
Abstract

In this paper a numerical study concerning the active vibration control of smart
piezoelectric beams is presented. A comparison between the classical control strate-
gies, constant gain and amplitude velocity feedback, and optimal control strategies,
linear quadratic regulator (LQR) and linear quadratic Gaussian (LQG) controller, is
performed in order to investigate their effectiveness to suppress vibrations in beams
with piezoelectric patches with sensing and actuating capabilities.

As a mathematical model, a one-dimensional finite element of a three-layered smart
beam with two piezoelectric surface layers and metallic core is utilized and briefly
presented. The mathematical model considers a partial layerwise theory, with three
discrete-layers, and a fully coupled electro-mechanical theory. The finite element
model equations of motion and electric charge equilibrium are presented and recast
into a state variable representation in terms of the physical modes of the beam.

The analyzed case studies concern the vibration reduction of a cantilever aluminum
beam with a pair of collocated piezoelectric patches mounted on the surface. The dis-
placement time history, for an initial displacement field and white noise force distur-
bance, and point receptance at the free end are evaluated with the open- and closed-
loop classical and optimal control systems. The case studies allow to compare their
performances and demonstrate their advantages and disadvantages.

Keywords: smart piezoelectric beam, finite element, active vibration control, velocity
feedback, LQR and LQG controller.

1 Introduction

The objective of active vibration control is to reduce the vibration of a mechanical
system by the automatic modification of the system’s structural response. An active
structure consists of a structure provided with a set of sensors (to detect the vibra-
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tion) and actuators (which influence the structural response of the system) coupled
by a controller (to suitably manipulate the signal from the sensor and change the sys-
tem’s response in the required manner). Structures which have the distinctive feature
of having sensors and actuators that are often distributed and have a high degree of
integration inside the structure are calledsmartstructures.

Some of the most widely used distributed sensors and actuators are made of piezo-
electric materials. The piezoelectric effect consists of the ability of certain crystalline
materials to generate an electrical charge in proportion of an externally applied force
(direct piezoelectric effect) and to induce an expansion on the piezoelectric material
in proportion to an electric field parallel to the direction of polarization (inversepiezo-
electric effect). There are two broad classes of piezoelectric materials used in vibration
control: polymers and ceramics. The piezopolymers are used mostly as sensors be-
cause they require extremely high voltages and the piezoceramics are extensively used
as actuators and sensors for a wide range of frequency.

Modelling smart structures often requires a coupled modelling between the struc-
ture and the piezoelectric sensors and actuators. They can be modeled as either lumped
or distributed parameter systems, and usually these systems have complicated shapes
and structural patterns that make the development and solution of descriptive partial
differential equations burdensome, if not impossible. Alternatively, various discretiza-
tion techniques, such as finite element (FE) modelling, modal analysis, and lumped pa-
rameters, allow the approximation of the partial differential equations by a finite set of
ordinary differential equations. Since the 70’s, many FE models have been proposed
for the analysis of smart piezoelectric structural systems. A survey on the advances
in piezoelectric FE modelling of adaptive structural elements is presented by Benjed-
dou [1]. On the development of FE models, different assumptions can be taken into
account in the theoretical model when considering the electro-mechanical coupling.
These assumptions regard mainly the use (or not) of electric degrees of freedom (DoF)
and the approximations of the through-the-thickness variation of the electric potential.
Therefore, they lead to decoupled, partial and fully coupled electro-mechanical theo-
ries, which in turn can lead to different modifications of the structure’s stiffness and
different approximations of the physics of the system. These electro-mechanical cou-
pling theories can be considered by the use ofeffective stiffness parameters, defined
according the electric boundary condition considered, as shown by Vasques and Ro-
drigues [2] for a smart beam.

Several methods have been applied to the active vibration control in the engineer-
ing field. The recent advances in digital signal processing and sensors and actuators
technology have prompted interest in active vibration control [3–6]. In the past two
decades, various methods of active vibration control have been developed. A review
about the active structural vibration control is presented in reference [7]. The differ-
ent algorithms utilized in active vibration control can be classified under two general
categories:feedforwardandfeedbackcontrol. Variations of the two general methods
exist, each with advantages, disadvantages, and limitations.

This work is entirely devoted to feedback control where we are particularly con-
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cerned with systems in which the excitation of the structure can not be directly ob-
served and thus cannot be used as a feedforward control signal. The control systems
discussed in this work will be those in which the control signal obtained from the
piezoelectric sensor, which is affected by both the excitation force (primary excita-
tion) and the piezoelectric actuator voltage (secondary excitation, over which we have
control), isfed backto the actuator.

As noted by Preumont [6], one of the objectives of control can be to reduce the res-
onant peaks of the frequency response function, which is known asactive damping.
It can be achieved without a model of the structure and with guaranteed stability, pro-
vided that the actuator and sensor are collocated and have perfect dynamics. Another
objective of the control can be to reduce the effects of external disturbances in order
to keep a control variable (e.g. a position) to a desired value in some frequency range,
which is known asmodel basedfeedback. The design problem consists of finding the
appropriate compensator such that the closed-loop system is stable and behaves in an
appropriate manner. These model based strategies are global methods which manage
to attenuate all the disturbances in the frequency range of analysis. In compensation
they require a mathematical model of the system (e.g. FE model), have a bandwidth
limited by the accuracy of the model and may amplify the disturbances outside the
bandwidth (spillover).

The aims of this work are the analysis and comparison of the classical and optimal
feedback control strategies on the active control of vibrations of smart piezoelectric
beams. In this paper we start by succinctly describe the mathematical model uti-
lized and a brief description of the one-dimensional FE developed by Vasques and
Rodrigues [2] is presented. The kinematic and electric potential assumptions of the
theoretical and FE spatial model are first presented. Next, the resultant FE equations
of motion and electric charge equilibrium are presented and recast into a state variable
representation in terms of the physical modes of the beam. Moreover, some theo-
retical considerations about the classical control strategies, with two distinct velocity
feedback control algorithms being utilized,constant amplitudeandconstant gainve-
locity feedback (CAVF and CGVF), and optimal control strategies,linear quadratic
regulator (LQR) andlinear quadratic Gaussian(LQG) controller, are presented. The
control models assume that one of the piezoelectric layers acts as a distributed sensor
and the other one as a distributed actuator, and the sensor signal is used as a feedback
reference in the closed-loop control systems.

Finally, a case study concerning the vibration of a cantilever aluminium beam with
a pair of collocated piezoelectric patches mounted on the surface is analyzed. The
displacement time history, for an initial displacement field and white noise force dis-
turbance, and point receptance at the free end are evaluated with the open- and closed-
loop classical and optimal control systems.
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2 Mathematical Model

2.1 Kinematic and Electrical Assumptions

Consider the three-layered beam illustrated in Figure 1. The axial and transverse
displacements,uk(x, z, t) andwk(x, z, t), of the metallic core (c) and two piezoelectric
surface layers (a, b) are defined by

uc(x, z, t) = u0(x, t) + zcθc(x, t), (1a)

ua(x, z, t) = u0(x, t)− hc

2
θc(x, t) +

(
za −

ha

2

)
θa(x, t), (1b)

ub(x, z, t) = u0(x, t) +
hc

2
θc(x, t) +

(
zb +

hb

2

)
θb(x, t), (1c)

wk(x, z, t) = w0(x, t), (2)

where the subscriptk = a, b, c is the layer reference,hk is the thickness of each
layer,u0(x, t) andw0(x, t) are the axial and transverse displacements of the beam’s
mid-plane, andθk(x, t) is the rotation of each layer. Note that axial displacement con-
tinuity at the interfaces of the layers is assured, leading to coupling terms in the axial
displacementuk(x, z, t) of the layers, and that constant through-the-thickness trans-
verse displacementw0(x, t) is considered. According to the displacement definitions
in Equations (1) and (2), the extensional and shear mechanical strains of the layers can
be determined by the usual linear strain-displacement relations, where the kinematic
assumptions lead to null transverse strains and a first-order shear deformation theory
for the three layers (see [2] for further details).
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Figure 1: Three-layered beam displacement field.

The piezoelectric materials considered for the surface layers are orthotropic with
the directions of orthotropy coincident with the axes of the beam. Those materials are
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polarized in the transverse direction and have the behavior of the standard piezoelec-
tric materials [10, 11]. The electrical model takes the direct piezoelectric effect into
account and a quadratic trough-the-thickness distribution of the electric potential and
an appropriate approximation of thex-component of the electric field are considered
(see [2] for further details).

2.2 Spatial Model

The FE spatial model is obtained from the weak integral forms of the equations of
motion and electric charge equilibrium presented in reference [2]. They are derived
using Hamilton’s principle where the Lagrangian and the applied forces total work
are conveniently adapted for the electrical and mechanical contributions. The one-
dimensional smart beam FE considers a fully coupled electromechanical theory and
has two nodes, with five mechanical degrees of freedom (DoF) per node (the axial and
transverse displacements of the beam’s mid-plane and the rotation of each layer), and
two electric DoF per element (the electric potential difference of each piezoelectric
layer). The FE assumes Lagrange linear shape functions for the mechanical DoF and
the electrical DoF are assumed constant and uniform in the element. Therefore, the
elementary mechanical and electrical DoF vectors,ūe(t) andφ̄

e
(t), are as follows:

ūe(t) = {ū1
0, w̄

1
0, θ̄

1
a, θ̄

1
c , θ̄

1
b , ū

2
0, w̄

2
0, θ̄

2
a, θ̄

2
c , θ̄

2
b}T, φ̄

e
(t) = {φ̄a, φ̄b}T. (3a,b)

The resultant global FE spatial model, governing the motion and electric charge
equilibrium, is given by

Muu¨̄u(t) + Kuuū(t) + Kuφφ̄(t) = F(t), (4)

Kφuū(t) + Kφφφ̄(t) = Q(t), (5)

whereū(t) andφ̄(t) are the global mechanical and electrical DoF vectors,Muu and
Kuu are the global mass and stiffness matrices,Kuφ = KT

uφ is the global piezoelectric
stiffness matrix,Kφφ is the global capacitance matrix andF(t) andQ(t) are the global
mechanical force and electric charge vectors.

The electrical DoF vector in Equations (4) and (5) can be divided in the actuating
and sensing DoF,̄φ(t) = {φ̄a(t), φ̄s(t)}T, where the subscripts ’a’ and ’s’ denote the
actuating and sensing capabilities. Hence, considering open-circuit electrodes, and
in that caseQ(t) = 0, the non specified potential differences in (5) can be statically
condensed in (4) and the equations of motion and charge equilibrium become

Muu¨̄u(t) + K∗
uuū(t) = −Kuφaφ̄a(t) + F(t), (6)

φ̄s(t) = −K−1
φφsKφusū(t), (7)

with
K∗

uu = Kuu −KuφsK
−1
φφsKφus. (8)
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It’s worth to note that a non-null parabolic through-the-thickness distribution of the
electric potential within the piezoelectric layers was already considered in the varia-
tional formulation through the use of effective stiffness parameters (see [2]). More-
over, the static consensation in Equation (8) only considers the linear term of the
electrical potential distribution, which is the one that in fact contributes to the sensor
voltage.

2.3 Modal Model

In the process of designing an active control system one can utilize a full model of the
system and, consequently, a higher computational effort is needed, or a reduced model
of the system, which requires a lower computational effort. However, the structural
mathematical model and controller design are not independent aspects of vibration
control. Flexible structures are distributed parameter systems that have an infinite
number of DoF, and a feedback controller based on a reduced modal model can desta-
bilize the residual modes (unmodeled dynamics) leading to observation and control
spillover problems. They both degrade the system’s performance, and the former
can even cause the system to become unstable [4]. Methods to reduce the effects of
spillover are discussed by Balas [9].

When excited a structure presents preferable modes of vibration which depend of
the spectral content of the excitation. Assuming that the lower order modes, which
have lower energy associated and consequently are the more easily excitable ones, are
the more significant to the global response of the system, a truncated modal matrixΨ̂
can be utilized as a transformation matrix between the generalized coordinatesū(t)
and the modal coordinatesη(t). Thus, the displacement vectorū(t) can be approxi-
mated by the modal superposition of the firstr modes,

ū(t)=
r∑

i=1

Ψiηi(t) = Ψ̂η(t), (9)

whereΨ̂ = [Ψ1, · · · ,Ψr] is the truncated modal matrix andη(t)= {η1(t), · · · , ηr(t)}
T

the correspondent modal coordinates vector. Hence, the system’s size isn’t anymore
the total number of DoF of the FE model but the number of modes chosen to model it.

The spatial stiffness and mass matrices obtained with the FE method typically
present a band structure, which represents the coupling between the several DoF, that
makes the spatial damping matrix difficult to be obtained. In this study a proportional
viscous damping model is utilized and the spatial damping matrixDuu, according to
the orthogonality properties of the modal vectors with respect to the mass and stiffness
matrices, is diagonalized by the truncated modal matrixΨ̂,

Ψ̂TDuuΨ̂ = Λ, (10)

and a diagonal modal damping matrixΛ with the generic term2ξiωi, whereξi is
the modal damping ratio andωi the undamped natural frequency of thei-th mode, is
obtained. Hence, that considerably simplifies the inclusion oh the inherent damping
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effects in our model. Considering a normalization scheme for unitary modal masses,
Equations (6) and (7) with the modal damping matrix included become

η̈(t) + Λη̇(t) + Ωη(t) = −Ψ̂TKuφaφ̄a(t) + Ψ̂TF(t), (11)

φ̄s(t) = −K−1
φφsKφusΨ̂η(t), (12)

whereΩ is a diagonal matrix with the generic termω2
i . Equations (11) and (12)

represent the truncated modal model of the smart piezoelectric beam.

3 Active Control of Vibrations

3.1 State Space Design

The state space approach is the basis of the modern control theories and is strongly
recommended in the design and analysis of control systems with a great amount of
inputs and outputs [8]. In this method, dynamic systems are described by a set of
first-order differential equations in variables called thestate.

According to Equations (11) and (12) the state variables are chosen as follows,

x(t)=

{
η(t)
η̇(t)

}
, (13)

and the open-loop system is represented by two first-order matricial differential equa-
tions expressed in terms of the state variables vectorx(t),

ẋ(t) = Ax(t) + Bφuφ(t) + Buuu(t), (14)

y(t) = Cx(t), (15)

whereA is the system matrix,Bu andBφ are the mechanical and electrical input
matrices,C is the output matrix,uu(t) anduφ(t) are the mechanical and electrical
input vectors andy(t) is the output vector, given by

A =

[
0 I
−Ω −Λ

]
, (16)

Bu =

[
0

Ψ̂T

]
, Bφ =

[
0

−Ψ̂TKuφa

]
, (17a,b)

C =

 avg
{
−K−1

φφsKφusΨ̂
}

0

0 avg
{
−K−1

φφsKφusΨ̂
}  , (18)

uu(t) = F, uφ(t) = φ̄a(t), (19a,b)

y(t) =

{
φ̄s(t)
˙̄φs(t)

}
. (20)

7



In Equation (18) the notationavg {·} is utilized to denote that the signal induced by
the piezoelectric sensors should be calculated from an average of the electrical DoF
where an electrical FE separation of the electrodes was performed.

The open-loop system in Equations (14) and (15) consider two different input vec-
tors, a mechanical disturbance forceuu(t) (primary excitation) and a control voltage
uφ(t) (secondary excitation), and one output vectory(t) (sensor voltage and its deriva-
tive). In general we can consider that multiple inputs are applied to the smart beam
(multiple forces and piezoelectric actuators) and that multiple outputs are obtained
from multiple piezoelectric sensors.

3.2 Classical Control

With the purpose of reducing the vibrations we can establish a feedback loop where
the signals produced by the piezoelectric sensors are amplified and fed back to the
actuators in order to produce a secondary excitation that can cancel the primary force
excitation. Therefore, the control voltage is given by

uφ(t) = −Gy(t), (21)

whereG is a feedback gain matrix defined according to the control law of interest.
Substituting Equation (21) in (14), the closed-loop system is given by

ẋ(t) = (A−BφGC)x(t) + Buuu(t), (22)

where the control vectoruφ(t) is condensed in the state equations. From Equation
(22) we can see that the gain matrixG controls the system through the modification
of the closed-loop system poles. Therefore, if an adequate gain matrix and control law
are established, the system vibration modes are attenuated through an increase in the
modal damping ratio (the initial open-loop poles of matrixA are transformed into the
highly damped ones ofA−BφGC). The gain selection and control system design of
such feedback controllers can be done using either a pole-zero representation of the
system (as in the root-locus method or pole placement, for example) or a frequency
response representation (as, for example, in the Nyquist method). The stability is
guaranteed provided the actuator and sensor are collocated [6]. Control systems where
indirect methods are used for the definition of the feedback gains are often referred as
classical control.

Assuming that a velocity feedback scheme is utilized, where the sensor output is
differentiated, amplified, and then fed back into the actuator, the signal used in the
velocity feedback is representative of the strain rate of the beam. Thus, a conventional
term,velocity feedback,is used. In the velocity feedback two control algorithms are
considered [12]. In the first one, which is termedconstant amplitudevelocity feedback
(CAVF), the individual gain of thei-th piezoelectric actuator is defined according
to the polarity of thei-th sensor voltage and, to denote that, the notationsign (·) is
utilized. Hence, the feedback control voltage amplitude is constant, non-linear and
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discontinuous, and the gain matrix is defined by

G =
[

0 diag (A1, . . . , Ai, . . . , An) sign (·)
]

, (23)

wherediag (·) denotes a diagonal matrix with the individual amplitudesAi of thei-th
control voltage, withi = 1, . . . , n. Alternatively, aconstant gainvelocity feedback
(CGVF) can be used, with the gain matrix defined by

G =
[

0 diag (G1, . . . , Gi, . . . Gn)
]

, (24)

whereGi is the individual gain of thei-th actuator. In this case the feedback control
voltage is linear, continuous and decreases as the vibration velocity decays. It’s worth
to note that in Equation (22) the output matrixC assumes that all the sensor voltages
and its derivatives are known for every sensor, but the zero matrices in Equations (23)
and (24) indicate that only the voltage velocity is used in the feedback loop.

3.3 Optimal Control

In the previous section the values of the feedback gains were chosen to achieve some
prescribed change in the dynamic properties of the system. However, the ultimate
aim of the feedback control is often to reduce the motion of the mechanical system
to the greatest possible extent and, in that case, the control system is said to act as
a regulator. Systems where direct methods of designing feedback control systems
which achieve the greatest possible reduction in the dynamic response are used are
known asoptimal controlsystems [5].

In optimal control the feedback control system is designed to minimize a cost func-
tion, or performance index, which is proportional to the required measure of the sys-
tem’s response and to the control inputs required to attenuate the response. The cost
function can be chosen to be quadratically dependent on the output response and con-
trol input,

J =

∫ tf

0

[
yT(t)Qyy(t) + uT

φ(t)Ruφ(t)
]

dt + yT(tf )Syy(tf ), (25)

whereQy, R and Sy are the output, control input and terminal output condition
positive-definite weighting matrices, respectively. Alternatively, the cost functionJ
can also be written in another form,

J =

∫ tf

0

[
xT(t)Qxx(t) + uT

φ(t)Ruφ(t)
]

dt + xT(tf )Sxx(tf ), (26)

in which Qx andSx are the state variable and terminal state condition positive semi-
definite weighting matrices. Equation (26) is the form of cost function generally con-
sidered in optimal control. However, that all depends on the way the designer chooses
to model the system, i.e., the way he suitable chooses the state variables and the system
outputs.
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As noted by Inman [3], modal control can be cast either in ’state space’ form or
’physical space’ form, i.e., in terms of the physical modes of the mechanical system.
The present work considers an approach to control system design in which the state
variables are chosen such that the unforced behavior of each state variable is relatively
independent of the behavior of the other state variables, and the dynamics of the me-
chanical system is considered in terms of its modal response. Hence, one can choose
as a performance index the cost function minimizing the outputs of the system (sensor
voltage and its derivative), Equation (25), or, alternatively, one can chose to minimize
the state variables (modal amplitudes), Equation (26). By a convenient definition of
the state weighting matrixQx, the modal gain matrix can be ’tuned’ to give different
design objectives. Assuming that all the modes (state variables) are observable and
controllable, the cost function in Equation (26) provides independent control over the
natural frequencies and damping ratios of each mode. That strategy is calledindepen-
dent modal space control, or IMSC [4]. Some convenient choices for the definition of
the weighting matrices can be, for example,

R =

[
I 0
0 I

]
, Qy =

[
I 0
0 I

]
, Qx =

[
Ω 0
0 0

]
, (27a,b,c)

where a identity matrixI and diagonal matrixΩ with the generic termω2
i (squared

natural frequency of thei-th mode) of size (r × r) are utilized.

It can be seen in reference [8] that the feedback control system which minimizes the
cost function in Equation (26) for the linear time-invariant system defined in Equation
(14), uses state feedback with a time-varying feedback gain matrixK∗

g(t), so that

uφ(t) = −K∗
g(t)x(t). (28)

The optimal time-varying feedback gain is given byK∗
g = R−1BT

φP(t), whereP(t)
is the solution of thematrix Riccati equation,

Ṗ(t) = −P(t)A−ATP(t)−Qx + P(t)BφR
−1BT

φP(t). (29)

This control philosophy is calledlinear quadratic regulator(LQR). That regulator re-
quires the knowledge of all the optimal gain valuesK∗

g(t) in the time interval[0, tf ].
However, the feedback gains of the LQR usually approach steady-state values far from
the final time. Therefore, in applications where the control system is designed to oper-
ate for time periods that are long compared to the transient time of the optimal gains,
it is reasonable to ignore the transient and use the steady-state gains, exclusively. The
use of the steady-state LQR controller considerably simplifies the controller design
and the analog and digital implementation. The steady-state feedback gain matrix is
then given by

Kg = R−1BT
φP

∞, (30)

in whichP∞ is the steady-state solution,limt−→∞P(t), of the matrix Riccati equation.
Therefore, considering a steady-state feedback gainKg in Equation (28), the closed-
loop state equations are given by

ẋ(t) = (A−BφKg)x(t) + Buuu(t). (31)
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In the previous equations it was assumed that all the states were completely ob-
servable and therefore could be directly related to the outputs and used by the control
system. However, that is not always the case and a more realistic approach would
consider that where only the outputsy(t) can be known and measured. In order to be
able to use the states information in the control system it will be necessary to estimate
the states from a model of the system and a limited number of observations of the
outputs. That estimation is made usually by astate estimatoror observer. It is fed by
the same known input signals as the mechanical system,uφ(t), and has its output̂y(t)
constantly compared with the output of the mechanical system,y(t). The objective is
to ensure that the internal states of the electronic or digital state estimator, which can
of course be directly measured, will track the internal states of the mechanical system,
which can not be directly measured. The internal states of the state estimator are then
used as estimates of the internal states of the mechanical system and fed back to the
inputs to implement state variable feedback control.

However, the state variable estimates are very sensitive to any uncorrelated noise
in the system, particularly measurement noise from the observed outputs of the me-
chanical system. Knowing the statistical properties of the various sources of noise in
the mechanical system, and assuming white uncorrelated noise uniformly distributed
in bandwidth, a ’optimal’ state observer which minimizes the effects of plant and
measurement noise is known asKalman filter.

Considering the open-loop system in Equations (14) and (15) adjoined with plant
and measurement noise,w(t) andv(t), yields

ẋ(t) = Ax(t) + Bφuφ(t) + Buuu(t) + Bww(t), (32)

y(t) = Cx(t) + v(t). (33)

whereBw is a plant noise input matrix. The plant and measurement noise are both
assumed to be white, have a Gaussian probability density function and are assumed
uncorrelated with the inputs. The correlation properties of the plant and measurement
noise vectors are given by the correlation matrices

E
[
Bww(t)wT(t)BT

w

]
= W, E

[
v(t)vT(t)

]
= V, (34a,b)

whereE denotes the expectation operator. Considering a state estimator with the same
dynamics as the system under control, which is assumed known, and the same known
inputs, the estimator statesx̂ would thus be governed by the equation

˙̂x(t) = Ax̂(t) + Bφuφ(t) + K∗
e(t) [Cx + v(t)−Cx̂(t)] , (35)

wherex̂(0) = 0 andK∗
e(t) is known as theKalman gain matrix. The last equation

simulates the real system and penalizes the difference between the measured outputs,
Cx + v(t), and estimated outputs,Cx̂(t). Defining the error between the true and
estimated states ase(t) = x(t) − x̂(t), the dynamic behavior of the Kalman filter
can now be expressed as a coupled set of first order differential equations through the
difference of Equations (32) and (35),

ė(t) = [A−K∗
e(t)C] e(t) + Buuu(t) + Bww(t)−K∗

e(t)v(t). (36)
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The Kalman gain matrix which leads to the optimal feedback controller is shown in
reference [8] to be of the formK∗

e(t) = M(t)CTV−1, whereM(t) is the correlation
matrix of the estimation error which is the solution of another Riccati equation,

Ṁ(t) = M(t)AT + AM(t) + W −M(t)CTV−1CM(t), (37)

which is usually solved with the initial conditionM(0) = E[x(0)xT(0)]. In a similar
way to the steady-state LQR, the ’optimal’ Kalman gain matrixK∗

e(t) in Equation (36)
typically experiences a transient and then approaches steady-state as time increases
from the initial time. In applications where the estimator is designed to operate for
time periods that are long compared to the transient times of the Kalman gains, it is
reasonable to ignore the transient and exclusively use the steady-state gainsKe. This
filter is suboptimal, but still yields excellent estimates in many cases. Additionally,
the steady-state Kalman gain matrix is independent of the initial estimation error cor-
relation matrix.

The equations for computing the Kalman gain have a striking resemblance to the
equations for computing the LQR gain. In reference [8] the steady-state Kalman filter
problem is shown to be equivalent to the steady-state LQR problem when appropriate
substitutions are made. That correspondence is referred asduality. Hence, the duality
relations between the steady-state Kalman filter and the steady state LQR allow to
define the following correspondences:A ⇔ AT, B ⇔ CT, Kg ⇔ Ke, Q ⇔ W and
R ⇔ V (note that the expressions on the right refer to the Kalman filter and the ex-
pressions on the left are for the LQR). Therefore, the LQR problem is mathematically
equivalent to the Kalman filtering problem.

Combining the steady-state Kalman filter with the steady state LQR, the inter-
related dynamic system will take take the form{

ẋ(t)
ė(t)

}
=

[
A−BφKg BφKg

0 A−KeC

]{
x(t)
e(t)

}
(38)

+

[
Bu

Bu

]
uu(t) +

[
Bw 0
Bw −Ke

]{
w(t)
v(t)

}
. (39)

Because we must assume that the random perturbations (force disturbance and mea-
surement noise) are Gaussian, this control philosophy is calledLinear Quadratic
Gaussian(LQG) control. The dynamics of the coupled controller and observer sys-
tem is determined by the eigenvalues of the square system matrix in Equation (38). An
important property of this system is known as thedeterministic separation principle,
in which the coupled system poles are exactly equal to those of the control system
with perfect feedback control, given by the eigenvalues ofA−BφKg, and those of
the observer alone, given by the eigenvalues ofA −KeC. However, the closed-loop
coupled system stability depends of the two sub-systems. The error will asymptoti-
cally be stable provided the observer poles have negative real components collocated,
in the complex plan, as far as possible from the system poles so that the observer error
reduces more rapidly than the system response.
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4 Case Study

In this section the FE model is utilized in the evaluation of the classical and optimal
active vibration control of a cantilever aluminum beam with two piezoelectric patches
mounted in the surface (Figure 2). The displacement time history, for an initial dis-
placement field and white noise force disturbance, and point receptance at the free end
are evaluated with the open- and closed-loop systems.

� � � �

� � � � � � 	 


� � � 
 	 


� � � � � � � � �

Figure 2: Cantilever smart piezoelectric beam.

The cantilever beam has400 mm length,2 mm thickness and15 mm width, and the
two piezoelectric patches (Philips Components – PLT30/15/1-PX5-N) have30 mm
length,1 mm thickness and15 mm width. The mechanical and electrical material
properties of the aluminium beam and piezoelectric patches, PXE-5, are presented in
Table 1. In the analysis a truncated modal model with the first four flexural modes was
considered. The correspondent modal damping ratios were determined experimentally
and their values are as follows:1.71%, 0.72%, 0.42% and0.41%. All the numerical
calculations were performed in the MATLABR© environment.

Aluminium
Young’s modulus,E 70 GPa
Poisson’s ratio,ν 0.3
Mass density,ρ 2710 Kg/m3

PXE-5
Mat. coef., cE11 131.1 GPa Piezo str. cst.,d31 −215× 10−12 m/V
Mat. coef., cE12 7.984 GPa Piezo str. cst.,d33 500× 10−12 m/V
Mat. coef., cE13 8.439 GPa Piezo str. cst.,d15 515× 10−12 m/V
Mat. coef., cE33 12.31 GPa Rel. str. perm.,εT

11/ε0 1800
Mat. coef., cE44 2.564 GPa Rel. str. perm.,εT

33/ε0 2100
Mat. coef., cE66 2.564 GPa Mass density,ρ 7800 Kg/m3

Table 1: Material properties of the aluminium and PXE-5.
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4.1 Initial Displacement Field

Consider an initial displacement field applied to the beam which induces a tip displace-
ment of1.5 mm. The tip displacement time history and control voltage for the CGVF
and CAVF control systems are presented in Figure 3. The control gainG = 0.4 for
the CGVF was chosen from a root locus analysis in order to increase the damping of
the first mode as much as possible and, simultaneously, by a trial-and-error method in
order to use control voltages within the desired range. According to the limit electric
field strength of the piezoelectric patches (300 V/mm), the control voltage should be
lower than300 V. Exceeding that voltage may result in depolarization of the material
so that the piezoelectric properties become less pronounced or disappear completely.
For the CAVF, a constant amplitudeA = 250 V was chosen and the control voltage
was turned on att = 0 s and turned off at = 0.2 s. Furthermore, in the CAVF only
the velocity polarity of the first-mode was considered in the feedback loop (perfect
band-pass filter tuned to the first mode).
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Figure 3: Tip displacement and control voltage for an initial displacement field with
CGVF (a, c) and CAVF (b, d):........., open-loop;LL , closed-loop.

As can be seen in Figure 3, the CGVF control manages to significantly attenuate
the free tip displacement with an admissible control voltage. The closed-loop5%
settling time is equal to0.5 s, which reveals a great improvement on the response
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attenuation when compared with the open-loop one (2.3 s). Moreover, it presents a
better performance than the CAVF (0.58 s). However, if we look at the10% settling
time, the CAVF control shows a faster attenuation capacity (0.24 s) than the CGVF
(0.38 s).
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Figure 4: Tip displacement and control voltage for an initial displacement field with
outputy (a, c) and statex (b, d) weighting:......... , open-loop;l l l , closed-loop
(LQR);LL , closed-loop (LQG).

In Figure 4 the LQR and LQG controllers with output weighting (sensor voltage
and its derivative) and state weighting (modal amplitudes and modal velocities) are
utilized. It is assumed in the state estimation that only the sensor voltage, and not
its derivative, is measured. That assumption corresponds to a more realistic approach
and avoids the necessity of differentiating the sensor signal. For the output weighting
case, the weighting matricesQy = diag (1, 1) andR = 15 were utilized, and for
the state weighting case, the matrixQx = 1 × 1010diag (ω2

1, 0, . . . , 0) was defined
in order to mainly damp the first mode, andR = 30 was chosen. For the LQG
controller design, a white noise mechanical disturbance applied in the free end of
the beam is modeled as plant noise. Therefore, in order to define the correlation
matrix in Equation (34a) the equalityBw = Bu should be considered. A plant noise
vector (force disturbance) withE[w(t)wT(t)] = 4×10−4 N2 and a sensor white noise
disturbance withE[v(t)vT(t)] = 1 V2 are considered for the definition of the noise
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correlation matrices and Kalman gain design. However, the effects of the stochastic
mechanical disturbance in the displacement time history will be considered only in the
following sections. The results in Figures 4a and 4b show that the state estimator of
the LQG controller with state weighting (only the first mode) has a better performance
than the one with output weighting. Furthermore, in Figure 4a the displacements with
the LQR and LQG have a significative difference in attenuation, with5% settling times
equal to0.49 s and0.89 s. Moreover, the LQR and LQG with state weighting in Figure
4b have the same5% settling time (0.34 s), with the LQG requiring a lower control
voltage, and when compared with the velocity feedback present a better performance.

4.2 White Noise Disturbance

As referred in the previous section, a white noise point force disturbance with variance
equal to4 × 10−4 N2 is applied in the free end of the beam. The gains, amplitude
and control parameters for all the control strategies are the same that were utilized
in the previous section and only the output and state weighting matrices are changed
to R = 1 and Qx = 1 × 1010diag (ω2

1, ω
2
2, ω

2
3, ω

2
4, 0, . . . , 0). This choice for the

state weighting matrix is made in order to distribute the vibration control effort in
bandwidth. However, the analysis is limited to the modal model bandwith (only the
first four flexural modes are considered).

The open- and closed-loop tip displacements and control voltages for the white
noise force disturbance evaluated with the CGVF and CAVF are presented in Figure
5. In Figure 6 the displacement and control voltages are evaluated with the LQR and
LQG with output and state weighting. It can be seen that all the control systems man-
age to reduce the tip displacement significantly. When compared to the open-loop
response standard deviation, which is equal to0.57 mm, the closed-loop response
standard deviations (with the respective control voltage standard deviations) for the
CGVF and CAVF,0.26 mm (79.6 V) and 0.20 mm (250 V), demonstrate the vibra-
tion control efficiency. Moreover, the LQR and LQG with output weighting present
responses with standard deviations equal to0.26 mm (97.4 V) and0.28 mm (118 V),
and the LQR and LQG with state weighting have their values equal to0.16 mm (80 V)
and0.20 mm (72 V). The most effective control system is the LQR with state weight-
ing. However, a state estimator is necessary, and the results achieved with the LQG
(0.20 mm) are more realistic. Furthermore, they are equal to the ones obtained with
the CAVF. However, if we look at the control voltages utilized, the most interesting
one is the LQG with state weighting, with only72 V, and the most inefficient, with the
higher control voltage (250 V), is the CAVF.

4.3 Frequency Response Function

In order to analyse the capacity of the various control strategies on the frequency do-
main, the point receptances at the free end of the beam evaluated with the open- and
closed-loop control systems are presented. With that purpose, the displacement time
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Figure 5: Tip displacement and control voltage for white noise point force disturbance
with CGVF (a, c) and CAVF (b, d):........., open-loop;LL , closed-loop.

histories for the white noise mechanical disturbance presented in the previous sec-
tion are utilized to estimate the frequency response functions by a fast Fourier trans-
form (FFT) computer algorithm. The open- and closed-loop point receptances for the
CGVF and CAVF control are presented in Figure 7. The CAVF control significantly
reduces the magnitude of the first resonance in approximately27 dB, and increases
the magnitudes of the other modes. In comparison, the CGAF doesn’t manage to have
such a good performance in the attenuation of the first mode, with a8.6 dB reduc-
tion, but in compensation attenuation in all modes is achieved and the fourth mode is
completely eliminated. Moreover, the natural frequencies are shifted.

In Figures 8 and 9 the point receptance for outputy and statex weighting with the
LQR and LQG controller are presented. The results show that the effects of the state
estimation don’t compromise the stability of the system, and that the output weighting
LQG controller can have even a better performance than the LQR. A8.8 dB and
9.4 dB attenuation of the first mode is achieved with the LQR and LQG controller
with output weighting, respectively, and the resonant frequencies are shifted. If we
now look at the results with state weighting (Figure 9), we can see that only the peak
amplitudes are affected by the state estimator, and the natural frequencies remain the
same. Furthermore, all the modes are damped, and a12.2 dB and10.7 dB reductions
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Figure 6: Tip displacement and control voltage for white noise point force disturbance
with outputy (a, c) and statex (b, d) weighting:........., open-loop;l l l , closed-loop
(LQR);LL , closed-loop (LQG).
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Figure 7: Point receptance with CGVF (a) and CAVF (b):......... , open-loop;LL ,
closed-loop.

of the first mode are achieved with the LQR and LQG controller with state weighting,
respectively.
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Figure 8: Point receptance with the LQR (a) and LQG (b) controller with outputy

weighting:........., open-loop;LL , closed-loop.
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Figure 9: Point receptance with the LQR (a) and LQG (b) controller with statex

weighting:........., open-loop;LL , closed-loop.

5 Conclusion

The classical techniques can avoid the necessity of digital control reducing the time
delays in the control system. However, the CGVF and CAVF strategies require the
differentiation of the sensor voltage, which for noisy measurements can become trou-
blesome. In compensation, stability is guaranteed provided the actuator and sensor are
collocated. If one looks for adaptability in design, the optimal techniques, which re-
quire a model of the system, can be more interesting. The quantification of the control
system’s performance by a quadratic cost function provides the designer with lots of
flexibility to perform trade-offs among various performance criteria. The relationship
between cost function weights and performance criteria hold even for high-order and
multiple input systems, where classical control becomes cumbersome. A major limita-
tion of the LQR is that the entire state must be measured when generating the control.
The LQG controller overcomes the need to measure the entire state by estimating the
sate using a Kalman filter, which utilizes noisy partial output information, and some
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modifications in its performance, which sometimes can improve the efficiency, often
occur. However, observability and controllability spillover problems related with the
reduced (truncated) model dynamics may compromise stability.

The case studies allow to compare the performances of the classical and optimal
strategies. It was shown that for an initial displacement field the CAVF and LQG
with the first mode weighted are the most interesting solutions. However, for a white
noise disturbance, the CAVF only manages to reduce the mode under control, and the
others are destabilized. Moreover, the LQG with all the modes weighted presents a
better control in bandwidth with a lower control voltage. The output weighting LQG
can also be an interesting strategy in situations where attenuation of the outputs is of
interest. In the present analysis a resemblance in performance with the CGVF was
shown.
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