
Multi-Strategy Learning made easy

FRANCISCO REINALDO1,2, MARCUS SIQUEIRA1,2, RUI CAMACHO1,
LUIS PAULO REIS1,

1 LIACC, Faculty of Engineering, University of Porto, Portugal
2 GIC, Department of Computer Science, Unileste-MG, Brazil

reifeup@fe.up.pt

Abstract: - This paper presents the AFRANCI tool for the development of Multi-Strategy
learning systems. Designing a Multi-Strategy system using AFRANCI is a two step process. The
user interactively designs the structure of the system and then chooses the learning strategies for
each module. After providing the datasets all modules as automatically trained. The system is
aware and takes into consideration the inter-dependency of the modules. The tool has built-in
learning algorithms but can use external programs implementing the learning algorithms.
The tool has the following facilities. It allows any user to design in an interactive and easy
fashion the structure of the target system. The structure of the target system is a collection
of interconnected modules. The user may then choose the different learning algorithms to
construct each module. The tool has several built-in Machine Learning algorithms has interfaces
that enables it to use external learning tools like WEKA and CN2. AFRANCI uses the
interdependency of the modules to determine the sequence of training. For each module the
system uses a wrapper to tune automatically the parameters of the learning algorithm. In the
final step of the design sequence AFRANCI generates a compact and legible ready-to-use ANSI
C open-source code for the final system.

To illustrate the concept we have empirically evaluated the tool in the context of the RoboCup
Rescue domain. We have developed a small system that uses both neural networks, decision
trees and rule induction in the same system. The experiment have shown that a very significant
speed up is attained in the development of systems when using this tool.

Key-Words: - Artificial Intelligence Tool, Machine Learning, Multi-Strategy Learning, Agents.

1 Introduction
Over the past few years, there has been a
significant on the interest in working with
heterogeneous learning algorithms in order to
achieve fast and complex behaviours in au-
tonomous agents. Autonomous Agents (AA)
can be seen as a collection of components
or heterogeneous learning modules with well-
defined interfaces and fine tuning behaviours.
It has been recognised that different be-
haviours may require different learning strate-
gies.

A popular AA architecture considers several

learning algorithms/modules arranged in hori-
zontal or vertical levels to compose behaviours
with different levels of abstraction. This lay-
ered learning is specially adequate for domains
that are too complex for a direct mapping
from the input to the output representation
to work [9]. This approach brings some new
challenges on the arrangement of these mod-
ules to achieve inner reasoning, prediction and
abstraction methods instead of classical plan-
ning research. Additionally, the use of robust
tools are necessary to support this kind of ap-
proach.

Proceedings of the 10th WSEAS International Conference on COMPUTERS, Vouliagmeni, Athens, Greece, July 13-15, 2006 (pp278-284)



However, when using a conventional pro-
gramming language, like C or C++ to encode
such modules, an expert programmer is often
required. Each new user starts a project from
scratch, and occasionally it results in a bad
program code structure revealing problems
whenever the code needs to be extended or
updated. To overcome such difficulties some
tools propose uniform and easily modelling fa-
cilities for the learning modules. Such tools
include Matlab c© [6] and SNNS (Stuttgart
Neural Network Simulator) c© [14] [13]. These
tools are limited as far as the user interface as-
pects are concerned since these are often ne-
glected. In addition, the tools do not sup-
port the design of several modular, hierar-
chic and complex structures of heterogeneous
learning modules in the same environment as
AFRANCi does.

The AFRANCI tool [7] offers solutions for
assembling and linking together graphically
on the screen tel modules required to create
large scale behaviour-based systems. In the
development of AA applications there is the
need to aggregate different kinds of behaviours
working together to increase the complexity
of behaviours. The user’s choice is not re-
stricted to low levels but is free to choose the
suitable abstraction level. Another advantage
of AFRANCI is the possibility of using ex-
ternal learning tools/algorithms such as the
WEKA c© [11] library to compose heteroge-
neous learning modules. The tool makes eas-
ily adjustable and extensible connection with
WEKA learning modules without the user’s
perception. These aspects will be presented
in Section 2.

According to the proposed objectives, this
work has enabled the development of a tool
that can: a) support graphic designs of large
and extensible behaviour-based architectures
composed of heterogeneous clusters with cog-
nitive processes; b) make available a wide set
of varied functionalities of control modules; c)
offer facilities and resources to interconnect
several structures of external control processes
so that they could communicate in a multi-
environment; d) arrange learning modules in
horizontal or vertical levels to insert new or

substitute the previous agent characteristics
by an adopted technique from software engi-
neering [7] [12]; e) offer parallelized network
training; f) automatically generate a ready-to-
use ANSI C open-source code from the screen.

The contribution of this paper goes beyond
a object-oriented implementation of ideas [10].
It addresses abilities, specialisations and poli-
cies to accomplish specific tasks in an Au-
tonomous Agent setting by using a multi-
strategy learning in order to achieve complex
behaviours. We offer a scalable modelling
and parallel environments with the purpose
of speeding up behaviour agent simulations.
Furthermore, the tool is a valuable contribu-
tion to users without knowledge about deep
programming language and learning modules
because it offers high level of abstraction and
automatic creation of source-code, as observed
in 5.

The rest of the paper is organised as fol-
lows. Section 2 presents the tool to design be-
haviour structures or interconnected architec-
ture in order to achieve the best agent perfor-
mance. Experiments, results and discussion
are showed in Section 5. Section 6 presents
an overview of AFRANCI architectures and
how it handles the generated system’s mod-
ules. Finally, some conclusions are presented
in Section 7.

2 AFRANCI Tool
The AFRANCI Tool [7] is a tool built over
some classes of open-source ANSI C Pyramid-
Net Framework [8] platform, which extensions
for using external libraries of learning algo-
rithms like the WEKA c© library. Pyramid-
Net was restricted to a subset of Neural Net-
work algorithms whereas with the ability to
use WEKA c© library the user has access to
a useful repository of machine learning algo-
rithms for data pre-processing, classification,
regression, clustering, association rules and vi-
sualisation.

The AFRANCI tool is composed of three
main parts, which are the Graphic User In-
terface (GUI), the Machine Learning Mod-
ules (MLM) and the Automatic Open-Source
Code Generator (ACG). First, GUI is a set of

Proceedings of the 10th WSEAS International Conference on COMPUTERS, Vouliagmeni, Athens, Greece, July 13-15, 2006 (pp278-284)



main classes for handling and modelling learn-
ing modules, using graphic elements that will
interact with the user. MLM implements the
construction of the modules using the chosen
learning algorithms. Finally, ACG receives a
description of pictorial representation of the
system structure and produces the short au-
tomatic open-source code.

The tool allows users to design and imple-
ment behaviour-based architectures through
the interconnection of elementary heteroge-
neous control modules in the form of a circuit
diagram. New structures can be constructed
by linking standard structures or modules to-
gether. This form is very familiar to engineers
in digital systems design and in model analysis
systems tools (e.g. SIMULINK c©). It makes
some items available, such as desktop con-
structor, sensor, actuator, line links, skins of
learning modules, menus, dialogue box. Each
graphical element can be dragged and dropped
to a re-sizable screen and its features (colour,
label, format and size) be adjusted . Hetero-
geneous control modules are standard boxes
with input and output of data. For instance,
if the user is working with ANN, he/she has
access to a number of hidden neurons, neuron
transfer functions, training parameters, etc.

With the purpose of speeding up the im-
plementation of learning modules, the tool of-
fers three other important features: the multi
parallel environment, the automatic network
design of modules and the automatic devel-
opment of open-source code. First, each new
environment includes a powerful parallel re-
source to training the proposed designed ar-
chitecture. The user can link and put to-
gether several sub-projects and run them, at
the same time because it is free of manual
scheduler. In the design process, once ad-
justments have been made, the module is un-
lighted and the training and simulation can
be run again quickly. The second feature is
the on screen automatic/wizard design of net-
works of learning modules by importing of
CSV (Comma Separated Values) files. When
using WEKA library, the user links standard
learning modules together; each learning mod-
ule can be simulated at any level of abstrac-

tion for fine tuning of the assembled system.
The user needs little knowledge about it. As a
last step the tool produces a clean and ready-
to-use ANSI C open-source for information fu-
sion, planning and coordination with a few
mouse clicks. By using a high-performance
interpretation algorithm, this functional but
compact ANSI C executable core is created
from the drawn project. This ANSI C code
can be edited on screen in order to be modi-
fied and compiled easily in different operating
systems.

3 Designing a Structure
In this section we briefly analyse the simple
steps to design, train and obtain a finished
system composed of different learning mod-
ules.

First, it is necessary to design the agent’s
structure. The user should plan how many
modules, how they are interconnected and
what algorithms to use in each module. In
the next step the user draws a project in the
tool desktop (screen). The project must have
input, control modules, outputs and links. Af-
ter designing the project, every input receives
a database file. The database file stores data
to feed the learning modules in the training
phase.

The interconnections are established be-
tween inputs, control modules and outputs to
make a complete wired network. The user
can connect two environments: from the out-
put of modules in the first environment to
the input of other assembled of modules in
a second environment. This tool allows the
user to interconnect everything without loss
of performance because it uses a parallel en-
vironment. The user can tune each module
by changing the default module parameters.
Careful is needed in this step because a badly
planned set up may lead to the emergence of
wrong reasoning processes. This step is the
only one that requires a little more knowledge
about arranging of modules.

The training process is simple and consists
of training and fine tuning of the behaviour-
based architecture to achieve the agent’s goal.

Proceedings of the 10th WSEAS International Conference on COMPUTERS, Vouliagmeni, Athens, Greece, July 13-15, 2006 (pp278-284)



The automatic training process is responsible
for almost everything and based on the data
flux sequence to trigger modules to training.
Independently of the horizontal or vertical ar-
chitecture level, the user can follow the itera-
tion training process of each module by graph-
ics, data windows and others.

Finally, the user can generate a ready-to-use
ANSI C open-source to plug it in the agent.
The source code is a codification of the graphic
modelling. Inside of this code, user will find
input and output connections, weights, an ac-
tivation functions, in the case of ANN, a com-
pact main executable core, and some input
and output matrixes. The code can be com-
piled using any C compiler because it uses
ANSI C. In conclusion, these quick steps help
user to substitute large programs, time con-
suming projects and confusing lines of code.

4 Wrappers
Almost all Machine Learning systems have pa-
rameters that must be tuned to achieve a good
quality of the constructed model. An experi-
enced practitioner knows that changes in pa-
rameter’s values may lead to quite different re-
sults. To tune a system’s parameters requires
knowledge of the system. This is most often
an impediment to a wider use by non-experts
since they have no feeling on what to do.

One approach to overcome such a situa-
tion is by the use of a wrapper [3]. A wrap-
per produces several models using different
combinations of the leaning algorithm and re-
turns the “best” model. In our tool the wrap-
per optimises the test set error rate estima-
tion. This automatic tuning of parameter
completely hides the details of using the learn-
ing algorithms from the user. It is therefore a
way to make the tool usable by a wider ranger
of users.

As future work we intend to extend the use
of wrappers to do feature (subset)-selection
as in [4] and [5]. This facility would require
however a tighter relationship between the
modules synthesis and their inter-connection.
If the wrapper decided that some feature is
not relevant for the classifier then that in-
put would have to be removed in the modules

Fig. 1: System with two ANNs, a Rule In-
duction module and a Decision Tree module
designed with AFRANCI.

inter-connection design stage.

5 Experiments
To illustrate the features of AFRANCI and
facilitate the reader’s understanding we gen-
erated a simple artificial problem and dataset
in the RoboCup Rescue setting. The prob-
lem we devised is to decide if a ambulance or
fireman should rescue or not a civilian to a
nearest refuge. The civilian is somewhere in a
burning building. The decision is commonly
made on localisation and agent’s and civilian’s
life conditions. The independent variables in-
clude the position (X, Y) of the ambulance,
fireman and of the civilian person, the life
measure of the fireman1, the life measure of
the civilian person, the state of the ambulance
(busy/free) to receive the civilian, the diffi-
culty of the civilian rescue situation and the
position (X, Y) of the nearest refuge (rescue
building).

The system devised is composed by two
modules that encode the decision of the fire-
man and the civilian, a module that encode
decision of the ambulance and a third mod-
ule to combine fireman and ambulance deci-

1A measure between 0 and 100 of the energy the
fireman can use.

Proceedings of the 10th WSEAS International Conference on COMPUTERS, Vouliagmeni, Athens, Greece, July 13-15, 2006 (pp278-284)



J48 pruned tree
------------------
ambulance_apt = TRUE: RescueAmbulance (7.0)

ambulance_apt = FALSE: RescueFireman (3.0/1.0)

a)

IF occupied = occupied
THEN class = n [52 0]
ELSE
IF civilian = notapt
THEN class = n [20 0]
ELSE
IF Yamb > 8164.50

AND Xciv < 9204.50
THEN class = y [0 7]
ELSE
IF Yamb > 340.00

AND 386.00 < Yciv < 7731.50
AND Xrefuge > 3800.00

THEN class = n [9 0]
ELSE
IF Yamb < 5721.00

AND Xrefuge > 866.00
THEN class = y [0 8]
ELSE
(DEFAULT) class = n [4 0]

b)

Fig. 2: a) Decision Tree generated by WEKA’s
J48 learner. b) Rule set generated by CN2.

sions. Figure 1 shows the modular and hetero-
geneous structure of the system constructed
interactively by the user. In Figure 2 we can
see the contents of two modules as generated
by (a) J48 Decision Tree generator and (b)
CN2 Rule inducer.

The fireman and civilian decision modules
are encoded using AFRANCI built-in ANN
(Feedforward) whereas the ambulance module
was constructed using CN2 Induction algo-
rithm [1] and last module was constructed
using WEKA’s J48 Decision Tree algorithm.
The user had only to select the number
and place in the window of the modules,
to connect them and choose input and
output variable. All this was done using
drag-and-drop operations. He then provided
the dataset and the tool trained the modules
in the correct sequence and generated a C
program that encodes the system.

The action of deciding which agent will be
responsible for rescuing the injured civilian is
taken in the Decision Tree module. In Fig-
ure 1, the fireman agent will perform a rescue
action only if the ambulance agent will not be
able to so. In the case of both the fireman and
ambulance are capable of rescuing the civilian,
the module decides in favour of the ambulance
agent because a fireman agent has to extin-
guish fires in burning buildings with the aim
of preserving the city. In order to verify if the
ambulance is entirely apt to rescue a civilian,
Figure 2, the rules induced by CN2 establish
that: (rule 1) if the ambulance is occupied
then it is useless to attempt the rescue; (rule
2) if the civilian has not enough “energy” then
it is also not rescued; (other rules) the civilian
will be rescued if it has enough “energy” and
the ambulance is between the civilian and the
rescue place otherwise it will not be rescued.

6 Related Work
In order to develop a robust tool,
we analysed two relevant ones. The
MatLab c© SIMULINK c© tool was mainly
concerned with the offer of a detailed design
of a control process [2] and to automati-
cally generate a ready-to-use code for it.
However, that tool has two main limitations
that affect the design of the whole project.
First, the user cannot design a complex
structure composed of several heterogeneous
modules nor a interconnected architecture
because the tool does not offer facilities nor
a specific multi-environment to work with.
These limitations inhibit the user’s ability
to handle different levels of abstraction,
several processes in the same environment.
Second, the ready-to-use code was generated
from a simple learning algorithm is large to
be worked, complex to be understood and
unpractical to be used. Other studied tool
was the SNNS c© (Stuttgart Neural Network
Simulator) [14] [13]. This tool is a software
simulator exclusively to work with Artificial
Neural Networks (ANN) in order to create
their applications. Although the tool offers
a good graphic environment, its repertory

Proceedings of the 10th WSEAS International Conference on COMPUTERS, Vouliagmeni, Athens, Greece, July 13-15, 2006 (pp278-284)



is limited to only a behaviour level a at
time, without offering a parallel environment
to train the ANN. Moreover, it is limited
concerning expandability or new ways to
graphically preview the whole structure that
is being worked with.

In Section 2, we presented the tool which
offers a user friendly parallel graphic envi-
ronment that facilitates the development and
training of Modular and Hierarchic Systems
by including several modules with different
learning algorithms. The systems architec-
ture produced with the AFRANCI tool pro-
moted the multi-strategy learning as long as
various learning modules are used to compose
the structure.

7 Conclusions
In this paper we described a tool for the
development of multi-strategy learning sys-
tems. Using a friendly graphical interface the
user may define the modular structure of the
system and choose the learning algorithms
to construct each module. He then provides
the dataset and lets the tool train, in the
correct sequence, each module and produce a
complete self containing program encoded in
the C language.

The tool provides several learning algo-
rithms and is able to call external learning
algorithms to construct the modules. The
deployment of the tool confirmed the as-
sumption that it was easy and fast to develop
multi-strategy system with AFRANCI. We
tested it using ANNs (built-in), Decision
Trees (external, J48 – WEKA) and Rule
Induction (external - CN2) algorithms. In
our implementation the user does not have to
tune any of the module’s parameters. That is
done automatically by a wrapper.

As future work we intend to extend the use
of wrappers to do feature (subset)-selection.

References:
[1] Clark, P. & Niblett, T. The cn2 in-

duction algorithm. Machine Learning 3,

4 (1989), 261–283.

[2] Dorf, R. C. & Bishop, R. H. Modern
control systems. Tenth, 2004.

[3] John, H. G. Cross-validated c4.5: Using
error estimation for automatic parameter
selection. Technical note stan-cs-tn-94-
12, Computer Science Department, Stan-
ford University, California, October 1994.

[4] Kohavi, R. Wrappers for Perfor-
mance Enhancement and Oblivious De-
cision Graphs. Tese de Doutorado, Stan-
ford University, 1995.

[5] Kohavi, R. & Summerfield, D. Fea-
tures subset selection using the wrapper
method:overfitting and dynamic search
space topology. In First International
Conference on Knowledge Discovery and
Data Mining (KDD-95), 1995.

[6] Mathworks. Matlab. Mathworks, Inc,
Natick, MA, 1999.

[7] Reinaldo, F.; Camacho, R. & Reis,
L. P. Afranci: An architecture for learn-
ing agents. Phd report, FEUP, Porto,
Portugal, August 2005.

[8] Reinaldo, F. A. F. Projecting a frame-
work and programming a system for de-
velopment of modular and heterogeneous
artificial neural networks. Dept. of com-
puter science, Federal Univ. of Santa
Catarina, Florianopolis, Brazil, Feb 2003.

[9] Stone, P. & Veloso, M. M. Lay-
ered learning. In Machine Learning:
ECML 2000, 11th European Conference
on Machine Learning, Barcelona, Cat-
alonia, Spain, May 31 - June 2, 2000,
Proceedings , 2000, vol. 1810, Springer,
Berlin, p. 369–381.

[10] Wirfs-Brock, R. J. & Johnson,
R. E. Surveying current research in
object-oriented design. Commun. ACM
33, 9 (1990), 104–124.

Proceedings of the 10th WSEAS International Conference on COMPUTERS, Vouliagmeni, Athens, Greece, July 13-15, 2006 (pp278-284)



[11] Witten, I. H. & Frank, E. Data Min-
ing: Practical machine learning tools and
techniques, 2nd. ed. Morgan Kaufmann,
San Francisco, 2005.

[12] Wray, R.; Chong, R.; Phillips, J.;
Rogers, S. & Walsh, B. A Survey of
Cognitive and Agent Architectures. Uni-
versity of Michigan, 1994.

[13] Zell, A.; Mache, N.; Huebner, R.;
Schmalzl, M.; Sommer, T. & Korb,
T. SNNS: Stuttgart neural network simu-
lator. Relatório técnico., Stuttgart, 1992.

[14] Zell, A.; Mache, N.; Sommer, T.
& Korb, T. Design of the snns neural
network simulator. In 7. Österreichische
Artificial-Intelligence-Tagung, H. Kaindl,
Ed. Springer, Berlin, Heidelberg, 1991,
p. 93–102.

7

Proceedings of the 10th WSEAS International Conference on COMPUTERS, Vouliagmeni, Athens, Greece, July 13-15, 2006 (pp278-284)


