Saltar para:
Logótipo
Você está em: Início > Publicações > Visualização > A Kinect-Based System for Upper-Body Function Assessment in Breast Cancer Patients
Mapa das Instalações
Ed. Principal Ed. Principal Ed. Principal

A Kinect-Based System for Upper-Body Function Assessment in Breast Cancer Patients

Título
A Kinect-Based System for Upper-Body Function Assessment in Breast Cancer Patients
Tipo
Artigo em Revista Científica Internacional
Ano
2015
Autores
Moreira, R
(Autor)
Outra
A pessoa não pertence à instituição. A pessoa não pertence à instituição. A pessoa não pertence à instituição. Sem AUTHENTICUS Sem ORCID
Magalhaes, A
(Autor)
Outra
A pessoa não pertence à instituição. A pessoa não pertence à instituição. A pessoa não pertence à instituição. Sem AUTHENTICUS Sem ORCID
Revista
Título: Journal of ImagingImportada do Authenticus Pesquisar Publicações da Revista
Vol. 1 1
Páginas: 134-155
Editora: MDPI
Outras Informações
ID Authenticus: P-00K-A45
Abstract (EN): Common breast cancer treatment techniques, such as radiation therapy or the surgical removal of the axillary lymphatic nodes, result in several impairments in women's upper-body function. These impairments include restricted shoulder mobility and arm swelling. As a consequence, several daily life activities are affected, which contribute to a decreased quality of life (QOL). Therefore, it is of extreme importance to assess the functional restrictions caused by cancer treatment, in order to evaluate the quality of procedures and to avoid further complications. Although the research in this field is still very limited and the methods currently available suffer from a lack of objectivity, this highlights the relevance of the pioneer work presented in this paper, which aims to develop an effective method for the evaluation of the upper-body function, suitable for breast cancer patients. For this purpose, the use of both depth and skeleton data, provided by the Microsoft Kinect, is investigated to extract features of the upper-limbs motion. Supervised classification algorithms are used to construct a predictive model of classification, and very promising results are obtained, with high classification accuracy.
Idioma: Inglês
Tipo (Avaliação Docente): Científica
Nº de páginas: 22
Documentos
Não foi encontrado nenhum documento associado à publicação.
Publicações Relacionadas

Dos mesmos autores

A Kinect-Based System to Assess Lymphedema Impairments in Breast Cancer Patients (2015)
Artigo em Livro de Atas de Conferência Internacional
Moreira, R; Magalhaes, A; Oliveira, HP

Da mesma revista

Skin Cancer Image Classification Using Artificial Intelligence Strategies: A Systematic Review (2024)
Outra Publicação em Revista Científica Internacional
Vardasca, R; Joaquim Mendes; Magalhaes, C
Visible and Thermal Image-Based Trunk Detection with Deep Learning for Forestry Mobile Robotics (2021)
Artigo em Revista Científica Internacional
da Silva, DQ; Filipe Neves Santos; Armando Jorge Sousa; Filipe, V
Synthesizing Human Activity for Data Generation (2023)
Artigo em Revista Científica Internacional
Romero, A; Pedro Carvalho; Luís Corte-Real; Pereira, A
Preventing Wine Counterfeiting by Individual Cork Stopper Recognition Using Image Processing Technologies (2018)
Artigo em Revista Científica Internacional
Valter Costa; Armando Sousa; Ana Reis
Photo2Video: Semantic-Aware Deep Learning-Based Video Generation from Still Content (2022)
Artigo em Revista Científica Internacional
Viana, P; Maria Teresa Andrade; Pedro Carvalho; Vilaca, L; Teixeira, IN; Costa, T; Jonker, P

Ver todas (12)

Recomendar Página Voltar ao Topo
Copyright 1996-2025 © Faculdade de Desporto da Universidade do Porto  I Termos e Condições  I Acessibilidade  I Índice A-Z
Página gerada em: 2025-11-15 às 19:00:55 | Política de Privacidade | Política de Proteção de Dados Pessoais | Denúncias | Livro Amarelo Eletrónico