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ABSTRACT. In the present paper, our main goal is focused in devel-
oping fast algorithms for human mtDNA sequence analyses, requir-
ing minimum and emphexplicit assumptions on mutation models
and evolutionary pathways. We propose a new approach based on
a construction of Dawson, a technique based on the ordering of the
variable sites.

In this approach, the first step corresponds to the computation
of the order of the positions according to their capacity to sep-
arate the sequences into dichotomous groups. Aiming to avoid
or at least to minimize the consideration of ambiguous evolution-
ary events such as insertions/deletions and recurrence, which cause
well-known alignment problems, in the present study we only work
with the protein coding sequence, the clearly more stable region in
human mitochondrial genomes. This method was tested in a small
set of 99 human mtDNA comprising representatives of all major
haplogroups. The developed approach showed to be a choice to
automate the clustering of human mtDNA sequences into broad
groups, the output being in agreement with the canonical classi-
fication into macro-haplogroups deposited in the Phylotree data-
base.

Keywords. Mitochondrial DNA, sequence alignment, genome
comparison, protein coding region, haplogroup assignment, Daw-
son construction.

1. INTRODUCTION

Nowadays, several fields, such as forensics and medicine, have required
more and more methodologies capable of describing the relationships
among a set of individuals, in order to find out evolutionary signals
and/or disease causing variations. During the last years, the number
of novel sequence comparison approaches that have been proposed is
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countless, including alignment, the most widely used, and free-alignment
methodologies [18, 20, 1, 12, 4].

The procedures of the former kind are very time consuming and the
quality of the results depends on the evolutionary soundness of costs
attributed to the observed different mutational events. The methodolo-
gies of the latter type are generally much faster than those depending
on alignment processes; in contrast, however, they do not interpret
the events as evolutionary phenomena. Given this, there is a strong
need for novel and efficient approaches in order to solve the sequence
comparison problem.

Aiming to compare and to cluster human mitochondrial sequences,
we face a bit different reality, with respect to the methodology com-
monly used. Mammalian mitochondrial DNA is a double-stranded and
circular genome with approximately 16500 base pairs, comprising a to-
tal of 37 genes, more specifically 13 protein coding genes, 22 tRNAs
and 2rRNA [10]. It is a molecule with some remarkable characteristics,
such as: (i) has an uniparental mode of transmission, by maternal lin-
eages; (ii) is non-recombining; (iii) presents a high mutation rate [17, 9].
Thus, it passes intact from the ancestors to the offspring, except if some
mutation occurs. Consequently, mtDNA genome is currently used to
trace back the maternal evolutionary histories in a variety of scales
and time depths. Nowadays, in any study of human mtDNA analy-
ses, the common practice has two steps: (a) first mtDNA sequences
are aligned against a reference sequence and then (b) a search for di-
agnostic variable sites in order to classify sequences into haplogroups
is performed [19]. These steps, particularly the second one, are done
manually in a boring, time-consuming and error-prone process. Al-
though some approaches have been developed aiming to address this
problem, it remains challenging [15, 16, 5, 11, 13, 22].

As a consequence, novel and efficient methodologies capable of auto-
matedly clustering mtDNA sequences are must welcome. In the present
work, we propose a new approach, based on a construction of Dawson
using mtDNA protein coding region, which is a very stable and length-
conserved region in humans. Our application uses the same design of
variable sites as standard manual technique. However, it is made by a
computer and so is much faster, friendlier, and human error-avoiding.

2. METHODS

2.1. Dawson construction. Let B be a collection of subsets of [n] :=
{1,2,...,n} for a positive integer n. For example, let n = 7 and B be
the set formed by the following 15 subsets of [7]:
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{1,2,4,5} | {1,2,4,6} | {1,2,4,7} | {1,2,5,6} | {1,2,6,7}
{1,3,4,5} | {1,3,4,6} | {1,3,6} |{1,3,6,7}|{1,4,6,7}
{1,5,6,7} | {2,3,4,5} | {2,5,6,7} | {3,5,6,7} | {4,5,6,7}
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From B, we construct a rooted binary labeled tree D, that we call
the Dawson tree. This graph is a tree, so that any pair of vertices is
connected by a unique sequence of adjacent vertices without repeti-
tion '. Both the vertices and the edges of D are labeled. We label the
vertices of D either with integers between 1 and n or with (all) the
elements of B. The edges are labeled with v or with T for v € [n].

In fact, from each vertex labeled with v € [n] there are two edges
leaving the vertex * which are labeled v and v, (see Figure 1). No edge
leaves from the vertices labeled with the elements of B.
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FIGURE 1. Dawson’s tree D

This tree is easy to build. We first sort every element of B in in-
creasing order and then sort B in lexicographical order.

Let u be the least element of B := (UB)\ (NB). We start the tree with
a vertex labeled u. This vertex is the root. In our case, u = 1. Now, we
split B in two sets: the set B, of those elements containing u and the
set Bz of those elements not containing u; note that each element of
the first set precedes every element of the second set in lexicographical
order. In our case B; is formed by the first eleven elements and By by
the remaining four.

Now, we look for the least element v; of UB, \ NB, and for the least
element vy of UB; \ NByg; in our example, v; = vy = 2. We create an

ITwo vertices are adjacent if they belong to the same edge
2We say that the edge {vw} leaves v if w does not belong to the (unique) sequence
of non-repeating adjacent vertices connecting v with the root.
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edge labeled u connecting u to a new vertex labeled v; and an edge
labeled % connecting u to another new vertex labeled vs.

We iterate this process while either of the new sets corresponding to
B; and B contains more than one element.

This means that we split B, [resp. Bg] in two subsets, By, and Bz
[resp. Bgy, and Bgy], and chose the least element corresponding to
each case (in our example, we obtain ¢; = 4 and ¢y = ¢3 = ¢4 = 3,
etc.).

More precisely, the procedure is as follows, where the initial values
are C' =B and 0 = 1.

proc(C, o)
[Inputs a collection C of subsets of [n] sorted in lexzicographical order and
an integer o (for order) and returns a vertex of the growing graph G|
(1) If |C| =1, let C = {B},
(a) Add a new vertex v to V, labeled with B;
(b) Return(v);
(2) Let Cy be the ordered set of the o.th integers of the elements of
C;
(a) If |Cy] =1,
(i) Return(proc(C,o+ 1));
(b) If |Cy| > 1, let a be the least element of Cy,
let C(a,0) be the set of elements of C' with o.th integer
equal to a, and
let D(a,0) = C\ C(a,0). Then:
(i) Add a new vertex v to V', labeled with q;
(i) E < EU{{v,proc(C(a,0),0+ 1)}}; label this edge
with a.
(ili) £ < E U {{v,proc(D(a,0),0)}}; label this edge
with @.
(iv) Return(v);

The effect of this procedure can be described as follows: Consider,
for an element B of B, the “word” W(B) formed by the consecutive
labels of the unique sequence of adjacent edges that starts at the root
and ends with the vertex labeled with B. In the example,

W({1,2,4,5}) = 1245
W({1,3,4,6}) =12345
W({2,5,6,7}) =123
Note that W(A) = W(B) if and only if A = B, by construction. Note
also that if W(B) = ajay---a; (where some of the integers may be
overlined) then, by construction, 1 <a; < -+ < ay <n)
We can easily verify that {1,3,4,6} is the only element of 5 to which

1, 3 and 4 belong, but neither 2 nor 5. It can be shown that the same
happens in general.
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Theorem 2.1. Let, for an element B € B, W(B) =ajay -+ ax , and
let Pgp = {a;,, iy, ...,a;} be the set of integers that are not overlined
in W(B) and Ng = {a,...,ar} \ Pp be the set of integers that are
overlined in W(B). Then

(1) {B}={a€B: Psc A AN, =2}

Proof. Clearly, P C B and BN Ng = @. For the converse, suppose
that, for some A € B with A # B, P C A and AN N = &, and
that W(A) coincides with W(B) up to a certain step. The edges of this
common part (if any) connect the root to a vertex labeled with integer
i, say. Then, the first difference of W(A) and W(B) is that i is overlined
in one of the words and not in the other. Suppose that i is overlined
in A but not in B. This means that i ¢ A but i € Pp, contrary to our
assumptions. If 7 is overlined in B but not in A then ¢ € Ng N A, also
contrary to our assumptions. Hence it must be A = B. U

This is the base of Dawson’s construction in [3]. For a recent update,
see [2]. To be more precise, denote by AAB the symmetric difference
of A and B which consists of the elements that belong exactly to one
of these sets (i.e., AAB := (A\ B) U (B \ A)), and define for A C [n]
and for B € B:

(2) IB:{AC[TL]PBCA,NBHAZQ}
w(A) ::ZQH

Then, the collection {Ig}pep forms the partition of the set P([n]) of
subsets of [n] introduced in [3] or, in other words,

Theorem 2.2 ([3]).
Ip ={ACn]: Vpeg, if B # B then w(AAB') > w(AAB)}.

Proof. First we prove that, for any A C [n]| and for any B’ € B different
from B, P C A and Ngp N A = @& implies that w(AAB’) > w(AAB).
Now, similarly to the proof of Theorem 2.1, consider the least integer
i relatively to which W(B) and W(B’) differ, say, i is overlined in
W(B) but not in W(B’), that is, i € NgNPg. Then i ¢ A, i ¢ B and
i € B'. Hence, i € AAB', i ¢ AAB and i is the least element in BAB'.
Therefore,

WAAB) = Y 2"z > 1> ) 2" =w(AAB).
JEAAB jEAAB
The case where i is overlined in W(B’) but not in W(B) follows simi-
larly.
For the converse, suppose that w(AAB') > w(AAB) for all B’ € B

such that B # B, but A ¢ Ip because Pg is not a subset of A or
because Ng N A # @. Consider the first element i either in Pg \ A or
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in AN Np and note that B\ A D Pg\ Aand ANNp C A\ B. Hence,
1 € AAB. Now, since i € Pg U Np, overlined or not it belongs to
W(B), and there exists at least one element B’ € B such that W(B’)
differs from W(B) in that i is overlined in B but not in B’ or vice-versa
but does not differ in the subwords previous to i. Note that i € Np/
if and only if ¢ € Pg. Then, the elements of BAB’ are greater than 7.
But this is in contradiction to the fact that w(AAB’) > w(AAB). O

It follows from (1) that Dawson’s construction (through Dawson’s
tree) is a general “dichotomous key” for the elements of B. Of course,
changing the order in [n] = {1,...,n} changes necessarily the key.

Our purpose in here is to adapt this construction for using it in
the classification of genetic haplotypes. The invention of dichoto-
mous keys in Biology is quite old: it is generally credited to Jean-
Baptiste Lamarck, who used one in the first edition of Flora Francaise,
in 1778; but in fact it goes back at least to March 1689, when Richard
Waller presented in the Royal Society an image-based dichotomous key
for the “English herbs” [6].

In fact, bifurcating phylogenetic trees are dichotomous trees that
approximate Dawson’s trees in the following sense: suppose that a bi-
furcating phylogenetic tree of various human mitochondrial ADN, for
example, exists, in which each position of the “coding region” either
does not change or changes between only two possible bases. As an
example, suppose the first position of the coding region is in some hap-
logroups, say, A, and is T', say, in the remaining haplogroups. Further-
more, suppose that the mutations occur at most once in each position
and that we know in which order they have occurred. Finally, suppose
that, for each position that has changed, we fix one of the two bases
it has changed within and that we represent the haplogroups (even
“missing links”) by the positions for which the base is the given one,
according to the order in which the mutations occurred. Then, clearly,
the bifurcating phylogenetic tree and the Dawson’s tree coincide.

Our interest in the Dawson’s construction lies not only on an approx-
imation of this, that we explore below, but on using some of the known
properties of the construction. For example, in (2), the elements of the
partition of P([n]) are defined based on the elements B € B, that may
be called the seeds of the partition. In [7], a characterization of the sets
of seeds that produce the same partition is given. It follows from this
characterization that we know, at least in theory, how to narrow down
the number of positions that have to be compared. At the moment,
however, this has not yet been thoroughly studied.

2.2. A Dawson-like classification of human mitochondrial DNA.
The method we report in this paper may be shortly described as being
in the line of the procedure that was previously described, but, con-
trary to {1,...,n}, of course, in a set without a clear order. Hence,
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in step 2.(b) of the description of the procedure, we have to define the
element that we take in the place of the integer a.

In fact, with our method the elements of B are replaced by the mi-
tochondrial DNA of the coding region of different human haplogroups
and the vertices are to be labeled by different positions of the coding
region.

For this collection,

(1) We have considered all positions where at least two bases were
present (in fact, only very rarely a third base was found in a
given position in our 99 samples).

(2) Then, by counting the number of occurrences of each base in
the given position for the 99 samples, we arranged the data in a
0/1 table, where a zero in a given haplotype in a given position
meant that in that specific position the haplotype presented
the most frequent base. As in the previous example, in this
construction a given haplotype is seen as the set of positions
for which the table entry is 1 (without distinction as to whether
there are two or more bases for the position).

(3) The vertices of the tree are either labeled by positions or by the
99 haplotypes, one for each haplotype. The graph separates,
for every vertex labeled with position p, the haplotypes where
the base in the given position is not the most frequent (the 1’s)
from the ones with the most frequent base in the position (the
0’s). The edges are labeled accordingly, p in the first case and p
in the second one. By definition, after this separation two new
procedures start, one for each of these sets of haplotypes, that
form the two new initial values of C.

(4) Hence, in each step (for a given C' and p), we must try to find
the position that better separates the haplotypes under consid-
eration (that form C'), coresponding to the “oldest mutation” in
the previous example. This is the crux of all construction and
is implemented according to the procedure Choose(C, D, ¢, 0)
described below. Shortly, this is how this is done.

Note that, by definition, haplogroups that are “really differ-
ent” must be separated by various positions. So, we count for
each position the number of positions that separate groups in C'
in a similar manner, and choose the one for which this number
is maximum. The precise way that we use will be explained
later. It suffices to tell now that we use two variables, ¢ and D
in this calculation. Their meaning is as follows: suppose that
the position we are looking for will label the vertex v; £ is the
number of vertices in the sequence of adjacent edges that goes
from the root to v, including the root. As for D, it is the set
of all haplotypes with a 1 in any of these vertices. Note that ¢
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and D are automatically constructed by proc2, also described
below.

So, we define the new procedure.

proc2(C, D, ¢, 0)
[Inputs a collection C' of subsets of [n], a subset D of [n], two integers, ¢
and o, and returns a vertex of the growing graph G.]

(1) If |C| =1, say, C = {B},
(a) Add a new vertex v to V, labeled with B;
(b) Return(v);
(2) Let Cy be the ordered set of the o.th integers of the elements of
C;
(a) If ‘CQ| = 1,
(i) Return(proc(C,o+ 1));

(b) If |Cy| > 1, choose a suitable position a = Choose(C, D, {);
let C(a,0) be the set of elements of C' with o.th integer
equal to a and
let D(a,0) = C\ C(a,0). Then:

(i) Add a new vertex v to V, labeled with «;
(i) E « E U {{v,proc2(C(a,0),D U C(a,0),{+ 1,0+
1)} }; label this edge with a.
(ili) £ + EU{{v,proc2(D(a,0), DUC(a,0),l+1,0)}};
label this edge with @.
(iv) Return(v);

The initial values are C =B, D =@, { =1 and o = 1.

Let us explain now the procedure Choose(C, D,/): as we said, it
chooses the position that better separates the elements of C in a certain
sense. In fact, it evaluates for each position for which the haplotypes in
C vary a value that we call the weight of p, and afterwards it chooses
the position with highest weight. Two positions with ones and zeros
in the same haplotypes count with one to each other weight; if the set
of ones of a position is contained in the set of ones in another one,
it counts more for the weight of the second one than the second one
counts for the weight of the first one. Finally, every position has an
initial value that measures how close it is to the previous divisions.
More precisely:

Let 1, be the set of haplotypes with position ¢ equal to one. For a
given position p, let

9

|Dﬂ1p|>

p
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and, for each postion ¢, add to w(p)

|1pm1q| - |1q\1p| - %
Cn(1,U1,)

max | O,

2.3. Sequences. A training set consisting of 99 human mtDNA pro-
tein coding sequences, comprising representatives of all major hap-
logroups [14], was used. The algorithm was written in Mathematica
and tested on a Linux operative system.

3. RESULTS

Our program was applied to a collection of 99 different samples of hu-
man mtDNA protein coding sequences, encompassing representatives
of all known macro-haplogroups [8, 14]. The generated Dawson-like
tree, constructed with base on the computed order explained with de-
tail in the Methods section, can be seen in Figure 2. The Dawson-like
tree produced by our method show that the sequences are clustered into
major haplogroups according to the canonical organization stipulated
by Phylotree (http://www.phylotree.org) [19].

4. DISCUSSION

The proposed methodology represents a new and fast approach capable
of clustering mtDNA sequences according their macro-haplogroup not
very different from the frequently used manual ideas but without hu-
man intervention. The construction projected by Dawson represents a
simple and fast technique to automatically cluster a set of subsets, just
indicating the presence/absence of each element in the data set. To
be possible the application of this promising methodology to mtDNA
sequences, we chose the protein coding region because it is the most sta-
ble region of human mtDNA sequences not presenting length variation,
and thus we just need to compare homologous positions not requiring
explicit assumptions to interpret the noised and subjective events of
control region.

The set of variable positions of coding region are the only rele-
vant ones which are capable of distinguishing and of separating the
sequences among them. Thus, the methodology developed was based
only in these positions, interpreting just substitution events, which are
the only mutational phenomena occurring in this region. The method
does not require knowing which base is present in every variable posi-
tion, instead, it just needs to know if the base is the most frequent or
not in a specific position of the sequences. This is the obvious motif why
the bases A, C, G and T were ignored and replaced by digits 0 and 1, in
the case of the base is the most frequent or not in the scanned position.
Assuming this, we circumvented the circular assumptions behind the
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D F G HHVOI
6 2 3 10 1 1
L3 M M* N N* P
8§ 1.1 1 2 3
vv wXx Y
33 2 2 1

F1GURE 2. Dawson-like tree of 99 human mtDNA pro-
tein coding sequences. This is the result of recursively
using proc2(C, D, {,0). First, a = 210 is returned by
Choose(C, D, (); C(a,0) contains 8 elements that turn
out to be of the same haplotype (L0) according to Phy-
lotree. Now, proc2(C, D,/ o) proceeds on D(a,0) =
C'\ C(a,0), where a = 4330 is chosen, etc.

estimations of transitions and transversions mutation rates, which are
frequently evaluated based on the sample. In fact, the present study
relies exclusively in the presence/absence of a series of equally weigh
substitution events, not biasing the comparison and cluster results.

The construction proposed by Dawson has as foundation a lexico-
graphical order of the elements and, thus, the quality of the construc-
tion has a direct correlation with the order adopted to perform the
analyses. Therefore, the admitted order for variable positions, in the
present adaptation of Dawson’s construction to cluster mtDNA se-
quences, is the unique assumption imposed, being the most relevant
computation capable of processing with good results. The order pro-
posed and used to perform the presented analyses is straightaway and
the dependence with the sample, if exist, is present in an inconsequen-
tial scale, being thus a good choice to perform the analyses leading to
well satisfactory results.
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In summary, our approach showed a good and fast way, devoiced of
manual data manipulation, capable of mimicking the standard practice
of assignment human mtDNA sequences into haplogroups, clustering
the sequences according their classifications into major groups, just
using the reliable information of the protein coding regions, being thus
a good suggestion when aiming to group human mtDNA sequences into
broad related sets.

In the future, we intend to test our Dawson’s approach with a large
dataset and also in subsets arbitrarily sampled from it, in order to
understand and analyze the performance of the positions order on the
clusters obtained. Furthermore, we aim to be capable of getting the
subset of positions that better characterize the different groups in the
entire clustering, independently of the sample used. Moreover, the
study of more heterogeneous groups or sequences (including various
species) would be essential to evaluate the usefulness of this approach.
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