databases. The main

challenge resided in the fact that each system stores the exchanged information with

data schemas, models and even the query languages for databases, which vary widely

according to each system.

2.3.1 Data collection By Passive Recollection of Data from

the Network

By abstracting ourselves from the healthcare infrastructures and their own integration

systems, there are several areas where data collection is also necessary in order to

feed a given system with information. Such an example may be seen in areas such

as network traffic classification or even in Intrusion detection Systems (IDSs) or

Intrusion Prevention Systems (IPSs) where data is analysed through network “sniffing”

techniques so that IP packets can be dynamically checked for suspicious content and

therefore avoid potential network attacks.

In fact, passively extracting packets from a network and storing its data may also

be considered as a way to aggregate and process data from different given systems,

assuming they require network connectivity to exchange data.
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Academic literature provides an extensive overview of traffic classification techniques

employed by IDSs and IPSs[6, 13]. Such systems often rely on Deep Packet Inspection

(DPI) techniques in order to classify data traffic flowing through a network. In respect

to DPI techniques, one of the main challenges is associated with the processing costs

of having to analyse each packet structure as well as its contents in order to accurately

classify a given flow.

Cascarano et al. in [13] provides an insightful overview of several DPI techniques as

well as a set of optimizations that aim to reduce the costs of thoroughly analysing each

packet flowing through network without having to loose traffic classification accuracy.

In respect to the evaluation of each packet, [6] claims that the usage of finite automata

is the most widespread technique for packet pattern evaluation. Among others, string

matching and regular expressions may also be employed.

However efficient, when receiving considerable amounts of out of order TCP packets,

IPSs tend to start discarding packets since the actual reconstruction of the data flow

may be considered too computationally expensive. On the subject of passive network

traffic reconstruction there is an interesting report [22] describing a proposal for a

system capable of relieving the need to create log files on end nodes of a messaging

system . In order to implement such system, the authors placed an instance of the

Snort IDS / IPS tool, logging packets from specific TCP sessions on the network.

Those same log files were later used to reconstruct the set of messages transmitted

between the different end systems in the network, extract a predefined set of metrics

and then create a new better set of log files for the system.

Still on the subject of TCP stream reassembly tools, [23] refers that current imple-

mentations of stream re-assemblers are often seen on IPSs systems. However, from

an architectural point of view, an IPS is placed in-line with the TCP flows on the

network, so that connections can be cut off in case of an attack. The authors then

proceed to explain the usage and improvements made to the tcpflow tool in order to

develop a forensic tool capable of passively sniffing and reconstructing TCP streams.

By looking at the previous examples, methods that allow the TCP flow reconstruction

are often employed in architectures where a dump file is created containing the sniffed

packets from the network and is later used as an input to other systems responsible

for the analysis and reassembly of each TCP stream.



Chapter 3

System Architecture

In this chapter, we describe the architectural components of a system capable of

extracting performance metrics by passively monitoring the network traffic of an

healthcare institution.
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Figure 3.1: System Infrastructure

Our system is composed by five different nodes that work independently of each other.

Figure 3.1 depicts the overall interactions between the different components of our

12
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architecture. They are:

• Sniffer Node: Responsible for passively extracting network packets, re-assemble

HL7 messages and then store them in log/data files.

• Mirth Connect Node: Reads the log files produced by the “Sniffer Node”,

extracts a set of predefined fields from the HL7 message and stores them in the

“Database Node”.

• Database Node: Stores all the meaningful data extracted from each HL7

message gathered from the network infrastructure. The details related to the

data model used are further detail in Section 3.3.

• RESTful Node: Receives HTTP requests and responds to the clients with

information fetched from the database. In a general way, this node acts as a

proxy for our knowledge database. As for the RESTful API we further detail its

implementation in Section 3.5.

• Dashboard Node: Requests information from the “RESTful Node” and display

a set of charts with the information received from IP packets extracted from the

network.

By looking back to Figure 3.1 we can observe that our system’s source of information

is actually based at the network switch that connects to the hospital’s main interface

engine. That being the case, the only configuration requirement our system actually

needs from the institution services is a simple port mirror at the network switch that

will ensure that all the network traffic directed to the interface engine will be replicated

to the switch port where our “Sniffer Node” is connected.

In the following sections, we start by showing our approach in adapting an existing

tool which, in its final form, allows us to passively extract and reconstruct HL7

messages. The next step in our system consists on configuring an installation of

the Mirth Connect application that can poll the data previously gathered by the

“Sniffer Node”, extract the appropriate metrics contained on each segment of the

HL7 message and store them in the “Database Node”. Finally, we have developed a

dashboard application especially useful for monitoring purposes, capable of displaying

visual information directly provided by our RESTful API. Examples of such visual

information are the number of HL7 messages received during a given period of the day

or even a weekly comparison for the number of received messages in each day of the

week.
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3.1 Data Collection

Modern healthcare facilities rely on interoperability architectures to improve the func-

tionality of their services[37]. The use of such techniques aims to provide means that

allow for different healthcare applications and systems to exchange meaningful data.

As such, in order for this exchange of information to happen, we need a standard that

different applications must use in order to communicate with each other.

In order to achieve such level of interoperability in eHealth, information systems rely,

among others, on the use of the HL7 standard as one of the main tools used in order to

allow different systems to exchange meaningful data[36]. The usage of a well defined

message standard between several different application, presents an opportunity for us

to obtain the necessary data that allows us to build a performance measuring system

for healthcare institutions with many different applications.

On considerable sizeable infrastructures, the usage of such interoperability standards

relies on the presence of an interface engine. Such piece of software is responsible for

the transformation or translation of HL7 messages between different systems, therefore

allowing different end systems to communicate using a standardized message pattern.

The usage of such software presents a valuable opportunity for the extraction of the

required data from the network for our system. Considering the fact that the HL7

message traffic needs to pass through and be logged by the interface engine, we could

use those same logs to collect the data our system needs. However, such approach

presents some potential disadvantages. Namely, by following this approach the quality

of the data collected by our systems would always be subject to the quality or even

the existence of the logs produced by the interface engine. Another potential downside

to this approach concerns the fact that the extraction of the metrics our system

needs would imply a direct intervention on the interface engine itself. Assuming

that these particular points of the system, on considerable sizeable infrastructures

are typically subject to strain due to the amount of computational processing they

have to do, the positioning of our data collection point on these specific nodes would

have a negative impact on the overall system performance. Even assuming that a

particular interface engine is not subject to an excessive amount of computational

strain and that it could endure the placement a data extraction mechanism, the fact

that these systems are running in a production environment makes them a potential

“untouchable” system since the slightest miscalculation in their configuration could

lead to disastrous outcomes to the healthcare infrastructure normal functioning.

Since our initial goal aimed to provide a system for data extraction that would allow us
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to maintain a certain level of independence from the healthcare applications, a log file

bound approach did not present itself as capable of complying with our requirements.

However the existence of such interface engines on the network still represented our

best line of approach for efficient data collection points. As such, we decided that the

usage of network sniffing techniques on the network, where the interface engine receives

all the HL7 messages, represented our best hope in achieving a data collection point

that would comply with our initial goals. As such, this approach would still allow us

to extract an accurate image of the data the interface engine has to process without

the disadvantage of having to rely on the quality of its own logs or even having to add

additional layers of processing to the interface engine that could potentially translate

to an excessive strain to its often already strained processing capabilities.

3.1.1 Sniffing Process

Extracting the required data directly from the network at strategic points using sniffing

techniques fills the necessary requirements for our system. However, this particular

approach also means that our system needs to take additional steps in order to

guarantee that the information extracted translates itself into an accurate copy of

what the HL7 transformer receives. Namely, by using this approach, we need to

reassemble out of order TCP packets in order to acquire HL7 messages exactly as seen

by the facility integration engines.

In fact, the task of having to reorder TCP packets that are directly sniffed from the

network presents itself as one of the biggest challenges in the design of our system.

When trying to reconstruct HL7 messages from TCP packets we had to keep in mind

that the HL7 standard may be used to transfer potentially large sets of data such as

pdf files or in worst cases, heavy radiology imagery. This particular fact, causes a

significant restriction in the design of our system. The reconstruction of all the TCP

packets sniffed from the network could not be done in memory since we could easily

end up consuming all the memory of the system in such cases where the HL7 message

we were trying to reassemble consists of a extremely large set of data.

We have therefore decided to use a slightly modified version of the tcpflow [28] tool.

This particular tool in its unmodified form, allows a user to sniff TCP packets directly

from the network, at the same time that it reconstructs and logs all the data from the

different TCP connections it detects flowing through the network. One of the most

attractive features of tcpflow is its ability to reconstruct and log the data transmitted

in a TCP connections without having to maintain all the data from each packet in
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memory.

Although tcpflow is able to provide us with the requirement of not using the system

memory for the reconstruction of the data transmitted through different TCP con-

nections, in its unmodified version, this tool also presents some potential drawbacks.

Namely, tcpflow was developed so it could serve as a debugging tool. As such, it lacked

certain dynamic aspects to its behaviour. For example, in its base implementation,

tcpflow is able to determine the start of each new TCP connection but in contrast, it

is unable to determine the end of a connection. As such, each file descriptor associated

with the log file in question is always kept open in the underlying operating system.

Therefore, as long as there was an instance of tcpflow running on the operating system,

the log files produced by this tool could never be used by another entity and as such, we

would never be able to give further treatment to the data extracted from the network.

It was precisely this static aspect that we tried to change with our modified version of

tcpflow.

In what follows, we present a more detailed description of the overall architecture and

techniques used in the extraction and reconstruction of the necessary data flowing

through the network and also all the main modifications we have made to the base

implementation of tcpflow.

3.1.1.1 tcpflow Data Extraction Pipeline

tcpflow makes use of a small data structure that it calls a flow (Code Block 1) to track

each active TCP connections on a given network. Each flow keeps information about

each TCP connection such as its source and destination ip addresses, its source and

destination ports, the first sequence number detected and also the path to the log file

allocated for this TCP connection. Concordantly, all of these flow structures can be

accessed by consulting an hash table where all the flow structures are kept in memory.

tcpflow also makes use of the popular libpcap library to be able to function as a

network traffic capturing tool. By using such a library, tcpflow is able to capture

all the packets in its raw form directly from the Network Interface Controller (NIC)

connected to a given network. In a general way, each packet captured by the NIC, is

passed to a specific function that is responsible for analysing the packet at a specific

layer (network, transport, datalink, etc).

Figure 3.2 further illustrates how each packet captured is handled by the tcpflow tool.
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typedef struct {

2 u_int32_t src; /* Source IP address */

u_int32_t dst; /* Destination IP address */

u_int16_t sport; /* Source port number */

5 u_int16_t dport; /* Destination port number */

tcp_seq isn; /* First seq number we’ve seen */

FILE *fp; /* Pointer to log file */

8 } flow_t;

Code Block 1: flow structure
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Figure 3.2: General packet handling

Each packet starts by being captured by the NIC and then passed to a series of

functions each responsible for striping down a specific Open Systems Interconnection

(OSI) layer of the packet while the core of the packet processing is then done at the

transport and application layers. In respect to the transport layer, this precise point

will contain all the necessary information our system needs to re-assemble out of order

packets. That is, since TCP is the main protocol used to exchange HL7 messages

between different systems, at the transport layer of the OSI model, where the TCP

resides, our system is able to fetch the TCP sequence number so that we can determine
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the position of the data the received packet is transporting in the overall data set.
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Â INDEX = hash(ipsrc, ipdst, tcpsport, tcpdport)

Index

src = 192.168.1.1
dst = 192.168.1.2

sport = 1025
dport = 1026

isn = 34584323
*fp = /home/foo-bar/log

Flow Structure

Received Packet

Figure 3.3: Transport layer processing

Figure 3.3 gives us a more insightful vision of the processing done to the captured

packet at the transport layer. tcpflow starts by extracting both the source and

destination IP addresses, as well as the source and destination ports given from each

TCP packet. Based on this extracted information, a unique hash index is calculated.

This hash index is then used to access the hash table of flow structures in order to

verify if we already have a flow allocated for that stream. In the next step we verify

which flags are active in the transport layer header. By looking at the flags, we can

determine if we are in the presence of a packet that contains any payload with relevant

data. If the packet simply contains a SYN flag, then we can assume that this will be

the start of a new TCP connection and all we have to do is just allocate memory for a

new flow structure that represents that same connection. On the other hand, a packet

containing an active FIN flag triggers the necessary functions that aim to close the file

descriptor associated to its log file as well as the removal of all the structures associated

with that respective TCP connection. At last, a packet containing an active PSH flag

means that the packet in question contains useful data in the payload segment. In

that case, the payload segment of the packet is subject to further processing in order

to extract and save all the necessary information our system needs.

Figure 3.4 further details the processing done to the payload layer of the captured

packet. At this stage, tcpflow is responsible for extracting and writing the data
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Figure 3.4: Data payload processing

contained in the payload segment of the packet. Given that the tool does not maintain

in memory any other data other than a small amount of information that allows it

to make a distinction between different TCP connections, tcpflow needs to write the

data contained in the packet already in the correct place in the log file even if the

packet arrived out of order. Such task is possible due to the fact that each TCP

packet contains in its header a sequence number that allows us to identify the correct

place where the data we received is located in the overall stream of data transmitted.

Therefore, all tcpflow needs to do is to store the first seen sequence number in a given

TCP connection. After that, for each packet received, we check the sequence number

contained in the TCP header of the packet and subtract it to the first seen sequence

number. The number then obtained indicates where in the log file the data we just

received belongs. By using this approach, tcpflow avoids having to store in memory

any data contained in the packet payload and instead it calculates where in the file

each piece of data must reside, uses the seek Linux system call to adjust the current

writing position of the log file and finally writes the data in its proper place.
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3.1.1.2 tcpflow Modifications

Given that our overall system is based on the extraction of HL7 and other eHealth in-

teroperability protocol messages, our custom modifications to the behaviour of tcpflow

were made so that its final version could produce log files containing a series of

HL7 messages, each associated with the timestamp of its capture. Also, since the

extraction of these messages aimed to produce a system that could provide almost

real time information about the state of an healthcare institution. Instead of keeping

each file descriptor open indefinitely to keep adding new received data to it, our

data extraction architecture needed to improve tcpflow so that it could perform the

additional functions:

• Create a new log file for each new TCP connection detected;

• Recognize the beginning and the end of different HL7 messages transmitted

within the same TCP connection;

• Timestamp each HL7 message with the time of the capture

• Close the file descriptor associated with the log file when a TCP FIN packet is

detected;

• Close the file descriptor associated with the log file when it contains a predeter-

mined number of HL7 messages;

• Close the file descriptors associated with the files for which their respective TCP

flows have been inactive for a given amount of time;

• Move all the closed completed log files to a given directory of the system for

further processing;

Based on these requirements, we needed to implement additional steps in the overall

tcpflow packet processing pipeline.

To associate the a timestamp with each HL7 message we first had to look at the first

bytes of each message in order to determine an expression that could unequivocally

indicate that we were in the presence of a new HL7 message. As such, after analysing

a sample of the log files produced by the unmodified version of tcpflow we determined

that each new HL7 message is preceded by the vertical tab American Standard Code

for Information Interchange (ASCII) control character (“\x0b”) followed by a “MSH”
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segment defined in the HL7 standard. As such, in the packet processing pipeline,

before the writing to the log file, we firstly need to introduce a small verification of

the first 4 bytes of data and compare them to the following string: “\x0bMSH”. If

the data corresponds to the expression we are looking for, then we extract the current

epoch value in milliseconds directly from the gettimeofday system call implemented in

the GNU/Linux kernel. We then use that same epoch value and write it to the log file

together with the data contained in the packet. By doing so, we can easily associate

each message with a timestamp that corresponds to the approximate time when the

packet arrived at the HL7 transformer without introducing too much overhead to the

packet analysis pipeline.

Another set of modifications made to the tcpflow consisted in developing means for it

to stop functioning solely as a debugging tool and to start having a more dynamic role

in the extraction of the HL7 messages. Namely, we needed the tool to start closing the

file descriptors of the log files so that they could be further processed by other tools.

We thus started by stating a set of conditions where tcpflow should consider a given

TCP connection as finished and proceeded to close all the file descriptors associated

with that connection. Namely, the conditions to close a given file descriptor are:

• A TCP FIN packet is received;

• The log file of a given flow exceeds a predefine amount of HL7 messages;

• A given TCP connection exceeded a predefined amount of time without trans-

mitted any data;

By developing a way for tcpflow to close the file descriptors of the log files when the

previous conditions are met for a given TCP connection, we can guarantee that the

modified tool does not stay indefinitely writing data to a given file without ever closing

it.

Again, when adding these features to tcpflow we need to keep in mind that we

can eventually end up losing packets if we cause too much overhead during packet

processing, and as such our modifications need to be as efficient as possible.

In its original implementation, tcpflow never checks for the presence of an active FIN

flag in the TCP header since it never needs to give any special treatment either to the

log file nor to its internal structures. It simply ignores packets in that condition. Since

we required the closing of the file descriptors associated with a log file when an active

FIN flag was detected, we needed to add a small verification for any special active flag
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in the TCP header of the packet. To do this flag verification as efficiently as possible

we use bitwise operators to find any active flag in the TCP header. As such, suppose

there is packet with the TCP header flag segment w, and the variables f = 0x01(hex)

and a = 0x10(hex) respectively represent the FIN and ACK flag values for any given

packet, then w⊕ (f ∨a) yields us the value 1 if the TCP header has the FIN and ACK

flags set as active. By adding this small verification to the packet handling pipeline

we were able to filter any packet containing an active FIN flag. For the packets that

verified the previous condition, we close the file descriptor associated with its log file,

moved the respective file to a predefined directory and proceeded to free any memory

associated to that particular TCP connection.

In order to keep track of the number of HL7 messages contained in a given log file

we decided to take advantage of the verification we were forced to do in order to

associate a timestamp to a given message. To do so, we reserved another 4 bytes

to the tcpflow flow structure implementation in order to store an integer value. As

such, every time we tested the condition to verify if the packet contained the start

of a new HL7 message, we firstly verified the value contained in those 4 bytes and if

that same value exceeded a preconfigured threshold, then we close the file descriptor

associated with the respective TCP connection log file and restart its flow structure

before logging the data contained in the packet currently being processed. Otherwise,

we increment the value contained in those 4 bytes in order to keep track of how many

HL7 messages we already stored in the log file.

Finally, keeping track of the TCP flows that haven’t sent any data in a predefined

amount of time proved to be the biggest challenge in our set of modifications made

to the original tcpflow. In fact, having an hypothetical solution where we would need

to iterate over all the flow structures and check the timestamp of the last known

transmission against the current system time could prove to be too computationally

intensive when the number of active flow structures was too large. Our solution to the

problem consists in taking advantage to the features of multi-threading implemented in

the pthread [3] library. By doing so, we are able to run all the necessary verifications

in order to look for any inactive TCP connection separately from the main tcpflow

thread of execution. Although the use of multithreading allows us to run a certain

part of the code concurrently, we also inherit some of concurrency problems. We now

have to take into account problems that arise by lack of synchronization from both

threads when trying to access critical sections of the code and that could ultimately

lead to deadlocks in the program. To solve such problems, we use mutual exclusion

functions and structures implemented directly in the pthread library.
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To find inactive TCP connections, we decided to keep a concurrent thread periodically

running that would inspect the modification date of all the log files currently being

processed. By looking at the modification time of each log file, we were able to

determine if there had been any recent writings to the file, which would mean that there

had been recent data being transmitted in that given flow. This approach however

leads to one particular problem. During the time that our thread was running and

inspecting the modification dates of our log files were not able to give further treatment

to new packets that had been sniffed from the network since this would imply that both

threads were trying to access critical sections of the code at the same time. In order to

solve this problem we had define a synchronization mechanism on both threads that

could allow us to inspect the log files without having to drop any packets while waiting

for that inspection to finish. We therefore took advantage of the fact that the libpcap

implementation makes use of a buffer in which it stores the packets sniffed from the

network until a certain function is called to consume the packets.

The synchronization of both threads can be achieved by using mutual exclusion (mu-

tex ) techniques directly implemented in the pthread library. In our system’s implemen-

tation we use a mutex as flag which only one executing thread can hold at any given

time. That is, suppose we have several running threads in one application. A mutex

can be seen as a variable shared among the different threads and it can only have two

different states, either it is in an unlocked or in a locked state. As such, when trying to

synchronize concurrently running threads, each thread will first try to acquire the lock

on the mutex. From this action we can have two possible outcomes, either the mutex

is unlocked and therefore the running thread can go ahead and acquire the lock on the

mutex and continue executing or the mutex is being held by a different thread which

will cause the thread that is trying to acquire the lock to wait for an opportunity to

hold the lock on the mutex itself.

In the specific case of our system, the main thread contains a function where packets

are sniffed from the network and then added to a buffer where those same packets

are subsequently consumed and its data logged into a given log file. This behaviour

continues until the periodic thread checks the modification time for each log file. When

the program reaches this state, the periodic thread attempts to acquire the lock to a

given mutex, the result of that attempt can lead to two possible outcomes. Either the

mutex is already locked by the main thread or the mutex is free and can therefore be

locked by the periodic thread. In the first case, if the mutex is already locked by the

main thread, the periodic thread will enter a state where it will wait for the lock to be

released by the main thread. On the other hand, if the mutex is already available, the
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periodic thread immediately acquires its lock and then proceeds to evaluate each log

file modification date to determine if a given flow is to be considered closed. In doing

so, we create a well defined mechanism in which both threads first need to agree which

one of them is to be given access to a critical section of the code. As for the problem

of not losing any packets in the main thread while the periodic thread is running,

the libpcap sniffing buffer solves that problem automatically for us, since even if the

periodic thread takes too long to run, the main thread keeps waiting for a lock in the

mutex in a state where it keeps adding the sniffed packets to a buffer and when the

lock is finally acquired, the packets contained in that buffer are going to be consumed

and its data logged in the respective log files.

This solution, however simple is not without problems and as such in using this

previous thread synchronization we introduce another problem. The buffer for the

sniffed packets implemented in the libpcap is implemented in memory and as such we

have to guarantee that the buffer has enough space to hold all the necessary packets

while the periodic thread is running. Otherwise, if the buffer if full the new packets

will start to be discarded by the NIC and we lose the possibility to log its data. This

particular problem can be solved, at the cost of consuming more system memory, by

using the pcap set buffer size() call, where we have the possibility to set a custom

size for our buffer, therefore guaranteeing that we have enough space to hold all the

packets received while periodic thread is running. Another downside to the use of such

approach concerns the timestamping of each HL7 message. As previously stated, the

timestamp associated to each message is set at the time of the logging and as such,

if the periodic thread runs for too long, the packets waiting in the libpcap buffer will

experience a small delay in its associated timestamp. As such, the timestamp of each

message will tend to represent the time of the logging instead of sniffing. One possible

solution to this problem would be to force the usage of NICs that allow hardware

timestamping of each packet sniffed from the network. By using such devices, the time

that each packet spent on the sniffing buffer would no longer influence the timestamp

our system uses to determine the time of the message.

As a final result, our data collection tool, dynamically logs all HL7 messages in different

files, one for each TCP connection detected in the network. Figure 3.5 shows a sample

log file generated by our modified version of tcpflow. As we can see, each message

starts by a thirteen digit timestamp representing the number of milliseconds passed

since the 1st of January of 1970. The timestamp is then followed by the contents of

the HL7 message, each separated by a vertical tab ASCII control character (ˆK) and

ending with a file separator ASCII control character (ˆ\) followed by a carriage return
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1398186096506ˆKMSH|ˆ˜\& |PSCRIBE | |RDHL| |20021021070646 | |ORUˆR01 | |P | 2 . 3
PID | | | 1 2 3 4 5 | |DoeˆJon | . . .
PV1 | | I | IQ ˆ 3 6 3 ˆ 0 7 | | . . .
OBR| 1 | P123 | F123 |502ˆCHEST XRAYˆL | | | | | | | | | | | | | | | | | | | | | | | 1
OBX| 1 |ED|502ˆCHEST XRAYˆL | |WordˆTEXTˆˆBase64 ˆ/9 j /4AAQSkZJR . . .

ˆ\ˆM
1397579547939ˆKMSH|ˆ˜\& |PATHNET | | | STJO AZ |20040718235800 | |ORUˆR01 | |T | 2 . 5
PID | | | 1 1 9 4 2 0 0 | |DoeˆJon | . . .
PV1 | 1 |GENERAL|EMRW ÊMRWˆ 0 1 | . . .
OBR|1 |000000002 |0000420002354ˆLA | . . .
OBX| 1 |NM|1000050ˆBUN | | 9 |MG/DL | 8 − 2 4 | . . .

Figure 3.5: Log file Sample

character (ˆM).

Since the log files produced by our sniffing tool do not represent a valid HL7 message

format, before sending each log file for the next processing, we first need to apply

some transformations to its contents. Namely, the placement of the capture timestamp

within the HL7 message would need to be corrected in order to produce a log file that

could be directly accepted by our Mirth Connect node. As such, we took advantage

of the fact that the HL7 message standard provisions a set of custom segments called

Z segments that allow for the placement of any kind of data within the HL7 message

structure. Therefore, in order to produce a valid HL7 message based on each log file,

we developed a small tool we called hl7 transformer that simply reads each log file

in a specified directory, extracts the timestamp at the start of each HL7 message and

places it in a valid Z segment at the end of the message.

Figure 3.6 represents the final format of the HL7 log files produced by our Sniffer

Node.

3.2 Integration With Mirth Connect

Another component in our infrastructure is the HL7 log files analyser. The log files are

generated during the data collection phase and are composed by a multitude of HL7

messages. We need a tool to parse each message and extract the relevant data fields.

We thus decided to take advantage of the Mirth Connect integrator engine whose main

advantage consists on its interoperation engine which already possesses numerous tools

that can efficiently handle the different types and flavours of HL7 messages.
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MSH|ˆ˜\& |PSCRIBE | |RDHL| |20021021070646 | |ORUˆR01 | |P | 2 . 3
PID | | | 1 2 3 4 5 | |DoeˆJon | . . .
PV1 | | I | IQ ˆ 3 6 3 ˆ 0 7 | | . . .
OBR| 1 | P123 | F123 |502ˆCHEST XRAYˆL | | | | | | | | | | | | | | | | | | | | | | | 1
OBX| 1 |ED|502ˆCHEST XRAYˆL | |WordˆTEXTˆˆBase64 ˆ/9 j /4AAQSkZJR . . .

ZTS |1398186096506
ˆ\ˆM
MSH|ˆ˜\& |PATHNET | | | STJO AZ |20040718235800 | |ORUˆR01 | |T | 2 . 5
PID | | | 1 1 9 4 2 0 0 | |DoeˆJon | . . .
PV1 | 1 |GENERAL|EMRW ÊMRWˆ 0 1 | . . .
OBR|1 |000000002 |0000420002354ˆLA | . . .
OBX| 1 |NM|1000050ˆBUN | | 9 |MG/DL | 8 − 2 4 | . . .
ZTS |1397579547939

Figure 3.6: Final Log File Sample

A Mirth Connect engine typically serves a connector between different eHealth sys-

tems. Namely, this tool allows different applications that use the HL7 standard

to communicate with each other by applying transformations to the HL7 messages

that are necessary for data to be transferred in a meaningful way between those

applications.

In our monitoring infrastructure, Mirth Connect plays a much simpler role. As

illustrated in Figure 3.7, its main use is to read each of the log files produced by

our modified version of tcpflow, extract the necessary metrics according to the type of

each HL7 message and insert that data into a MySQL database.

HL7 Msg 4

HL7 Msg 3

HL7 Msg 2

HL7 Msg 1

HL7 Msg 0

NFS Log Folder

HL7 HL7 HL7HL7

HL7 HL7 HL7HL7

HL7 HL7 HL7HL7

Channel 0

Channel 1

Channel 2

Channel 3

Extract DataHl7 Message
Stack

Mirth Connect

MySQL
Database

Poll Files

Figure 3.7: General Mirth Connect usage
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To accomplish such task we used what Mirth Connect designates as channels. A

channel can be seen as a pathway for any message in which we configure any given

source of data, a set of transformations to apply to the data received and finally we

store or send to a predefined destination the transformed result. In a sense, a Mirth

connect channel acts as a specialized router for standardized messages where we have

the possibility to apply transformations to the contents of the data received and then

reroute it to any given address.

We thus configured a Mirth Connect server with a series of channels each of which acts

similarly to a pipeline, where each channel routes, transforms and/or extracts some

data from each HL7 message. Our main goal in adopting this strategy was so that

we could have a single channel with the responsibility of polling all log files previously

generated by our system, queue them and then send a copy of each HL7 message

present in that file to a series of different channels where each one of them would do

a specific function to the message. We then take advantage of concurrency by having

each Mirth Connect channel running on separate thread and therefore we can a take

advantage of a multiprocess system.
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HL7 Msg 3

HL7 Msg 2

HL7 Msg 1

HL7 Msg 0

NFS Log Folder

HL7 HL7 HL7HL7

HL7 HL7 HL7HL7
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Channel Slow

Extract DataHl7 Message
Polling Channel

Mirth Connect

MySQL
Database

Poll Files

Figure 3.8: General channel pipeline

Figure 3.8 shows our Mirth Connect channel structure for our monitoring infrastruc-

ture. We start by having a channel that keeps polling all log files present in a given

directory. Each file is then opened and a copy of each HL7 message present in that

same file is sent to two different channels.

Since our system needs to display real-time performance metrics, the data extraction

process requires a channel configuration capable of dispatching each HL7 message as
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quickly as possible. On the other hand, the extraction of all statistical useful data

requires a more thorough processing for each message and therefore it is much more

computationally intensive and more time consuming. Hence the separation of the data

extraction process in two different channels.

In the fast channel, the system is responsible for extracting simple data present in

all HL7 messages independently, of their type. In our specific case we extract the

following fields present in the MSH segment for each HL7 message:

• Sending Application. Uniquely identifies the application that sent the HL7

message;

• Sending Facility. Identifies the organization of the application that sent the

HL7 message;

• Receiving Application. Uniquely identifies the application that received the

HL7 message;

• Receiving Facility. Identifies the organization of the application that received

the HL7 message;

• Message Type. Identifies the type of the message and therefore allows the

system to recognize a set of possible next segments;

The fact that, in the fast channel, our system only stores this small amount of data

makes the gathering of meaningful information a really fast process and in doing so,

we allow our system to display real-time performance metrics related to the number

an type of HL7 messages exchanged between the different systems in the institution.

This particular functionality can be especially useful in a system monitoring situation

where a dashboard can be dynamically updated with the number of received messages

in the last minutes. In doing so, we can quickly assess if any given hospital system

has stopped functioning if for instance, the dashboard stops reporting exchanged HL7

messages.

As for the second channel, its main objective is to thoroughly parse each HL7 message

and extract all the necessary data. Depending on the type of each HL7 message, we

might extract different parts of the message and store them in the database. In order

to efficiently differentiate the way we handle each type of message, we decided to apply

the usage of channel filters directly implemented in the Mirth Connect engine.
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Figure 3.9: Second channel network

A channel filter can act as an controlling mechanism that can either accept or reject

a given message. As such, when a message arrives to a channel, before applying any

transformation and/or routing to the message, the interface engine passes the message

through a filter. When configuring a channel filter a user can essentially specify a set of

rules that any given messages must have in order to be accepted for further processing.

One of the most basic channel filters that can be applied consist on creating a set of

rules that aim accept only messages of a given HL7 type, therefore dropping any

undesirable message types.

We can thus create an even more specific network of channels where each one of them

will handle a different type of message. Figure 3.9 shows our channel infrastructure.

We take advantage of the fact that each Mirth Connect channel is able to run con-

currently and in doing so, we may have different types of messages being handled at

the same time. Each message starts by being transferred from our file polling channel

to our deep inspection channel. After receiving a new message, the deep inspection

channel passes the message through a series of filters where it will look at the HL7

message type field and according to its value it redirects it to the appropriate channel.

Since the HL7 standard defines each message with a type followed by a trigger event

field, it is possible that messages with the same type field have the same type of data

but on different segments of the message. Therefore, after the HL7 message arrives to

its appropriate channel, we use another set of filters, this time to differentiate messages

with the same type but with different trigger events fields. After all the filtering and

redirection process, we can now be sure that each message that arrives in a specific

channel will have the data in the correct positions we are expecting and as such, all

we need to do is write the desired data to the database.
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3.2.1 Post-Extraction Process

Apart from the data extraction process, we also felt the need to have a set of different

debugging and validation tools that can track any problems encountered during the

data extraction process, as well as a backup system for each HL7 message received.

We relied on some of the already implemented functionalities on the Mirth Connect

engine. As such, we configured each Mirth channel to log all the HL7 messages.

This configuration was especially useful in determining the effectiveness of the filters

installed in some channels. As such, by analysing the logs produced by the Mirth

Connect engine, we were able to assert that all the messages received were following

the desired path in the channel network and therefore they would arrive at our desired

extraction point.

In respect to the archiving of each log file received, Mirth Connect allows the possibility

to make a copy of each file received and store it in a predefined directory. After

processing all the messages in a give log file, we store its contents in a given filesystem

directory and add a timestamp to its file name. We also wanted to have the possibility

to analyse problematic messages that produce errors during the processing stage and

segregate erroneous log files to a different archiving directory. This archiving strategy

duplicates the storage space needed for the node where Mirth Connect runs. We thus

decided to use the sniffer node as a backup system for our archived HL7 messages. As

such, we created a simple cron job that every day during night time would compress

all the archived HL7 messages in a tarball and send it to the sniffer node using rsync.

We were thus able to create an archiving system for the processed HL7 messages, at

the same time that we have a backup on another node that would help us restore our

system in case of a catastrophic database loss.

3.2.2 Scaling

The Mirth Connect engine presents a great advantage for our system. Not only it

facilitates the whole process of data extraction from HL7 messages but also presents

some possibilities if the system needs to scale up in order to support an increase of

network traffic related to meaningful eHealth data. Since our system currently relies on

the existence of an HL7 message connector infrastructure where all HL7 traffic passes

through, our system could evolve alongside with the healthcare infrastructure in two

different ways. Either the HL7 connector suffers an upgrade and begins processing

more traffic or a different HL7 connector is installed in the infrastructure and the
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traffic gets divided between the two connector nodes. In either case, we believe that

our infrastructure is able to adapt to these changes without having to redesign most

of its implementation.

If the healthcare infrastructure increases the traffic flowing through the HL7 con-

nector then the adaptations in our system infrastructure should be relatively simple

to implement. Namely, assuming that our “Sniffer Node” is able to withstand the

traffic increase and capture all the packets in the network all we need to do is add

another channel responsible for polling log files. so, However, the latest version of

the Mirth Connect engine does not allow the existence of multiple channels polling

files from a single shared directory. This behaviour is due to the fact that Mirth

Connect implementation does not have any mechanism responsible for syncing multiple

channels when reading from the same directory and in lacking such a mechanism we

might end up having different channels both reading the same file and therefore we

could contaminate the database with repeated messages. One possible solution for this

problem is to configure our modified version of tcpflow to maintain a list of possible

log directories and when writing a file, all we needed to do is to randomly choose from

a predefined set of directories to create the log file. Assuming those directories are

made accessible to the Mirth Connect Node through a network protocol capable of

sharing directories between two different nodes like for instance the NFS protocol, we

would then be capable of having multiple channels responsible for polling the log files,

given that they are configured to use different directories.

As for the second case, the introduction of multiple HL7 connectors in the network

infrastructure of the healthcare facility could also be easily adapted in our infrastruc-

ture. The solution is to have multiple sniffer nodes on the network, one for each new

HL7 connector. In the Mirth Connect all we have to do is add new channels for polling

log files produced by the multiple sniffer nodes.

3.2.3 Additional Usages and Advantages

The Mirth Connect engine also presents some additional advantages, we can use that

same interface engine instance as a source of HL7 messages for other systems residing

at the healthcare infrastructure and make it act as another integrator.

One potential problem that such an integration model could help to resolve, resides

with the fact that each HL7 message may contain susceptible information about

patients of the healthcare infrastructure and as such, the disclosure of such information
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may be considered a severe breach of privacy. It is possible to develop a network

of Mirth Connect engines similar to the one presented in Figure 3.10 to create an

anonymization channel that would remove any type of sensitive data and proceed to

send the anonymized HL7 message to a given set of different destinations, therefore

guaranteeing that the next nodes do not receive any kind of patient sensitive data.

NFS Log Folder

HL7 HL7 HL7HL7
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HL7 HL7 HL7HL7

Poll Files
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Hl7 Message Anonymizer
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Figure 3.10: Mirth Network

According to the HL7 message standard, patient related information should be placed

in a specific segment called “Patient ID” (PID) segment. This segment often transports

information like the patient name, address, sex, date of birth etc. Since this type of

sensitive information is gathered in a single HL7 segments it is possible to simply

remove that segment from the HL7 message thus removing any type of sensitive

information related to the patient.

3.3 Production Database Model

In order to have a database that can efficiently store the data our system collects we

developed the model presented in Figure 3.11. As illustrated, the main “Message”
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Figure 3.11: Database Model

entity contains an incremental id that uniquely identifies each entry in our database

followed by a timestamp related to the time of extraction from the network. The

“Message” entity is also related to three different other entities, them being:

• Source. Determines the source of the HL7 message. It can be uniquely identified

based on its facility and application fields;

• Destination. Similarly to the “Source” entity, the “Destination” is also com-

posed by a facility and an application field;

• Type. The type of the HL7 message can be decomposed by its message type

and trigger event fields;

The previously enumerated data consists on a set of information that can be directly

extracted by any given HL7 message and thus can provide our system with useful

information.

3.4 Statistic Production

In order for our system to be able to display useful information about the level of

performance of a given healthcare institution we firstly needed to find a reliable base

of comparison for each metric. That is, suppose we are evaluating the number of
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medical appointments performed on a given day, in order to understand if the current

metrics are within expectable ranges, our systems first needs to have a reference value

that provides a base of comparison for the number of expected appointments on a

given day.

3.4.1 Data Warehouse Approach

In order to obtain the previous requirements, we decided to apply some data warehouse

techniques to the database containing all the captured data. By doing so, our system

is able to gain some advantages.

The creation of a data warehouse model for a given production database is able to

provide meaningful aggregated data about the stored information. That is, in the case

of our system, the construction of a datawarehouse model whose main aggregation

value is the time of extraction of each message is able to directly provide useful

statistics like for instance the number of HL7 messages exchanged between two different

systems in the last hour. Although this type of information can be calculated from

the production database, the main advantage in this approach is that these kinds of

information can be directly fetched from our datawarehouse, thus relieving the main

database from unnecessary heavy queries. Also, deriving from the fact that useful

timely aggregated data can be gathered by querying our datawarehouse, our system

is able to respond much more quickly to information fetches since it can obtain all the

necessary information directly by querying our datawarehouse.

When using a datawarehouse, we can also obtain other advantages apart from having

the ability to quickly obtain meaningful data. Based on the information our system

gathers from the HL7 messages, we can also build a model containing information

related to what can be considered as the normal functioning of the hospital institution.

Suppose we want to find out the average number of laboratory orders requested in a

single day. If again, we build our datawarehouse it containing information in a timely

aggregated manner, we can, for instance, show the number of laboratory requests

made each day in the last month. Based on the results obtained we can thus obtain

an average number of messages the hospital facility is expected to receive in any given

day of the week.
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3.4.2 Datawarehouse Fact Tables

Using aggregation operators as one of the main tools used to produce datawarehouse

models [25], the quality and the relevance of the information contained in it is mainly

subject to the schema used in the datawarehouse fact table.

In a datawarehouse, the fact table represents the main table where information is

stored. Its schema can be divided in two parts:

• Dimensions. The dimension fields in the fact table mainly represent the fields

we are trying aggregate our data. For instance, in our scenario the time of

capture and HL7 message type can be two interesting metrics for which we may

desire to have an aggregated view of our data;

• Measures. The measures provide the actual numbers we wish to obtain. That

is, suppose we choose the total number of messages as one the measures for our

fact table and that the dimensions are the time of capture and the HL7 message

type, then our datawarehouse model would be capable of answering questions

like the total number of laboratory orders requested yesterday;

In the topic of datawarehouses, an important factor to take into consideration is related

to the grain of the data we are trying to gather. The grain, in datawarehouse model

can be seen as the minimum level of detail we want our data to have. This specific

concept is especially important when using “time” as one of the dimensions of the

fact table. In that context, the grain will represent the minimum accuracy we want in

our data. So for instance, in our systems’ scenario we may choose to have a grain of

seconds, minutes or even hours.

3.4.2.1 Building the Datawarehouse

In order to build our datawarehouse for the information gathered from the HL7

messages we started by creating the structure of our fact table (Figure 3.12).

In our particular case, we decided to use three fact tables so that we could have

multiple timely aggregated perspectives into the data we collected. To achieve that,

each fact table has a different grain, namely we used 15 minutes, 30 minutes and 1

hour as the grains for our different fact tables. As for the dimensions, we used the

time of capture, the type and trigger event of each HL7 message and finally for the

measures fields we used the minimum, average and maximum number of messages.
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Figure 3.12: Fact Table Structure

Looking back to Figure 3.12 we can observe the relational model of our fact table.

The dimensions are essential foreign keys that point to other simple MySQL tables

where the actual data resides. On the other hand, the measures represent the actual

metrics we desire for any given combination of dimensions. For instance, Figure 3.13

provides an illustration of how the data is actually connected and we can actually

draw meaningful information from it. By analysing Figure 3.13 we can assess that on

the 2nd of May of 2014 at 10:30 AM our system received a minimum, average and

maximum of 123, 156 and 170 messages respectively.
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Figure 3.13: Fact Table Example

With this kind of schema for our fact table, our system is thus prepared to potentially
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Table 3.1: Aggregation Example

HL7 Msg Type Day Period Nr. Messages

ADT-A16 4 09:00 - 10:00 1

ADT-A16 2 09:00 - 10:00 5

ADT-A16 1 09:00 - 10:00 7

ADT-A16 5 09:00 - 10:00 8

ADT-A16 3 09:00 - 10:00 20

answer some of the following questions:

• Number of CAT scans ordered;

• Number of exams of each type;

• Top of physicians ordering exams;

We have implemented a small program written in C that we called db worker (Database

Worker) whose main function is to query the production database, gather the necessary

data and create or update our fact tables with the calculated values.

Suppose we are trying to create the 1 hour grain fact table, then, our db worker

would need to iterate over every 1 hour segment of each day and query the production

database for the aggregated number of messages during that period. Table 3.1 presents

an example of the data our db worker builds. In this case, we have the number of

messages between 09:00 and 10:00 aggregated by the HL7 message type and the day

of capture. After obtaining the data in such structure, our db worker simply gets

the 15th, 50th and 85th percentile of the number of messages (in this case 5, 7 and

8 respectively). The choice to use the percentiles instead of the minimum, average

and maximum values is based on the work of Cruz-Correia et al. in [16]. By using

such approach, we can safely eliminate any outliers derived from situations like holiday

periods or even server downtimes that can cause a system malfunction and thus reduce

the number of exchanged HL7 messages in the network.

To determine the minimum, average and maximum expected values for a given time

segment, our db worker is responsible for inserting into our fact table the values

obtained for each HL7 message type within the correct time segment. The db worker

will continue this process iterating over hour segments, and inserting into the fact

table the values thus obtained.
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In the end, the db worker produces a fact table as the one presented in Table 3.2 and,

from which, our system is now able to have an internal base of comparison for the

number of messages that should be expected during a certain period of time.

Table 3.2: Fact Table Sample

Msg Type Period Minimum Average Maximum

ADT-A16 09:00 - 10:00 5 7 8

ADT-A16 10:00 - 11:00 15 22 30

ADT-A16 11:00 - 12:00 18 25 28

ADT-A16 ... ... ... ...

DFT-P03 09:00 - 10:00 8 10 15

DFT-P03 10:00 - 11:00 1 4 8

3.5 RESTful Service

Since our initial goals determined that the display of the information produced by our

system needed to be made available to a browser, we took an approach to develop a

system capable of abstracting the client (browser) from having to actually fetch the

necessary information directly from the database.

In order to do that we decided to use a RESTful approach so that we could retrieve the

necessary data from the database in a structured and systematic way. architecturally

speaking, a RESTful service can be described as a web-service that treats data as

a resource that can be accessed through an Universal Resource Identifier (URI).

Typically HTTP is used in order to have the clients communicating with the server

and as such, the interaction and manipulation of the resources is mainly achieved by

using HTTP GET or POST operations.

Apart from being able to abstract the complexity of querying the database to obtain

information, one of the main advantages in using a RESTful web service approach

for the server-client interaction is the fact that the resources returned to the client

can take many different formats ranging from simple HyperText Markup Language

(HTML) to a complex JavaScript Object Notation (JSON) structures.
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3.5.1 RESTful API

In order to abstract the requesting browsers from the complexity of having to query

the database to obtain information, we introduced in our system a simple RESTful

service capable of receiving HTTP GET requests, select the appropriate data from the

database and deliver the requested information back to the client in a format that can

be directly used to produce data charts in the client’s browser.

The RESTful service is based on the the Jersey framework [2] to create a server

written in Java capable of processing RESTful interactions. Also, apart from the

Jersey framework, we also resorted to the use of the JDBC API [5] in order to interact

to the database. As for the output sent to the client, we decided to use the JSON

format to wrap the desired data in a way the browser could then directly use to display

a set of charts with meaningful information.

Table 3.3: RESTful API
Request Type URI Arguments

GET hl7sniffer/rest/msg types NONE

GET hl7sniffer/rest/msg ranges HL7 Message Type

GET hl7sniffer/rest/back info

HL7 Message Type

Starting Hour

Ending Hour

GET hl7sniffer/rest/live
HL7 Message Type

Current Time

GET hl7sniffer/rest/week comp
HL7 Message Type

Days to Compare

Table 3.3 summarizes the developed API for the clients’ interaction with the database.

Our systems’ RESTful API is essentially composed by five different resources that can

be requested to the server, them being:

• Message Types. Enables the client to request a list of all different HL7 message

types our system captured;

• Message Ranges. Returns to the client a range for the number of expected

messages for a given HL7 message type;

• Number of Past Received Messages. Allows a client to obtain the number

of received HL7 messages during a predefined time frame;
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• Number of Currently Received Messages. The server generates a response

containing the number of received HL7 messages between midnight and the time

of the clients’ request;

• Weekly Comparison. Retrieves information related to the number of HL7

messages received in the specified days of the week;

3.5.2 RESTful Invocation and Response Format

As previously explained, we wanted to keep the interactions to the database separate

from the client and by using the RESTful approach, we were able to hide all the

database querying complexity from the client, as such, in order for a client to obtain

a certain type of information from the database, all it needs to do is a simple HTTP

GET request to the server.

Figure 3.14 depicts a typical interaction between the clients’ browser and our systems’

RESTful web-service. The client starts by requesting a given resource by accessing

its respective URI, providing the server with all the necessary information so it can

complete the request. The server then responds with a JSON structure containing the

requested information.

Figure 3.15 shows an example of a response from the server when a client requests

the number of messages received in the current day. When the client makes this type

of request, the server is responsible for querying the database and return back to the

client the number of received messages ranging between the midnight of the current

day and the hour of the clients’ request. The server then wraps the requested data

in a JSON structure consisting on an list where each element provides a Cartesian

coordinate.

In using such approach, the client receives the requested information in a way that can

be efficiently handled by the browser. By looking back at Figure 3.15 we can see that

each coordinate refers to a specific point in time. That is, the second coordinate of the

example ([0.5, 6]) actually represents the number of HL7 messages received between

midnight and midnight and a half. In this case, we can see that between that time a

total of 6 messages were received, while the total number of messages received between

1:00 PM and 1:30 PM is 303 and so on.

The choice behind the usage of the JSON format to transport the requested data from

the server directly to the client is mainly due to the fact that this specific format can
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URI: hl7sniffer/rest/live
URL: http://foo-bar/hl7sniffer/res/live?msg type=OML&cur time=1395464569

RESTful
Server

JSON
Structure

Resquest

Response

Figure 3.14: RESTful Invocation

? ( [ [ 0 . 0 , 0 ] , [ 0 . 5 , 6 ] , . . . , [ 1 3 . 0 , 3 0 3 ] , [ 1 3 . 5 , 3 5 0 ] ] ) ;

Figure 3.15: RESTful Response Sample

be easily consumed by JavaScript and therefore browsers should not have difficulties in

interpreting the results. Also apart from the efficient browsers’ capabilities to consume

JSON structures, the charts API used by our system is implemented using JavaScript

which also contributed to our choice in delivering the requested information in such a

format.

3.6 Metric Display

The final step in our infrastructure is related to the way we can graphically present

the data being collected and calculated. To provide clients with an actual display of

the metrics captured from our system, we decided to use a series of charts that could

easily represent several interesting production metrics.
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3.6.1 Highcharts Library

In order to produce the referred charts, we used the Highcharts library [1] so that we

can dynamically present the extracted metrics directly in a browser using JavaScript.

The Highcharts library is essentially a framework that extends the main functionalities

of the Asynchronous JavaScript and XML (AJAX) API so that it becomes possible

to draw charts directly in a browser application. The library uses a JavaScript object

called Chart and allows the developer to append a series of another objects that help

define and draw the chart. Among all the possible objects used to define a chart, one

of the most important is the Series object. This object contains the actual data we

are trying do graphically represent. As such, the Series object simply consists on a

set of coordinates similar to the ones presented in Figure 3.15.

As for the types of charts the Highcharts API allows to, among others, create the

following:

• Line Charts. Used to create a line connecting a predefined set of coordinates;

• Area Charts. Creates a chart displaying a shadowy delimiting a certain range

of values;

• Combination Charts. Allows the creation of chart that may be composed by

several other secondary types of charts;

• Dynamic Charts. Can be used to dynamically update any given chart with

new sets of data over time;

The previous enumerated types of charts present the ideal characteristics to support

our systems requirements. Namely, the line charts can be used to display the evolution

over time of the number of HL7 received while the area chart can be used to draw an

area for the expected number of HL7 messages. When we combine the two previous

charts, when trying to assess the number of HL7 messages received in a given day, we

create a clear representation of what the system is expected to receive and what it has

actually received.

3.6.2 Graphical Output

Since our system aims to dynamically present business metrics directly extracted from

the network in such a way that would be easy to understand if the values are within
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normal ranges. In order to achieve that, we decided to use two different kinds of charts

embedded in a single chart:

• Area chart. Based on the information present in our fact tables, we are able

to draw this type of chart displaying a range of values that correspond to the

expected values for a given metric.

• Line chart. Using the production database, we are able to draw a line chart

representing the actual values detected for a given metric.

Figure 3.16: Chart sample

Figure 3.16 presents an example of the charts our system is able to produce. The

blue area represents the range chart where we aim to present a visual display of the

expected values for a given metric, while the black line presents the actual values at a

certain period of time extracted from the network. This allows a user to quickly verify

if any type of metric is within its expected values for a certain time interval.

For example, from a monitoring point of view, our system is able to show unexpected

fluctuations in the number of HL7 messages passing through the network and in

doing so, it can easily detect failures in a given service if, for example, the number

of detected HL7 messages falls outside the expected range for a certain amount of

time. Another type of application that can be given to these types of charts is related

to administrative tasks. By displaying meaningful information in a temporal span,

we allow the possibility to identify potential “dead” or “overloaded” periods of time.

From an administrative point of view, such charts could present a powerful tool to

support readjustments hospital services.
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Experimental Results

In the this chapter we detail a real test deployment scenario for our system, some of

its hardware specifications and describe in detail the results obtained.

4.1 Prototype Architecture

We deployed our system architecture in an healthcare facility in the northern region

of Portugal. As for the systems’ architecture, due to lack of resources we weren’t able

to build an infrastructure exactly as the one presented in Figure 3.1. Instead, we

were forced to place the “Mirth Connect Node”, “Database Node” and the “RESTful

Node” on the same physical machine.

As for the machine specifications used in our testing scenario we have used the

following:

• Sniffer Node. Intel(R) Core(TM)2 Duo CPU E4600 2.40GHz with 2995 Mb

of RAM memory and 100Mb/s NIC running the GNU/Debian system with a

Linux kernel version 3.2.0-4

• Mirth Connect / RESTful Node. Intel(R) Core(TM)2 Duo CPU E4500

2.20GHz with 1985 Gb of RAM memory running the GNU/Debian system with

a Linux kernel version 3.2.0-4

In respect to the healthcare facility infrastructure, at their core network they employ

a Microsoft Biztalk server as their interface engine for HL7 compliant messages. As

44
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for the traffic captured, since we only had access to a standard NIC, we started by

capturing only a small part of the traffic that passed through the interface engine. As

such, we applied a libpcap filter capable of discarding all packets that weren’t directed

to a predefined port of the interface engine.

To measure the performance of our Sniffer Node at the network level ran a series

of tests to assess not only the network load our system could endure, but also the

amount of packets the NIC could eventually loose. Preliminary results are presented

in Table 4.1.

Table 4.1: Packets Lost
Hour

Of Day

Packets

Received

Dropped By

Kernel

Dropped By

Interface

Loss

Percentage

09:00 1587 0 7 0.44 %

10:30 1983 0 10 0.50 %

11:30 624 0 3 0.48 %

13:00 441 0 6 1.36 %

15:00 460 0 8 1.73 %

20:00 164 0 2 1.22 %

These numbers are obtained by running an instance of the tcpdump [21] tool. Tcpdump

is able to provide the user with statistical information about the number of packets

captured, as well as the ones that were lost. For this scenario, we ran an instance of

the tcpdump tool during five minutes on different periods of the day so that we could

observe the behaviour of our Sniffer Node and in particular, the performance of our

NIC.

One of the drawbacks in our systems resides precisely within the NIC hardware.

During periods of high traffic a standard network card can’t endure the network load

experienced by our test scenarios and therefore, it starts discarding packets before they

reach the system’s kernel level. Although the packet losses are not extremely high and

can easily be solved by employing a better NIC, they still have a negative impact at

a critical level of our infrastructure. One interesting fact about the previous results

is related to the values obtained for the packets dropped by the kernel. According

to tcpdump there were no packets dropped at the kernel level which might hint us

that the packet buffers implemented in the Linux kernel have enough space to hold

the packets while the user space applications handle each packet. Note however that

since we are filtering packets whose destination is a predefined port on the interface

engine, it is expected that when we decide to capture all traffic directed to the interface



CHAPTER 4. EXPERIMENTAL RESULTS 46

engine, the packet buffers at the kernel level may not have sufficient space to hold all

the incoming packets.

4.2 Obtained Results

After the deployment of our infrastructure we began extracting and analysing all the

HL7 messages destined to a predefined port on the Microsoft Biztalk server present at

the healthcare infrastructure where we have tested our metric extraction framework.

On a daily basis, we have processed an average of 44,500 HL7 messages with rates

of 932 messages per minute, reaching peaks of 1,200 messages per minute on critical

hours of the day. Since the start of the data collection process on the 26th of April 2014

until the 28th of June 2014, approximately 1,300,000 HL7 messages were successfully

extracted from the network by our Sniffer Node.

4.2.1 Metrics

Table 4.2: Message Types Weekly Results

Message

Type
Description

Number of

Messages

OMLˆO21 Laboratory Order 71020

ORUˆR01 Unsolicited Transmission of an Observation Message 28253

ORLˆO22 General Laboratory Order Response Message to any OML 25493

SIUˆS13 Notification of Appointment Rescheduling 20598

SIUˆS12 Notification of New Appointment Booking 18007

ADTˆA16 Pending Discharge 11195

SIUˆS15 Notification of Appointment Cancellation 3397

DFTˆP03 Post Detail Financial Transactions 1275

Table 4.2 represents the number of HL7 messages received by our system from the

28th of April to the 2nd of May, aggregated by the type and trigger event of the HL7

message. As observed, the majority of the HL7 messages present in the network refer

to laboratory orders as well as requests for patient observations. On the other hand,

the smallest percentage of the HL7 traffic refers to billing processes.
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Table 4.3: Message Types Daily Results

Message

Type
Description

Number of

Messages

OMLˆO21 Laboratory Order 18318

ORUˆR01 Unsolicited Transmission of an Observation Message 6869

ORLˆO22 General Laboratory Order Response Message to any OML 6306

SIUˆS13 Notification of Appointment Rescheduling 5363

SIUˆS12 Notification of New Appointment Booking 4563

ADTˆA16 Pending Discharge 2484

SIUˆS15 Notification of Appointment Cancellation 454

DFTˆP03 Post Detail Financial Transactions 316

Table 4.3 presents the number of HL7 messages obtained on a sample normal produc-

tion day at the healthcare facility.

Table 4.4: Message Types Holiday Results

Message

Type
Description

Number Of

Messages

SIUˆS13 Notification of Appointment Rescheduling 2904

OMLˆO21 Laboratory Order 2837

SIUˆS12 Notification of New Appointment Booking 2818

ADTˆA16 Pending Discharge 2118

ORUˆR01 Unsolicited Transmission of an Observation Message 868

ORLˆO22 General Laboratory Order Response Message to any OML 471

SIUˆS15 Notification of Appointment Cancellation 74

One interesting comparison that our system has allowed to infer is related to the

difference between the infrastructure production level on a holiday and a normal day

of work. Table 4.4 presents the number of messages collected by our system on the

1st of May 2014. In this specific case, we have a very different view about the number

of HL7 messages exchanged. In this case, we seem to verify a lot more traffic related

to administrative tasks such as scheduling or changing medical appointments and a

significant reduction on the number of messages containing requests for patient analysis

or laboratory orders.

Table 4.5 presents the busiests hours of the day related to HL7 traffic exchange through

the network. As we can observed, the morning period is usually associated with a
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Table 4.5: High Load Hours

Hour Of

Day

Number Of

Messages

09:00 - 10:00 7131

08:00 - 09:00 6282

10:00 - 11:00 6272

11:00 - 12:00 5028

13:00 - 14:00 3684

higher HL7 traffic load when compared to the afternoon periods.

Another series of results obtained by our system is related to the deeper analysis of

each HL7 captured by our infrastructure. This type of information tends to yield more

value when used to support decision makings from an administrative point of view.

Table 4.6: X-Rays by Physicians

Physician

Name

Number Of

X-Rays

Frieda Paige 11

Bill Stevens 8

Cydney Church 7

Jorja Walton 6

Duana Battle 5

An example of such data is presented in Table 4.6. The data represents real values

collected on a single day by our system. As it can be observed, this type of information

can be helpful when trying to determine which person requests which type of services.

One can also present patient related statistics such as the number of the number of

lab analysis patients are subjected during their admission.

From an administrative point of view, it can thus be fairly easy to keep track of the

performance of each employee as well as create a relation between methods employed

by each physician and the results obtained by the patient.

Although this type of information may present itself as one of the most valuable sets of

knowledge our system can produce, when used for decision making, the data gathered

must always be subject to a previous thorough analysis in order to assess its veracity.
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4.2.2 Interesting Dashboard Charts

Based on the data collected we were able to draw a series of charts that can be

aggregated into a dashboard, for example to quickly evaluate the production level of

the healthcare facility at a certain point in time.

Figure 4.1: Laboratory Orders 1 Hour Aggregation

Figure 4.2: Laboratory Orders 30 Minutes Aggregation

Figures 4.1, 4.2 and 4.3 shows the number of laboratory orders collected on the 26th of

June 2014. As expected, the number of laboratory orders starts increasing at the start

of each work day around 08:00 hours, continuing to increase until reaching the 12:00

hours. After the morning period, the number of HL7 laboratory orders continues to

decrease until the end of the work day around 20:00 hours.

By comparing the previous figures, we can also have different views into the data our

system collects. As such, while on Figure 4.1 we have the total number of messages
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Figure 4.3: Laboratory Orders 15 Minutes Aggregation

collected during periods of one hour, Figure 4.2 and 4.3 present the total number of

messages accumulated during periods of thirty and fifteen minutes respectively.

As expected, when we decrease the aggregation period for the number of messages, the

displayed data tends to be increasingly susceptible to small variations in the number of

messages. As such, for the extreme case of a fifteen minute aggregation, the slightest

variation to the number of messages detected by our system can easily lead the current

message curve to fall outside the expected values. Therefore in this particular case,

the fifteen minute aggregation chart does not present a good choice for the data grain

since from a monitoring point of view the data is easily subject to deviations from the

expected ranges. As for the thirty minute aggregation, this chart also presents some

deviations from the expected values, however, in this particular case we expect that

our system will be able to adapt the message range based on the increasing history of

the collected data.

4.3 Results Analysis

We expect the data collected and produced by our system to be used for mainly two

different purposes.

From a service monitoring point of view, the proposed charts can be used to identify

potential malfunctioning services when for instance, the number of messages either

drops or grows too much outside their expected range. By using such approach we lay

the groundwork for the creation of an alert system based on the number and type of
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HL7 messages flowing through the network. Such an alert system could easily support

different levels of severity based on the level of discrepancy from the expected number

of messages.

As from an administrative point of view, the information gathered can potentially

be used in order to assess the production level at individual levels and at different

data dimensions. For example, by taking advantage of some types of HL7 messages

containing data that can uniquely identify an individual in the healthcare facility we

believe that our system would be capable of producing information related to the

production levels at an individual level.

The systems’ architecture also presents a great value as a starting point for the creation

of several other parallel and independent services. Namely, in using the Sniffer node

as a starting point, we open the way for the possibility of having several different

systems using the gathered HL7 messages in order to provide other given services.

For instance, a service that could assess the semantic and syntactic quality of the

HL7 messages exchanged at an healthcare facility or even a service that dynamically

searches for incoherent or erroneous data present the HL7 messages. An even more

elaborate system that can be built around the existence of our architecture is a patient

registry system capable of encompassing all the patients currently “active” at a given

hospital facility. Such system could even include information related to the pathologies

and courses of treatment the patient is currently undertaking.

The proposed system can also be seen as an opportunity for the creation of an

integration system completely independent of any software vendor. Assuming our

system is able to collect all HL7 messages associated with a given software vendor,

since we use an instance of the Mirth Connect engine, our system would be able

to read those same messages and create a channel capable of applying any type of

transformation the hospital services would require, therefore eliminating the necessity

of having software vendors altering their own channels in order to fulfil a specific

institution requirement.
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Conclusion And Future Work

The improvement of the healthcare IT infrastructures has led to the creation of

multiple applications aiming to provide physicians and healthcare institutions with

the necessary tools to improve their individual performance and level of care. These

systems are highly heterogeneous and are responsible for the creation of big pockets

of data that end up being scattered throughout the healthcare infrastructure.

Such pockets of data contain very valuable information that could be put to use, for

example they could be employed to assess the levels of performance of each healthcare

infrastructure at different levels, ranging from the institutional level to each individual

healthcare professional. It all depends on the quality and detail of data that is

being produced at the institution. However helpful this information may be, very

few hospitals are prepared to take advantage of every source of potential piece of

information the IT infrastructure produces. As such, every day valuable information

ends up being lost before it can be properly analysed and integrated into some useful

metric.

We believe that our proposal takes one step further and allows healthcare facilities to

recover such pockets of data and put them to good use by producing useful statistics

about daily basis activities.

5.1 Research Summary

In this thesis we studied a series of challenges derived from the development and

deployment of a multitude of heterogeneous systems. We looked for the solutions

52
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implemented when trying to solve the system integration problems. The commu-

nication standards and interface engines used by health providers in their network

infrastructure present a good opportunity for performance metric extraction since

much of the everyday activities require some kind of network communication between

different systems.

We also looked for metric extraction techniques on the academic literature. However,

we didn’t find much useful information regarding systems capable of dynamically

gathering data directly from the network and with the constraint of being completely

separated from the actual TCP data streams.

We have described and implemented an architecture for a system capable of incre-

mentally building a knowledge database for an healthcare facility based on standard

protocol messages transmitted through the network. We were able to efficiently extract

HL7 messages directly from the network with the additional advantage of not having

to depend on physical memory in order to reconstruct out of order packets since we

use the information contained in TCP headers in order to calculate the precise point

where each piece of data fits in the content.

We have been able to use this data mainly for two different goals. From a monitoring

point of view, the data gathered can be used to find normal levels of performance for a

given healthcare facility and with that information, one can easily detect outliers that

result from malfunctioning sections of the healthcare infrastructure. A deeper analysis

of this data can also be used to support decision makings from an administrative point

of view.

We have also described a set of other uses for our system architecture. Namely, after

the message extraction from the network, one can also build a network of systems

that could receive anonymized HL7 messages and produce a for example a new service

based on the data received such as HL7 semantic and syntactic quality assessment.

We believe we have achieved our initial goals with some additional advantages of being

able to design and deploy a system capable of easily scaling and general enough so it

can be placed at several different healthcare facilities without the need to reconfigure

or modify any of the existing institutional systems.

However, our project still needs improvements at different levels of the infrastructure

as well as a thorough validation of the data gathered and the statistics produced.
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5.2 Main Findings

Integration techniques based on the usage of message standards represent one hot topic

when related to healthcare facilities. There is a significant number of recent publica-

tions trying to assess the effective advantages and gains when healthcare facilities

invest on the development of their IT infrastructure [19].

However, apart from the integration techniques, literature related to TCP stream

reconstruction is somewhat scarce when we tried to look for applications of known tools

outside IDS or IPS scenarios. Although we found that there is a considerable amount

of academic literature bent on analysing and describing new sets of algorithms for TCP

flow reconstruction without considerable packet loss rates [13, 6]. Unfortunately, the

fact that many of the referred literature is based on the assumption that the sniffing

node is placed in-line with the TCP stream invalidates the usage of such tools in our

systems.

Related to eHealth, we also learned that the development of hospitals’ IT infras-

tructures has left these institutions with a multitude of different systems incapable

of exchanging information without external intervention. To solve such problems,

hospital facilities started employing integration engines capable of translating messages

so that different systems can interact together and exchange meaningful information.

However, one interesting point related to this topic is connected to the fact that

only a small set of healthcare facilities applies this type of approach to solve their

interoperability challenges. Instead, the majority of healthcare institutions still rely

on software vendors agreeing on changing their products in order to meet a predefined

set of requirements.

5.3 Current Limitations

Our system has already yielded some interesting statistics, however there is still space

for several improvements, both from the hardware and software point of view.

In terms of hardware, the system is heavily limited by the processing capabilities

of the Sniffer node at several levels. That is, starting on the NIC, we believe our

overall system would greatly benefit from the usage of a hardware capable of auto-

matically associate each packet with an extraction timestamp directly calculated from

hardware [4]. With this, the cost of timestamp association with each message could



CHAPTER 5. CONCLUSION AND FUTURE WORK 55

be greatly reduced since in our current implementation, such timestamp can only be

calculated in user space.

Apart from the NIC on the sniffer node, one could also benefit from using a CPU

capable of offering more computational power in order to reduce the amount of time

each packet needs to remain in user space to be analysed. Also from an hardware

point of view, the usage of Solid-State Drive (SSD) hard disks could also improve the

overall performance of our sniffer node, since the TCP stream reconstruction is made

directly on the hard drive in order to reduce amount of physical memory needed.

From the software point of view, the current deployed version of our system is unable

to deal with fragmented IP packets. As for now, our system simply discards any packet

fragmented at the network layer. Tests have already been made in order to provide

the Sniffer node with the capability to reconstruct fragmented packets, however, the

reconstruction of such packets proved to be too slow when using the hard disk.

5.4 Future Work

During the development of this thesis, interoperability became one of the main topics

when searching for information related to healthcare facilities. Hospitals have adopted

the usage of a set of standards in order to have heterogeneous systems exchanging in-

formation. The work developed under this thesis uses the HL7 standard as the ground

basis to build a knowledge database and produce all the related statistical information.

However, apart from the HL7 standard, healthcare facilities use a multitude of other

messaging standards. Standards such as the DICOM used in order to transfer an store

heavy radiology imagery in healthcare facilities.

As future work, we want to concentrate our efforts in supporting more healthcare

standards and be able to draw significant information based on the collected data. The

support for different standards should enable us to empower our knowledge database

with sufficient data to produce more well grounded statistics with more incisive views

on several business processes.
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5.5 Conclusion

The proposed infrastructure implements a systems capable of extracting performance

metrics on a given healthcare infrastructure as well as produce visual data about the

collected data. Our systems improved a known tool for dynamically reconstructing

TCP streams empowering it with the ability to dynamically create and release the log

files containing the payload for the TCP packets according to the “life” of the stream.

The architecture employed also possesses the advantage of allowing an easy scaling of

the infrastructure without needing to reconfigure any special part of the healthcare

infrastructure. Therefore, our system presents a light and scalable method for extract-

ing performance metrics on any given healthcare infrastructure by taking advantage

of the HL7 message standard.
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