Go to:
Logótipo
Você está em: Start > Publications > View > A micro-mechanics perspective to the invariant-based approach to stiffness
Publication

A micro-mechanics perspective to the invariant-based approach to stiffness

Title
A micro-mechanics perspective to the invariant-based approach to stiffness
Type
Article in International Scientific Journal
Year
2019
Authors
Pereira, LF
(Author)
Other
The person does not belong to the institution. The person does not belong to the institution. The person does not belong to the institution. Without AUTHENTICUS Without ORCID
Bessa, MA
(Author)
Other
The person does not belong to the institution. The person does not belong to the institution. The person does not belong to the institution. Without AUTHENTICUS Without ORCID
Furtado, C
(Author)
FEUP
View Personal Page You do not have permissions to view the institutional email. Search for Participant Publications View Authenticus page View ORCID page
Camanho, PP
(Author)
FEUP
View Personal Page You do not have permissions to view the institutional email. Search for Participant Publications View Authenticus page View ORCID page
Journal
Vol. 176
Pages: 72-80
ISSN: 0266-3538
Publisher: Elsevier
Other information
Authenticus ID: P-00Q-F6N
Abstract (EN): To simplify the analysis and characterisation of composite laminates, an invariant-based approach to stiffness that takes the trace of the plane stress stiffness matrix as a material property was recently proposed. In the present work, a study based on micro-mechanical models brings new insight to this invariant-based approach. The Rule of Mixtures and the Halpin-Tsai models are used to establish the relations between the fibre volume fraction, the fibre/matrix stiffness ratios, and the trace-normalised engineering constants of unidirectional laminae and multidirectional laminates. For sufficiently high longitudinal fibre/matrix stiffness ratios and for fibre volume fractions between 50% and 70%, typical of advanced CFRPs, the variation of the trace-normalised longitudinal Young's modulus is within 6% for unidirectional laminae and within 1% for multidirectional laminates, supporting the definition of an invariant-based approach to stiffness based on a Master Ply concept and laminate factors derived thereof, defining clearly a domain of applicability of the invariant theory and confirming the empirical observations of the past.
Language: English
Type (Professor's evaluation): Scientific
No. of pages: 9
Documents
We could not find any documents associated to the publication.
Related Publications

Of the same journal

Synergetic effects of thin plies and aligned carbon nanotube interlaminar reinforcement in composite laminates (2018)
Article in International Scientific Journal
Estelle Kalfon-Cohen; Reed Kopp; Carolina Furtado ; Xinchen Ni ; Albertino Arteiro ; Gregor Borstnar ; Mark N. Mavrogordato ; Ian Sinclair; S. Mark Spearing ; Pedro P. Camanho ; Brian L. Wardle
Strength prediction of notched thin ply laminates using finite fracture mechanics and the phase field approach (2017)
Article in International Scientific Journal
Reinoso, J; Arteiro, A; Paggi, M; Camanho, PP
Simultaneous measurement of pressure and temperature using single mode optical fibres embedded in a hybrid composite laminated (2005)
Article in International Scientific Journal
O Frazao; CA Ramos; NM Pinto; JM Baptista; António Torres Marques
Simultaneous measurement of pressure and temperature using single mode optical fibres embedded in a hybrid composite laminated (2005)
Article in International Scientific Journal
Frazao, O; Ramos, CA; Pinto, NMP; Baptista, JM; António Torres Marques

See all (44)

Recommend this page Top
Copyright 1996-2024 © Faculdade de Arquitectura da Universidade do Porto  I Terms and Conditions  I Acessibility  I Index A-Z  I Guest Book
Page created on: 2024-08-31 at 07:12:32 | Acceptable Use Policy | Data Protection Policy | Complaint Portal