
draft 1 manuscript No.
(will be inserted by the editor)

Optimizing a medical image registration algorithm based on 1

profiling data for real-time performance 2

Carlos A. S. J. Gulo · Antonio C. Sementille · 3

João Manuel R. S. Tavares 4

5

Received: date / Accepted: date 6

Abstract Image registration is a commonly task in medical image analysis. 7

Therefore, a significant number of algorithms have been developed to perform rigid 8

and non-rigid image registration. Particularly, the free-form deformation algorithm 9

is frequently used to carry out non-rigid registration task; however, it is a 10

computationally very intensive algorithm. In this work, we describe an approach 11

based on profiling data to identify potential parts of this algorithm for which parallel 12

implementations can be developed. The proposed approach assesses the efficient of 13

the algorithm by applying performance analysis techniques commonly available in 14

traditional computer operating systems. Hence, this article provides guidelines to 15

support researchers working on medical image processing and analysis to achieve 16

real-time non-rigid image registration applications using common computing 17

systems. According to our experimental findings, significant speedups can be 18

accomplished by parallelizing sequential snippets, i.e., code regions that are 19

executed more than once. For the selected costly functions previously identified in 20

the studied free-form deformation algorithm, the developed parallelization 21

decreased the runtime by up to seven times relatively to the related single thread 22

based implementation. The implementations were developed based on the Open 23

Carlos A. S. J. Gulo
CNPq National Scientific and Technological Development Council
Research Group PIXEL - UNEMAT, Brazil
Programa Doutoral em Engenharia Informática, Instituto de Ciência e Inovação em Engenharia Mecânica
e Engenharia Industrial, Faculdade de Engenharia, Universidade do Porto, Portugal
E-mail: sander@unemat.br

Antonio C. Sementille
Departamento de Ciências da Computação, Faculdade de Ciências, Universidade Estadual Paulista-
UNESP, Brazil
E-mail: antonio.sementille@unesp.br

João Manuel R. S. Tavares
Instituto de Ciência e Inovação em Engenharia Mecânica e Engenharia Industrial, Departamento de
Engenharia Mecânica, Faculdade de Engenharia, Universidade do Porto, Portugal
E-mail: tavares@fe.up.pt (corresponding author)

http://orcid.org/0000-0002-5000-497X
https://orcid.org/0000-0002-4337-514X
http://orcid.org/0000-0001-7603-6526


2 Carlos A. S. J. Gulo et al.

Multi-Processing application programming interface. In conclusion, this study24

confirms that based on the call graph visualization and detected performance25

bottlenecks, one can easily find and evaluate snippets which are potential26

optimization targets in addition to throughput in memory accesses.27

Keywords Medical image processing and analysis · Profiling tools · Performance28

analysis · Non-rigid image registration29

1 Introduction30

Medical image analysis plays a significant role in the field of medicine, and image31

registration is an important and widely used technique in this context. Today,32

patients are imaged on routine basis using different imaging systems. Patients are33

also monitored over time to assess disease progression or response to therapy.34

However, to be able to study physiological and/or structural changes over time, or to35

combine complementary information that different imaging systems produce, it is36

necessary to perform the registration of the acquired images [1]. Image registration37

is a computational task that determines the spatial correspondence between two38

images of the same object acquired at different angles, at different times, using39

different image modalities, or under different acquisition conditions [2, 3, 4]. In40

general, an image registration method can be decomposed into three parts: building41

a transformation model, computing a similarity measure and performing the42

optimization of the registration model [4, 5]. Transformation models, such as rigid43

or non-rigid models, delineate the transformation that can be used to represent the44

underlying correspondences. Rigid models describe simple linear mappings such as45

translations, rotations, scalings and shears. However, non-rigid transformation46

models can represent more complex mappings, since local deformations are also47

taken into account, resulting thus in longer computation times [6, 5]. Non-rigid48

image registration is an extensive research field, encompassing many applications49

and several specific algorithms. For example, the ones based on mutual50

information [7, 8], elastic transformation models [9], multi-resolution [10], and51

similarity measures [6]. However, the required computational effort is frequently52

high when a non-rigid image registration algorithm is used. Hence, this task is53

well-known as one of the most time-consuming tasks that can be found in medical54

image analysis [11, 12]. However, with the development of multi-core processor55

architecture, several solutions have been proposed that realize non-rigid image56

registration algorithms on multi-core CPUs [13, 14, 15]. Multi-core architecture57

mainly aim at improving the performance of highly demanded applications by58

exploiting parallelism. However, writing parallel algorithms from scratch is a very59

complex and demanding task. Furthermore, parallelizing legacy algorithms is even60

more challenging [16, 17, 18]. Fortunately, a profiling method can be effectively61

used to identify and evaluate portions of code responsible for consuming excessive62

computational resources [17, 18]. For example, a profiling tool can accurately count63

the activation instances of a function during runtime of an algorithm. Furthermore, it64

can provide timing information about the function [19]. Profiling is therefore a65

helpful approach in program optimization, which is based on gathering and66



Title Suppressed Due to Excessive Length 3

calculating data regarding memory space, frequency and duration of function calls, 67

and time complexity of the algorithm under study. Many profiling tools, such as 68

gprof [19], perf [20], tiptop [21] and others [22, 23, 24], have been proposed 69

to help programmers identifying performance bottlenecks during the execution of 70

algorithms on a CPU under a given workload [20, 17, 23]. 71

In the presented study, we employed profiling tools to identify functions with 72

long run-times in a popular image registration algorithm: the Free-Form 73

Deformation (FFD) algorithm [12, 11]. Based on the collected profiling data, we 74

carried out a performance analysis of the algorithm. In particular, we aimed to 75

effectively decrease its processing time in order to adapt it to be feasible for 76

real-time diagnosis. To this end, we exploited computational resources typically 77

available in modern personal computers. We gauged “performance” by working out 78

the operating systems efficiency during algorithms execution. This evaluation took 79

into account the factors of throughput, latency, and availability. Thus, throughout 80

this article, we provide guidelines and methods that can support researchers of 81

medical image processing and analysis in identifying very time consuming functions 82

in their algorithms using profiling tools. The experimental findings show that the 83

gathered profiling information can point out the main bottlenecks found in an 84

algorithm implemented in C. This study also provides insights into why profiling 85

data is useful; in particular, for optimizing a non-rigid image registration algorithm 86

for real-time applications. 87

To the best of our knowledge, this is the first time that the chosen profiling tools 88

are used to support the parallelization of a non-rigid image registration algorithm. 89

Our findings are thus highly pertinent for the image processing and analysis area, 90

mainly for the medical imaging community. Frequently, medical images in real 91

clinical scenarios are of high resolution and need to be processed and analyzed fast. 92

Additionally, computers with multi-cores are available in medical environments 93

with enough computational power to handle tasks of image processing and analysis 94

efficiently. Hence, the insights presented in this work are timely and demanded for 95

researchers developing algorithms of medical image processing and analysis. 96

This article is organized as follows: Section 2 presents the background concepts, 97

mainly the profiling method used to identify snippets with excessive CPU 98

consumption. In the same section, methods that have been proposed to speedup the 99

computation of non-rigid image registration algorithms are reviewed. In Section 3, 100

the material and methods used to speedup the runtime of the studied algorithm of 101

non-rigid image registration, including the profiling tools used for tasks such as 102

measuring the performance of the algorithm, gathering the data to be analyzed, and 103

building the visualization of the performance analysis, are described. The main 104

findings and observations resulting from the performed experiences using profiling 105

data to optimize the computation of the studied algorithm are discussed in Section 4. 106

Section 5 provides the conclusion of this study and presents future work directions. 107



4 Carlos A. S. J. Gulo et al.

2 Background and Related Work108

In this section, the topic of medical image registration and the profiling tools used in109

this study are introduced. Additionally, research concerning the use of110

high-performance computing techniques to speedup medical image registration111

algorithms is reviewed.112

2.1 Medical image registration113

Image registration is the process of aligning images of the same object obtained at114

different times or from different view-points, using different or similar imaging115

modalities or conditions [16, 25, 8]. This process aligns geometrically two images,116

usually referred as the reference and sensed images. In image registration117

applications, the involved information can be gathered through a combination of118

data sources as in image fusion, change detection, and multi-channel image119

restoration, to name a few [14, 26]. Focusing on non-rigid registration, one accounts120

for changes between the images that arise not only by global rotations, translations121

and scaling, but also due to complex local variations. Medical image registration is122

commonly used to follow up information on patient anatomy along different time123

points, where one must take into account the deformation of the anatomy itself due124

to, for example, the patient’s breathing or normal anatomical changes [9, 14].125

A significant number of image registration methods have been developed both to126

obtain the combination, i.e., fusion of data acquired by different clinically useful127

imaging modalities through mutual co-registration, or to register one image to other128

images to understand how patient anatomy has changed over time [14, 15]. In129

general, the majority of the rigid image registration methods comprise four steps:130

feature detection, feature matching, transform model estimation, and image131

re-sampling and transformation [25, 14]. Non-rigid registration methods, on the132

other hand, commonly search for the optimal transformation parameters that133

maximise a similarity measure. All these steps are well documented in134

literature [25, 14, 27, 15].135

In order to attained the registration of two input images, the non-rigid136

registration should establish a correspondence measure between a reference image,137

Ir, and sensed image, Is, using a parameter transformation Tt(·) of image geometry138

in line with a similarity function ρ(·). When Is has a higher dimension than Ir,139

projection operators Pr and Ps can be used to reduce Is dimensionality. Then, the140

non-rigid image registration problem can be expressed via maximizing the similarity141

measure function [26]:142

T ∗
t (·) = argTt(·) max ρ(Pr(Ir), Ps(Tt(Is))). (1)

An FFD model comprises a powerful tool for deforming an image volume using143

cubic B-splines. This technique is applied, for example, in deformation analysis in144

brain images, by deforming an object by adjusting an underlying mesh of control145

points, creating its 3D shape, and a smooth and C2 continuous transformation [12].146

To define a spline based FFD, the domain of the image volume can be denoted as147



Title Suppressed Due to Excessive Length 5

Ω = {(x, y, z)|0 ≤ x < X, 0 ≤ y < Y, 0 ≤ z < Z}. On the other hand, let the 148

parameters of the transformation and the amount of deformation, Φ, be expressed as 149

a nx × ny × nz mesh of φi,j,k control points with a uniform spacing, δ. Thus, φ 150

can be formed as a low resolution mesh for modeling global non-rigid deformations, 151

and as a high resolution mesh for modeling local deformations of the control points 152

mesh [11, 12] with high accuracy. Thus, one can write FFD as a 3D tensor product of 153

1D cubic B-splines expressed as: 154

Tlocal(x,y,z) =
3!

l=0

3!

m=0

3!

n=0
Bl(u)Bm(v)Bn(w)φi+l,j+m,k+n, (2)

where i = ⌊x/nx⌋ − 1, j = ⌊y/ny⌋ − 1, k = ⌊z/nz⌋ − 1, u = x/nx − ⌊x/nx⌋, 155

v = y/ny − ⌊y/ny⌋, and w = z/nz − ⌊z/nz⌋, and Bl represents the l-th basis 156

function of the B-spline [11, 12]: 157

B0(u) = (1 − u)3/6,

B1(u) = (3u3 − 6u2 + 4)/6,

B2(u) = (−3u3 + 3u2 + 3u + 1/6,

B3(u) = u3/6.

(3)

Considering Bl(u) = 0 for l < 0 and l > 3, the derivative terms are nonzero 158

only in the neighborhood of a given point. Therefore, the optimization of the 159

objective function can be efficiently achieved using gradient descent [11, 12]. 160

However, FFD algorithm is computationally intensive; in particular, when dealing 161

with images of large dimensions, which occurs frequently in several possible 162

applications [14]. As an example, the parallel computation of the human brain 163

deformation is a recent field of exploration which can be efficiently studied through 164

processing large amounts of high resolution images concurrently [3]. Moreover, the 165

conjugate gradient descent algorithm can optimize all control points and interpolate 166

the complete image under study at each iteration [11]. However, the computation of 167

the similarity measure and of the geometric transformation are computational 168

bottlenecks of the non-rigid registration method, demanding, therefore, increased 169

efforts for effective parallelization techniques for such computations. 170

2.2 Profiling methods 171

Here, the use of profiling methods for measuring the computation time of each 172

function in an algorithm is described. Profiling is a well-known tool that evaluates 173

the performance of an algorithm by gathering its runtime data. Its principal objective 174

is to assist programmers in identifying performance bottlenecks of the algorithm. 175

Thus, the technique is commonly used to get an insight into an algorithm’s 176

performance, and to assess the use of instruction sets in order to identify and 177

evaluate portions of code that cause excessive processor utilization. It can further 178

check several metrics such as memory allocation, memory usage and leaks, cache 179

performance, execution time, or even energy consumption [22]. Different profiling180



6 Carlos A. S. J. Gulo et al.

approaches exist such as instrumented, event based, statistical, and simulation181

based [20, 19, 18].182

Usually, a performance analysis based on profiling consist of the following four183

steps: instrumentation or modification of the algorithm under study to generate184

performance data, measurement of significant aspects of execution that are essential185

for generating the needed data, analysis and visualization of the gathered data [24]186

(Fig. 1).

Fig. 1 Diagram of the profiling method.

187

2.2.1 Instrumentation188

A compiler and the source code of the algorithm under study are needed for its189

instrumentation. The instrumentation process, at compile time, adds a detailed190

listing of the running statistics to the object file, and links the executable to standard191

libraries that have profiling information enabled. Next, the instrumentation192

incorporates measurement code into the implementation, resulting in an accurate193

assessment of running times [17, 28, 24]. Instrumentation processes are developed194

to determine possible options for modifying the behavior of the algorithm.195

Monitoring runtime behavior of algorithms involves aggregating information based196

on the number of executions of each basic block, and instrumenting binaries to trace197

various type of events such as free and malloc and similar function utilities.198

2.2.2 Measuring199

Gathering profile data is the second step in the profiling method. Typically, the200

following information is collected during the execution of the algorithm under201

study: approximate time spent in each function; the number of times a function is202

invoked; a list of the caller functions invoking a given function; a list of the 203



Title Suppressed Due to Excessive Length 7

descendant functions that a given function invokes; and an estimate of the 204

cumulative time spent in the descendant functions invoked by a given function [19]. 205

Relevant data about functions can be collected by post-processing this information 206

from one or more executions. This data is then stored in files for subsequent 207

processing. Following this, a dynamic call graph for the execution is built [18, 23]. 208

In general, gathering profiling data does not interfere with the execution of the 209

algorithm [23, 24]. 210

2.2.3 Data analysis 211

The third step of the profiling method concerns the analysis of the data gathered in 212

the previous step. Here, related binary is produced and, subsequently, the output data 213

is available for extraction. By convention, output files are named after the respective 214

profiler, e.g., perf.data for the perf profiler, gmon.out for gprof. Each 215

output file contains the execution profile. Profilers analyse the data and extract 216

performance statistics as well as record the arc in the call graph that corresponds to 217

the activation of each function [20, 19, 24]. 218

Profiler determines the most costly functions and collects the arcs of the dynamic 219

call graph traversed during the execution of the algorithm for such functions. This 220

enables the visualization of the call graph and presentation of the measures collected 221

from the execution. Such information can be graphically represented as returning 222

address for a function call referred as caller being used to identify the source of the 223

arc and the destination referred as callee [23]. 224

2.2.4 Visualization 225

In the final step, collected profiling data is presented by incorporating the call graph 226

of the algorithm under study. Visualization can employ call stack walking which is a 227

technique that identifies calling relationships between functions in an 228

implementation. Every call relationship that occurs is also represented in the graph 229

with the CPU usage time for the respective call. Both tools, gprof and perf, 230

provide dynamic call graph information for all instrumented code snippets. A call 231

graph is binary, and sometimes is treated as a multi-graph, instead of as 232

relations-relation over functions, or procedures as defined in an algorithm 233

implementation [20, 19]. An edge (f, g) shows that function f invokes function g, 234

and the nodes represent the individual functions in the executable. 235

2.3 Related work 236

Parallel computing has been applied to highly complex problems such as 237

computations that involve large workloads and data, and intensive critical numerical 238

analysis. Sequential algorithm implementations are frequently re-coded in order to 239

decompose the algorithms or the data into smaller portions. These portions are 240

commonly referred as tasks, and are distributed to be executed in many- or 241

multi-cores simultaneously [29, 30]. Throughout this procedure, the tasks of242



8 Carlos A. S. J. Gulo et al.

communication and coordination are performed based on memory usage by243

different computer processing units [30].244

The growing popularity and use of multi-core processor architectures in medical245

imaging applications is well documented [14, 27, 15]. The primary objective of246

multi-core CPUs architectures has been to increase the performance of applications247

by exploiting parallelism. However, writing parallel implementations from scratch is248

a very complex and demanding task. Parallelizing legacy implementations written249

by someone else is even more challenging [14].250

From several works [31, 32, 26], one can realize that in the field of medical251

image processing and analysis, it is not common for the developers to use tools that252

detect computationally costly functions in their algorithms. However, several studies253

have been conducted to address performance issues in image registration algorithms254

using high-performance computing [33, 13, 15]. For example, Shackleford et al.255

[14] presented a comprehensive survey of non-rigid registration algorithms that are256

suitable for use in modern multi-core architectures. Image registration tasks though257

computationally costly can yield to high parallelism. Therefore, multi-core258

architectures with high parallel processing power provide excellent opportunities for259

speeding up these tasks.260

Computationally intensive Mutual Information (MI) based algorithms have been261

successfully employed in parallel architectures such as clusters [34], Graphic262

Processing Unit (GPU) [33, 27], multi-core Cell Broadband Engine Architecture263

(CBEA) [35], and Field-Programmable Gate Array (FPGA) [7], reducing their264

runtime and making them suitable for routine clinical use. For example, MI based265

algorithms have been used to correct the misalignment - an image registration266

application - of tissue in computed tomography (CT), positron emission tomography267

(PET) and magnetic resonance (MR) images, achieving accuracy comparable to one268

achieved by clinical experts.269

Rohlfing and Maurer [3] and Christensen [34] exploited the use of270

shared-memory multiprocessor computer architectures as well as data and task271

partition parallel programming models. Rehman et al. [2] developed a parallel272

approach of non-rigid registration by addressing it as an Optimal Mass Transport273

problem. Lapeer et al. [36] presented a point based registration method, integrating a274

Radial Basis Function (RBF) as a smoothing function and sought to mimic the275

interacting deformation of biological tissues. Mafi and Sirouspour [37] exploited a276

GPU based computational platform for real-time analysis of soft object deformation.277

Ellingwood et al. [16] developed a new computation- and memory-efficient278

Diffeomorphic Multi-Level B-Spline Transform Composite method on GPU for the279

non-rigid mass-preserving registration of CT volumetric images. The Sum of280

Squared Tissue Volume Difference (SSTVD) was adopted as the similarity criterion281

to preserve the computed tissue volume. A cubic B-Spline based FFD282

transformation model was used to capture the non-rigid deformation of objects like283

human lungs. The experiments used lung CT images, indicating an increase of speed284

of 112 times relative to the single-threaded CPU version, and of 11 times compared 285

to the 12-threaded version when considering the average time per iteration using the 286

GPU based implementation. 287



Title Suppressed Due to Excessive Length 9

3 Material and Methods 288

As described in Section 2.1, non-rigid image registration involves transforming 289

different sets of data into one coordinate system. Besides the optimization of an 290

objective function, its evaluation as well as the transformation of the floating image 291

using splines and an interpolation function can be taken into account to accelerate 292

the FFD algorithm. In this study, the acceleration possibilities for the optimization 293

step were identified by realizing parallelization options using profiling 294

tools [17, 18, 24]. 295

3.1 Environment settings 296

The used test infrastructure included a desktop computer, with 16 GB of RAM 297

(DDR3-1600 MHz), an Intel(R) Core(TM) i7-4790 3.60 GHz processor, the Linux 298

Debian 8 operating system, the GNU gcc/g++ compiler 4.9.2, the Open 299

Multi-Processing (OpenMP) 3.1 application programming interface, Visual Studio 300

Code 1.57.1, gprof 2.25, perf 3.16.7-ckt20, gprof2dot 1, and dot 2 2.38. 301

The used processor has four physical cores, and two logical threads can be 302

simultaneously run in each core using the support of a feature commonly known as 303

hyper-threading technology. Thus, one can choose to effectively run from a single 304

thread to a maximum of 8 threads depending on partial or complete utilization of the 305

available cores. 306

For the experiments, this study used Multiple Sclerosis (MS) images that were 307

collected from the MS Longitudinal Challenge Data Set repository [38], and are 308

freely distributed for research purposes. We randomly selected thirteen images from 309

the original dataset to validate the non-rigid image registration results. All included 310

images were obtained using the same imaging scan and under the same acquisition 311

conditions, i.e., using a 3.0 Tesla MR imaging scanner (Philips Medical System, 312

Best, The Netherlands), according to the following image acquisition parameters: 313

T1-weighted (T1 − w) magnetization prepared rapid gradient echo (MPRAGE) with 314

TR=10.3 ms, TE=6 ms, flip angle=8°, and 0.82x0.82x1.17 mm3 voxel size; a double 315

spin echo (DSE), which produces PD-w and T2 − w images with TR=4177 ms, 316

TE1=12.31 ms, TE2=80 ms, and 0.82×0.82×2.2 mm3 voxel size; and a T2 − w 317

fluid-attenuated inversion recovery (FLAIR) with TI=835 ms, TE=68 ms, and 318

0.82x0.82x2.2 mm3 voxel size [38].319

1 gprof2dot is an open source script written in Python used to convert the output from a range
of profiles into a dot graph. This script can be freely downloaded at https://github.com/
jrfonseca/gprof2dot.

2 dot is a Graphviz feature for producing hierarchical drawings of directed graphs. Graphviz is an open
source visualization software for representing structural information such as diagrams of abstract graphs.
More information is available at http://graphviz.org.

https://github.com/jrfonseca/gprof2dot
http://graphviz.org


10 Carlos A. S. J. Gulo et al.

3.2 Registration evaluation320

Dice Similarity Coefficient (DSC) is a simple and useful statistical validation metric321

commonly used to evaluate the performance of both registration reproducibility and322

spatial overlap accuracy against to registration ground truths [11]. The DSC value323

rates the overlap of two masks between 0 (zero) and 1 (one), where 1 (one) indicates324

a perfect overlap and 0 (zero) none. Therefore, DSC assesses the spatial overlap325

between the registration result (Mm) and the corresponding registration ground truth326

(Mp) as [11]:327

DSC = 2‖Mm

"
Mp‖

‖Mp‖ + ‖Mp‖ , (4)

where ‖Mm‖ and ‖Mp‖ are the number of pixels, or voxels in 3D, in Mm and Mp,328

respectively. Mm is the area, or volume, of the registration obtained by the automated329

algorithm whereas Mp is the area, or volume, of the registration ground truth and330

Mp

"
Mp is the overlapping area, or volume, of the two images under comparison.331

3.3 Performance evaluation332

In order to estimate the speedup of the studied FFD algorithm, Amdahl’s law of333

speedup was used [39]:334

Speedupenhanced = 1
(1 − f) + f

S

, (5)

where Speedupenhanced is the overall speedup of the algorithm, f the execution335

time of a function eligible for optimization, and S the expected speedup of this336

function. The key idea of this formula is to determine time-consuming functions in337

an implementation that can be adapted for optimization. Such functions (complete338

or partial) are frequently referred as bottlenecks. To gain significant overall speedup,339

the value of f should be high [29, 40, 30]. Once the bottlenecks are identified,340

possible optimizations are postulated to help the performance improvement. These341

optimizations should then be individually verified to ensure that they result in real342

measurable improvements.343

The performance of the studied FFD algorithm was, therefore, improved344

concerning the bottlenecks that were perviously identified by using the profiling345

tools gprof and perf. We selected these tools as they combined profiling methods346

based on distinct approaches, i.e., those based on instrumentation, statistics, and347

event based. Each tool comprises two essential components. One is a runtime348

routine; profiling tool calls this routine at the beginning of every function that needs349

to be compiled with profiling parameters. The other component is the350

post-processing version of the algorithm under analysis that aggregates and presents351

the data. We compiled the FFD single thread based algorithm implementation with352

the following parameters: (-fno-omit-frame-pointer) in order to enable the353

frame pointer analysis; (-g) for generating symbol information, which in turn354

enabled source code analysis; and the parameter -pg, which is used for inserting the355

monitor function mcount before each function call. 356



Title Suppressed Due to Excessive Length 11

The profiling tool maintains a careful calculation of the effective computation 357

times in different execution scenarios. The monitor function mcount records the 358

function address and identifies the source of the cycles based on the addresses 359

generated inside the profiled function. When a child function is a member of a cycle, 360

the time shown is the appropriate fraction of the time for the complete cycle. 361

Self-recursive routines have their calls broken down into calls from the outside and 362

self-recursive calls; thus, only the outside calls affect the propagation time. 363

gprof is relatively easy to employ and is portable though limited in scope. It 364

produces a detailed call graph identifying functions that call other functions and the 365

number of times each function is invoked. Furthermore, gprof lists the percentage 366

of time spent in a function and, hence, computes the execution time of that function. 367

perf uses statistical sampling to collect profile data thereby generating an 368

interruption at regular time intervals. perf can identify all processes running on the 369

CPU enabling it to capture all relevant information such as the program counter, and 370

the CPU core. Next, it writes all of this data to an output file called perf.data. 371

gprof and perf runtime routines gather accurate call counts that combined with a 372

post-processing version of the algorithm leads to an evaluation table that lists the 373

number of calls to each function, as well as the percentage amount of time spent in 374

such function, and the average time per call. 375

4 Results and Discussion 376

In this section, results from experiments performed aiming at getting useful profiling 377

information, accumulating samples, and producing statistically meaningful results 378

of the FFD algorithm under study using images of the MS Longitudinal Challenge 379

dataset, are reported and discussed. 380

4.1 Algorithm evaluation 381

The implementation was profiled using 13 images, and then the accuracy was 382

evaluated by comparing the registration results with those obtained using a classical 383

FFD implementation 3. The obtained comparative results are presented in Table 1. 384

4.2 Computation time evaluation 385

The required runtime was investigated in order to evaluate the impact of the profile 386

based implementation in terms of computer performance. Each experiment was 387

executed fifty times for each image. Mean and standard deviation values of the time 388

required to process the profiled based algorithm were calculated. All input images 389

were treated in the same manner, and the considered processing time includes the390

3 An executable version of the FFD algorithm used for comparison purpose, by performing quantitative
analysis based on the DSC value, can be downloaded from Daniel Rueckert’s webpage: http://www.
doc.ic.ac.uk/~dr

http://www.doc.ic.ac.uk/~dr


12 Carlos A. S. J. Gulo et al.

Table 1 Comparison of classical and profiled based FFD algorithms: results for 13 images based on the
DSC value.

Image # Dimension DSC

1 256x256x35 0.97262
2 256x256x120 0.95407
3 256x256x70 0.96194
4 256x256x70 0.96071
5 256x256x70 0.97167
6 256x256x120 0.93503
7 256x256x70 0.94767
8 256x256x70 0.95950
9 256x256x70 0.96650
10 256x256x120 0.97314
11 256x256x70 0.96029
12 256x256x70 0.95365
13 256x256x120 0.96493

Table 2 Means and standard deviations of the runtime (in seconds) required by the profiled based FFD
algorithm implementation.

Image # Dimension Runtime

1 256x256x35 73.08411 ± 0.05945
2 256x256x120 79.00041 ± 0.07101
3 256x256x70 74.08051 ± 0.01961
4 256x256x70 73.48618 ± 0.01920
5 256x256x70 74.20270 ± 0.01393
6 256x256x120 79.00217 ± 0.07294
7 256x256x70 74.68039 ± 0.01279
8 256x256x70 74.99707 ± 0.01484
9 256x256x70 73.94009 ± 0.01752
10 256x256x120 79.07080 ± 0.07590
11 256x256x70 74.08260 ± 0.01220
12 256x256x70 74.83009 ± 0.01522
13 256x256x120 79.00239 ± 0.08677

time spent to load the data into the main system memory until the end of the391

registration process, i.e., when the resultant image has been produced. The obtained392

results are presented in Table 2.393

4.3 Performance analysis394

Concerning the performance analysis, it should be noted that the profiling tools395

collect data while monitoring performance counters, hardware interruptions, and396

operating system calls. Profiling tools periodically interrupt the kernel of the397

operating system to record a new sample; these samples are stored in a ring buffer,398

generating, therefore, overhead. perf mitigates sampling overhead by enforcing399

local sampling buffer. perf creates one instance of the event on each used CPU;400

then, the events are effectively measured when that CPU executes each thread. All401

the samples are aggregated into a single output file once all profiles have been run.402

In the experiments, the sampling mode in perf was used to trace the events of the403



Title Suppressed Due to Excessive Length 13

FFD algorithm in real-time. For the experiments conducted with 2, 4, and 8 threads, 404

perf generated output files with sizes of dozens of megabytes. The obtained results 405

are presented in Table 3. This considerable big data size is because perf depends 406

on the adopted frequency. For the sampling rate according to the events are 407

recorded, a rate of 4000 samples per second was used, which resulted in high 408

overhead and large output files. However, gprof generates output files that are in the 409

order of kilobytes, i.e., 768 KB; mainly, because the output file contains a histogram 410

of program counter samples and the arc table. 411

Table 3 File sizes, indicated in megabytes (MB), generated by perf according to the dimension of the
input images and the developed OpenMP based implementation using different number of threads.

Image # Dimension Number of threads
1 Thread 2 Threads 4 Threads 8 Threads

1 256x256x35 9.65 10.23 12.24 25.41
2 256x256x120 12.40 13.16 18.91 28.74
3 256x256x70 11.08 11.83 13.02 27.53
4 256x256x70 17.74 18.48 22.31 25.42
5 256x256x70 36.32 32.37 61.61 25.45
6 256x256x120 8.61 8.92 9.84 25.63
7 256x256x70 9.16 9.45 25.53 33.02
8 256x256x70 7.85 8.23 11.33 30.56
9 256x256x70 12.04 12.51 15.92 30.22
10 256x256x120 24.07 25.04 31.32 50.58
11 256x256x70 18.44 19.14 25.81 52.37
12 256x256x70 12.91 13.60 14.64 31.66
13 256x256x120 20.51 21.20 33.58 46.05

In order to extract performance statistics and record the arcs in the call graph, 412

the collected data was analyzed. The call graph represents information intuitively by 413

employing a visual map from a collection of hierarchical data in order to quickly 414

facilitate its understanding [41, 42, 43]. The call graph represents time consuming 415

functions and the number of times the functions were invoked. By analyzing the 416

call graph sample of the image registration algorithm, the graph shown in Fig. 2 was 417

generated, which includes the time propagated for each function from its descendants, 418

and the number of times each function was called. 419

The built call graph displays the descendants as well as the caller of each 420

function, including the time propagated to each routine from its descendants. The 421

important entries of the call graph profile are the ones depicted with grey numbered 422

circles in Fig. 2, which refers to the primary function of the studied non-rigid image 423

registration algorithm. In this figure, element 2 represents the name of the caller 424

function; the percentage of the runtime accounted by the algorithm’s function and its 425

descendants is indicated by element 3; element 4 accounts for a time that depends on 426

whether it is the primary function for that section, the function’s caller or descendant 427

functions. In the first case, time is the actual function execution time during the 428

running of the algorithm. In the second case, it indicates the amount of the self-time 429

being propagated to that caller, based on the percentage of calls to the primary 430

function made by that caller. Finally, for descendant functions, it represents the 431



14 Carlos A. S. J. Gulo et al.

Fig. 2 Call graph generated by perf representing the most often called functions in the studied image
registration algorithm.

amount of that descendant function’s self-time being propagated to the primary432

function based on the percentage of calls made to the descendant by the primary433

function. The last entry in the green box next to element 4 represents the number of434

times that function was called (63x in this case), and finally element 5 is related to435

the accumulated percentage of time running a function, taking into account the436

propagation for each descendant function.437

The built call graph is helpful in evaluating the algorithm’s performance and438

identifying its bottlenecks. Taking full advantage of profiling tools requires to focus439

on the analysis of the relevant parts of the algorithm execution, making the440

experiments easier to understand. The used profiling tools identified that the441

function reg_getEntropies is responsible for 68% of the total running time442

(56.90 seconds), meaning that joint histogram filling is the main time consuming443

task within this function. The other costly functions identified by the profiling tools444

were:445

– reg_cubic_spline_getDeformationField3D which generates the446

deformation field: a lattice of equally spaced control points is defined over the447

reference image using cubic B-splines;448

– ResampleImage3D which computes the value Is(T (x)) for every pixel x, or449

voxel in 3D, inside the reference image. In this case, the computational450

complexity is linearly dependent on the number of pixels, or voxels, in the451

reference image;452

– UpdateParameters which assesses the quality of a registration using a cost453

function such as mutual information. In order to achieve the perfect registration454

between two images, the transformation parameters are iteratively optimized.455

To obtain a measure of the runtime, the program that implements the algorithm456

was run a total of fifty times. The average of the time elapsed reported by each457

profiling tool was calculated. In all cases, the execution times for different runs of 458



Title Suppressed Due to Excessive Length 15

the implementation were remarkably consistent. The most time consuming functions 459

iterate a hundred times which makes them desirable parallelization targets. The 460

algorithm under study requires large computations, iterating until convergence, 461

aiming to ensure the best possible registration of the input images. Hence, the 462

studied algorithm can greatly benefit from a high degree of parallelism. 463

For the performance analysis of the developed parallel implementation, a 464

benchmark problem was defined, which is suitable to evaluate the performance in 465

the setting for sequential execution as well as parallel execution. Next, the effect of 466

using different number of physical cores on the performance of the multi-threaded 467

algorithm was studied. For a fixed number of cores, the same number of threads per 468

core for execution, i.e., one thread for each core, was used. The costly function 469

reg_getEntropies was implemented using OpenMP. 470

All the experiments that were previously carried out were repeated. The results 471

were then compared using varying degrees of parallelism, in particular using 1, 2, 4 472

and 8 threads. As shown in Fig. 3, the developed parallel OpenMP based 473

implementation achieved a significant reduction in the runtime of the studied 474

non-rigid image registration algorithm relatively to its single-thread implementation. 475

This validates the claim that profiling tools could help programmers to quickly 476

identify critical bottlenecks. 477

Fig. 4 depicts the performance gain of the parallel OpenMP based 478

implementation of the non-rigid image registration algorithm. One can see that it 479

scales almost exponentially, and that the parallel implementation achieved runtime 480

approximately seven times faster than those of the single thread based481

implementation, taking into account the ratio of the sequential runtime to the482

parallel runtime. The parallel based implementation uses one thread for each core483

for the execution, which is created and managed by the multi-threading library.484

Fig. 3 Proportionality of the time consuming functions detected by the perf and gprof profiling tools
using the developed OpenMP based implementation of the FFD algorithm.



16 Carlos A. S. J. Gulo et al.

#01

#02

#03

#04

#05

#06

#07

#08

#09

#10

#11

#12

#13

0 20 40 60 80
Runtime (in seconds)

Im
ag

e 1 Threads

2 Threads

4 Thread

8 threads

Fig. 4 Means and standard deviations of runtime spent for running the developed OpenMP based
implementation of the FFD algorithm under study.

5 Conclusion and Future Work485

The need for parallelization is on the rise, in part due to the facts that many486

computing devices now have multi-core processors available, and the applications487

are becoming more complex and have to deal with larger amounts of data. However,488

writing parallel code is a challenging task for many programmers, since it involves a489

strong learning curve for coding applications in parallel design, and requires a490

strong understanding of advanced concepts concerning memory hierarchy and491

optimal data paths in computer systems. While much effort has been devoted to492

address the issue of parallel programming, the current work was mainly focused on493

gathering parallelization support from profiling tools. As our findings suggest,494

profiling tools can be highly effective to detect and evaluate performance bottleneck495

snippets in a non-rigid image registration algorithm based on FFD, providing a496

low-impact method for gathering useful information.497

The developed parallel OpenMP based implementation was compared against498

the corresponding single thread based implementation in several experiments. The499

parallelization of the costly functions of the FFD algorithm reduced the runtime by500

up to 7 times compared to the single thread version. 501

In conclusion, the proposed parallelization based on profiling tools substantially 502

improved the runtime performance of the studied non-rigid image registration 503



Title Suppressed Due to Excessive Length 17

algorithm. This will facilitate medical practitioners and researchers that commonly 504

rely on image registration to label anatomical data, identify diseases, compare 505

patient images and perform follow-up diagnosis. This is, therefore, a step forward to 506

make accelerated non-rigid image registration solutions more accessible to a broader 507

audience. 508

In future work, we will develop the approach further to address the all time 509

consuming functions already detected in this study, with an objective to make these 510

functions more efficient so that better speedups can be possible with more modern 511

data parallel algorithms. We plan to optimize the performance of these algorithms 512

by using heterogeneous parallel computing platforms that use GPUs. Additional 513

challenges need to be addressed, for instance, the issue in shared memory systems of 514

protecting simultaneous data access in order to avoid data inconsistency and errors, 515

load balancing, and the efficient management of reading/writing data to massive 516

data units. These challenging elements are all critical for achieving efficiency and 517

the maximum performance possible in the underlying architecture. Finally, another 518

interest future work would be the comparison of the suggested approach against 519

related methods available in the literature. 520

6 Acknowledgments 521

The first author gratefully acknowledges the following institutions for the support 522

received: Universidade do Estado de Mato Grosso (UNEMAT), in Brazil, and 523

National Council for Scientific and Technological Development (Conselho Nacional 524

de Desenvolvimento Científico e Tecnológico - CNPq), process grant 525

234306/2014-9 under reference #2010/15691-0. 526

References 527

1. Parraguez SPP (2015) Fast and robust methods for non-rigid registration of 528

medical images. PhD thesis, Imperial College of Science 529

2. Rehman T, Haber E, Pryor G, Melonakos J, Tannenbaum A (2009) 3D nonrigid 530

registration via optimal mass transport on the GPU. Medical Image Analysis 531

13(6):931–940, DOI 10.1016/j.media.2008.10.008 532

3. Rohlfing T, Maurer CR (2003) Nonrigid image registration in shared-memory 533

multiprocessor environments with application to brains, breasts, and bees. IEEE 534

Transactions on Information Technology in Biomedicine 7(1):16–25, DOI 10. 535

1109/TITB.2003.808506 536

4. Oliveira FP, Tavares JMR (2014) Medical image registration: a review. Computer 537

Methods in Biomechanics and Biomedical Engineering 17(2):73–93, DOI 10. 538

1080/10255842.2012.670855 539

5. Snape P, Pszczolkowski S, Zafeiriou S, Tzimiropoulos G, Ledig C, Rueckert540

D (2016) A robust similarity measure for volumetric image registration with541

outliers. Image and Vision Computing 52(C):97–113, DOI 10.1016/j.imavis.542

2016.05.006543



18 Carlos A. S. J. Gulo et al.

6. El-Gamal FEZA, Elmogy M, Atwan A (2016) Current trends in medical image544

registration and fusion. Egyptian Informatics Journal 17(1):99 – 124, DOI 10.545

1016/j.eij.2015.09.002546

7. Dandekar O, Shekhar R (2007) FPGA-accelerated deformable image547

registration for improved target-delineation during CT-guided interventions.548

IEEE Transactions on Biomedical Circuits and Systems 1(2):116–127, DOI549

10.1109/TBCAS.2007.909023550

8. Warfield SK, Jolesz FA, Kikinis R (1998) A high performance computing551

approach to the registration of medical imaging data. Parallel Computing552

24:1345–1368, DOI 10.1016/S0167-8191(98)00061-1553

9. McInerney T, Terzopoulos D (1996) Deformable models in medical image554

analysis: a survey. Medical Image Analysis 1(2):91 – 108, DOI 10.1016/555

S1361-8415(96)80007-7556

10. Salomon M, Heitz F, Perrin GR, Armspach JP (2005) A massively parallel557

approach to deformable matching of 3D medical images via stochastic558

differential equations. Parallel Computing 31(1):45–71, DOI 10.1016/j.parco.559

2004.12.003560

11. Modat M, Ridgway GR, Taylor ZA, Lehmann M, Barnes J, Hawkes DJ, Fox561

NC, Ourselin S (2010) Fast free-form deformation using graphics processing562

units. Computer Methods and Programs in Biomedicine 98(3):278 – 284, DOI563

10.1016/j.cmpb.2009.09.002564

12. Rueckert D, Sonoda LI, Hayes C, Hill DLG, Leach MO, Hawkes DJ (1999)565

Nonrigid registration using free-form deformations: application to breast MR566

images. IEEE Transactions on Medical Imaging 18(8):712–721, DOI 10.1109/567

42.796284568

13. Palomar R, Gómez-Luna J, Cheikh FA, Olivares-Bueno J, Elle OJ (2017)569

High-performance computation of bézier surfaces on parallel and heterogeneous570

platforms. International Journal of Parallel Programming DOI 10.1007/571

s10766-017-0506-1572

14. Shackleford J, Kandasamy N, Sharp G (2013) High Performance Deformable573

Image Registration Algorithms for Manycore Processors. Morgan Kaufmann574

Publishers Inc., DOI 10.1016/B978-0-12-407741-6.00007-4575

15. Shams R, Sadeghi P, Kennedy RA, Hartley RI (2010) A survey of medical576

image registration on multicore and the GPU. IEEE Signal Processing Magazine577

27(2):50–60, DOI 10.1109/MSP.2009.935387578

16. Ellingwood ND, Yin Y, Smith M, Lin CL (2016) Efficient methods for579

implementation of multi-level nonrigid mass-preserving image registration580

on GPUs and multi-threaded CPUs. Computer Methods and Programs in581

Biomedicine 127:290 – 300, DOI 10.1016/j.cmpb.2015.12.018582

17. Li Z, Atre R, Huda Z, Jannesari A, Wolf F (2016) Unveiling parallelization583

opportunities in sequential programs. Journal of Systems and Software 117:282584

– 295, DOI 10.1016/j.jss.2016.03.045 585

18. Rul S, Vandierendonck H, Bosschere KD (2010) A profile-based tool for finding 586

pipeline parallelism in sequential programs. Parallel Computing 36(9):531–551, 587

DOI 10.1016/j.parco.2010.05.006 588



Title Suppressed Due to Excessive Length 19

19. Graham SL, Kessler PB, McKusick MK (2004) gprof: A call graph execution 589

profiler. ACM SIGPLAN Notes 39(4):49–57, DOI 10.1145/989393.989401 590

20. Dimakopoulou M, Eranian S, Koziris N, Bambos N (2016) Reliable and 591

efficient performance monitoring in Linux. In: Proceedings of the International 592

Conference for High Performance Computing, Networking, Storage and 593

Analysis, IEEE Press, pp 1–13 594

21. Rohou E (2012) Tiptop: Hardware performance counters for the masses. In: 41st 595

International Conference on Parallel Processing Workshops, pp 404–413, DOI 596

10.1109/ICPPW.2012.58 597

22. Ball T, Larus JR (1994) Optimally profiling and tracing programs. ACM 598

Transactions on Programming Languages and Systems 16(4):1319–1360, DOI 599

10.1145/183432.183527 600

23. Schulz M, de Supinski BR (2007) Practical Differential Profiling, Springer, pp 601

97–106. DOI 10.1007/978-3-540-74466-5_12 602

24. Spivey JM (2004) Fast, accurate call graph profiling. Software: Practice and 603

Experience 34(3):249–264, DOI 10.1002/spe.562 604

25. Li A, Kumar A, Ha Y, Corporaal H (2015) Correlation ratio based volume image 605

registration on GPUs. Microprocessors and Microsystems 39(8):998 – 1011, 606

DOI 10.1016/j.micpro.2015.04.002 607

26. Shi L, Liu W, Zhang H, Xie Y, Wang D, Shi L, Liu W, Zhang H, Xie Y, 608

Wang D (2012) A survey of GPU-based medical image computing techniques. 609

Quantitative Imaging in Medicine and Surgery 2(3) 610

27. Shams R, Sadeghi P, Kennedy R, Hartley R (2010) Parallel computation of 611

mutual information on the GPU with application to real-time registration of 3D 612

medical images. Computer Methods and Programs in Biomedicine 99(2):133 – 613

146, DOI 10.1016/j.cmpb.2009.11.004 614

28. Mittal S, Vetter JS (2015) A survey of CPU-GPU heterogeneous computing 615

techniques. ACM Computing Surveys 47(4):69:1–69:35, DOI 10.1145/2788396 616

29. Gebali F (2011) Algorithms and Parallel Computing. John Wiley & Sons, DOI 617

10.1002/9780470932025 618

30. Vadja A (2011) Programming Many-Core Chips. Springer, DOI 10.1007/ 619

978-1-4419-9739-5 620

31. Eklund A, Dufort P, Forsberg D, LaConte SM (2013) Medical image processing 621

on the GPU - past, present and future. Medical Image Analysis 17(8):1073–1094, 622

DOI 10.1016/j.media.2013.05.008 623

32. Gong L, Kulikowski CA (2012) High-performance medical imaging informatics. 624

Methods of Information in Medicine 51(3):258–259 625

33. Meng L (2014) Acceleration method of 3D medical images registration based 626

on compute unified device architecture. Bio-Medical Materials and Engineering 627

24(1):1109–1116, DOI 10.3233/BME-130910 628

34. Christensen GE (1998) MIMD vs. SIMD parallel processing: A case study in 3D 629

medical image registration. Parallel Computing 24:1369–1383, DOI 10.1016/ 630

S0167-8191(98)00062-3631

35. Rohrer J, Gong L (2009) Accelerating 3D nonrigid registration using the cell632

broadband engine processor. IBM Journal of Research and Development 53(5),633

DOI 10.1147/JRD.2009.5429078634



20 Carlos A. S. J. Gulo et al.

36. Lapeer RJ, Shah SK, Rowland RS (2010) An optimised radial basis function635

algorithm for fast non-rigid registration of medical images. Computers in636

Biology and Medicine 40(1):1–7, DOI 10.1016/j.compbiomed.2009.10.002637

37. Mafi R, Sirouspour S (2014) GPU-based acceleration of computations638

in nonlinear finite element deformation analysis. International Journal for639

Numerical Methods in Biomedical Engineering 30(3):365–381, DOI 10.1002/640

cnm.2607641

38. Carass A, Roy S, Jog A, Cuzzocreo JL, Magrath E, Gherman A, Button J,642

et al. (2017) Longitudinal multiple sclerosis lesion segmentation: Resource and643

challenge. NeuroImage 148:77–102, DOI 10.1016/j.neuroimage.2016.12.064644

39. Hill MD, Marty MR (2008) Amdahl’s law in the multicore era. Computer645

41(7):33–38, DOI 10.1109/MC.2008.209646

40. Kirk D, Hwu WM (2010) Programming Massively Parallel Processors: A Hands-647

on Approach. Elsevier648

41. Bezemer CP, Pouwelse J, Gregg B (2015) Understanding software performance649

regressions using differential flame graphs. In: 22nd International Conference on650

Software Analysis, Evolution, and Reengineering (SANER), pp 535–539, DOI651

10.1109/SANER.2015.7081872652

42. Gregg B (2016) The flame graph: This visualization of software execution is a653

new necessity for performance profiling and debugging. ACM Queue Magazine 654

14(2):91–110, DOI https://doi.org/10.1145/2927299.2927301 655

43. Kruskal JB, Landwehr JM (1983) Icicle plots: Better displays for hierarchical 656

clustering. The American Statistician 37(2):162–168, DOI 10.2307/2685881 657


