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Road Traffic Events Monitoring Using a
Multi-Head Attention Mechanism-Based
Transformer and Temporal
Convolutional Networks

Selim Reza™, Marta Campos Ferreira™, J.J.M. Machado™, and Jodo Manuel R. S. Tavares

Abstract— Acoustic monitoring of road traffic events is an
indispensable element of Intelligent Transport Systems to
increase their effectiveness. It aims to detect the temporal activity
of sound events in road traffic auditory scenes and classify
their occurrences. Current state-of-the-art algorithms have lim-
itations in capturing long-range dependencies between different
audio features to achieve robust performance. Additionally,
these models suffer from external noise and variation in audio
intensities. Therefore, this study proposes a spectrogram-specific
transformer model employing a multi-head attention mecha-
nism using the scaled product attention technique based on
softmax in combination with Temporal Convolutional Networks
to overcome these difficulties with increased accuracy and
robustness. It also proposes a unique preprocessing step and a
Deep Linear Projection method to reduce the dimensions of the
features before passing them to the learnable Positional Encoding
layer. Rather than monophonic audio data samples, stereophonic
Mel-spectrogram features are fed into the model, improving
the model’s robustness to noise. State-of-the-art One-dimensional
Convolutional Neural Networks and Long Short-term Memory
models were used to compare the proposed model’s performance
on two well-known datasets. The results demonstrated its supe-
rior performance by achieving an improvement in accuracy of
1.51 to 3.55% compared to the studied baselines.

Index Terms— Intelligent traffic monitoring, attention mech-
anism, mel-spectrogram, temporal convolutional networks,
learnable spectrogram-specific positional encoding, deep linear
projection.
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I. INTRODUCTION

OAD traffic event detection and monitoring are essen-

tial components of Intelligent Transportation Systems
(ITS). There are various means to accomplish these tasks.
For example, traffic flow and occupancy data can be used
to monitor traffic incidents on a particular road section [1].
Developing acoustic-based traffic event detection and moni-
toring algorithms can also be a robust solution to enhance
the safety and reliability of ITS. In this regard, some of
the most popular research areas are predicting traffic noise
to deal with noise pollution [2], [3], and classifying traffic
events to enhance activity monitoring. The primary goal of the
subsequent models is to detect the temporal activity of sound
events in traffic auditory scenes and identify their classes in
every instance. However, few challenges exist in developing
an efficient acoustic model within the current context; for
example, the nature of the traffic sounds to be recognized and
how they manifest in natural settings, the presence of external
noise, audio intensity variation, overlapping of audio signals,
and lack of good quality datasets [4].

The current state-of-the-art solutions generally extract fea-
tures such as spectrograms and Mel-scale Frequency Cepstral
Coefficients (MFCCs) [5], [6] from the input audio signals
and train the used models to learn those features for clas-
sification purposes. Conventional Machine Learning (ML)
models such as Gaussian Mixture Model (GMM) [7], Sup-
port Vector Machine (SVM) [8], and Random Forest (RF)
[9] are less effective to deal with the current challenges,
particularly for polyphonic traffic sound events. On top of
that, these models are not configured to instantiate multiple
classes simultaneously. Deep Learning (DL) models such as
Convolutional Neural Networks (CNNs) and Long Short-term
Memory (LSTM) are the current state-of-the-art for effi-
ciently solving these kinds of problems because of their
ability to capture hidden features, determine interdependencies
between the features and processing power to deal with them
sequentially [10].

For CNNs, large receptive fields are needed to track long-
range dependencies, resulting in computational and statistical
efficiency loss. Furthermore, when large filters are used,
CNNs only encode the relative position of different features,
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hindering their performance. LSTMs are challenging to train,
do not work well with noisy data, and may still suffer from
gradient exploding and vanishing problems responsible for
inefficient learning. The path lengths between the features
grow linearly with the distance between them, hindering
the learning of long-range dependencies [11]. The attention
mechanism-based transformer models can handle these issues
more efficiently than state-of-the-art algorithms. However,
vanilla transformers lack an efficient means to capture posi-
tional information in audio spectrograms.

Zhang et al. [12], Guan et al. [13], and Tran and Tsai [14]
proposed attention mechanism-based acoustic event detection
and monitoring algorithms. A frame-level attention mechanism
was proposed in [12] to generate discriminative characteristics
and automatically concentrate on semantically relevant frames.
The audio signals were converted into a log Gammatone
spectrogram to feed into eight CNN layers, followed by two
Bi-directional Gated Recurrent Units (Bi-GRU), combining
the attention mechanism. Guan et al. [13] employed the
self-attention mechanism with adjustable sparsity to eliminate
irrelevant audio features, improving the model’s robustness
using CNNs and a transformer encoder to capture the local
and temporal features from the log Mel-spectrogram as the
input. In the final step, a fully connected layer was used
for classification. Tran and Tsai [14] combined CNNs with
an attention mechanism to propose an acoustic train arrival
detection model, where Mel-spectrogram and MFCCs were
merged to feed into the model to improve its accuracy and
robustness. However, these models lack robustness to various
sound durations, loudness, and noise levels. Although the
accuracy achieved on datasets containing two classes has
attained an acceptable level, the performance on multi-class
classification still requires further improvements. The pro-
posed model aims to address the aforementioned shortcomings
in a more manageable way by presenting a new architec-
tural paradigm. The input raw audio signals are uniquely
preprocessed by (i) removing background noise, (ii) removing
silent and near-silent segments from the edges of the audio
signals, (iii) energy normalisation, (iv) audio augmentation,
and (v) symmetric zero-padding with centring before being
transformed to Mel-spectrograms. Currently available Posi-
tional Encoding (PE) layer treats all input dimensions equally
with a static encoding scheme, resulting in less efficiency in
dealing with audio spectrograms. This research proposes a
Spectrogram-specific Positional Encoding (SPE) layer, which
is learnable and considers that different dimensions benefit
from different positional representations. Before feeding the
preprocessed data as the encoder input, the feature values are
linearly projected to lower their dimensions and improve the
processing efficiency through a unique Deep Linear Projection
(DLP) mechanism. The encoder consists of several layers
using a multi-head attention mechanism to encode the data
representation deeply. A Temporal Convolutional Network
(TCN) block is then used to process them and is passed
to the classification block consisting of a Dense layer with
the softmax activation function. Two state-of-the-art datasets
were used to train and evaluate the proposed model and
the baselines for comprehensive comparisons. Additive White
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Gaussian Noise (AWGN) [15] was added, and audio intensity
was adjusted by modifying the signal amplitudes of the test
datasets for robustness testing. The categorical cross-entropy
function was used to calculate the loss and improve the
learning efficiency of the proposed model during training. The
schematic representation of the proposed model is illustrated
in Figure 1.

The performance of the proposed model was compared with
a state-of-the-art One-dimensional CNN (1D-CNN) model
similar to the one suggested in [16], and an LSTM model
proposed in [17], [18] and [19]. The results demonstrated its
worthiness by achieving accuracy scores of 94.80 and 95.87%
on the two used datasets, which are 1.51 to 3.55% higher than
the baselines. The main contributions of this research are:

o It proposes a learnable SPE layer and a unique DLP
mechanism to lower the dimensions of the input features
before feeding them into the encoder to enhance the
model’s performance;

o The stereophonic raw audio data samples are uniquely
preprocessed and transformed into Mel-spectrogram as
the inputs instead of making them mono-channel signals
to increase the model’s robustness to noise;

o It uses a TCN block with residual connection to facil-
itate the construction of deep networks and capture the
features’ short- and long-term dependencies.

o It also proves the superior outcomes of the softmax
based attention compared to the sigmoid based attention
mechanism, contrary to [12]. The proposed model trained
on 17K data samples can outperform the CNN-based
model without any transfer learning approach. This is
a contradictory outcome from the audio spectrogram
transformer model proposed in [20].

This article is organized as follows: Section II presents a
summary of state-of-the-art related works along with their
performances and limitations; in Section III, the formulation
of the proposed model is presented; the experimental setup
and results are addressed in Section IV; Section V is devoted
to discussing the overall performance and feasibility of the
proposed model compared to state-of-the-art baseline models;
and finally, the conclusions are drawn in Section VI.

II. RELATED WORKS

This section introduces recent DL-based models for solving
acoustic road traffic event monitoring problems. The current
models seek to identify auditory activity on road networks
and predict classes in each case. However, with various noise
components and other environmental phenomena, this task is
challenging to accomplish efficiently.

In the literature, CNNs and LSTM-based models domi-
nate in solving acoustic event monitoring problems because
they can dexterously learn and process audio features.
Wang et al. [21] proposed a depth-wise separable CNN
model for road traffic sound event monitoring tasks. Before
extracting the MFCC features, a spectrogram augmentation
technique is applied to the Mel-spectrogram. This approach
demonstrated a frame-wise classification accuracy of 94.64%.
However, the accuracy deteriorated in the presence of noise
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Fig. 1.

and hence lacked robustness. Kim et al. [22] combined
the concepts of Residual Neural Networks (ResNet) and
squeeze-and-excitation networks with the sample-level CNNs
(SampleCNNs) architecture to solve audio classification prob-
lems. This model directly took raw audio waveforms as input
instead of Mel’s spectrograms and required a very small size of
filters in all layers. The results demonstrated an Area Under the
Receiver Operating Characteristic Curve (ROC-AUC) score of
90.83% on the MagnaTagATune dataset [23], which is more or
less similar to the state-of-the-art result of 90.64%. Therefore,
more robust algorithms are required to accomplish further
performance improvements.

Zhang et al. [24] proposed a fast binary spectral
features-based Deep Belief Network (DBN) for traffic event
detection problems. The results showed better outcomes than
the end-to-end CNNs and LSTM-based models. It achieved
an average recognition rate of 79.0%, which is 2.9 and 5.6%
higher than the CNNs and LSTM-based models, respectively.
However, it lacked robustness, and further accuracy improve-
ments are required. Marchegiani and Newman [25] proposed
a multitasking learning scheme to classify and localise
emergency vehicles from their sirens using a CNN-based
U-Net [26] architecture. Considering the Gammatonegrams
of the incoming sound signal as intensity images, a noise
removal technique was implemented to capture inter-channel
information, achieving an average classification rate of 94%
across different sound classes. However, it lacks the robustness
to deal with different noise sources and different natures of
audible alarms.

Attention mechanisms have also been proposed to solve
the problems under study. Lee et al. [27] proposed an
attention-based multimodal sound event location and detec-
tion model using the DCASE2021 dataset [28]. The authors
extracted Mel-spectrogram, log-chromatogram, and additional
spectral information from the input raw audio signal to train
the proposed model. The encoder was based on a CNN
and was responsible for exchanging intermediate resources

Model

Schematic representation of the overall concepts of the proposed model.

within its layers using the parameter-sharing approach. The
decoder used an attention mechanism to improve the prediction
efficiency. Tran and Tsai [14] combined a CNN with a
temporal and frame-level attention mechanism to develop an
acoustic model of train arrival detection by merging the Urban-
Sound8K [29] and ESC-50 [30] datasets with their private
dataset for model training and testing purposes. Spectrograms
and MFCCs were extracted and combined from the input audio
signals to increase the robustness of the model in gaining
robustness to various levels of environmental noise. The model
achieved an average accuracy ranging from 91.13 to 95.11%
at various noise levels.

Guan et al. [13] proposed a sparse self-attention mechanism
for acoustic event detection to remove irrelevant features of
various classes of sounds and background noise on the DESED
dataset [31]. The results demonstrated a Polyphonic Sound
Detection Score (PSDS) [32] of 66.7%, which is slightly lower
than 66.9%, obtained from the CNN-based model presented
in [33]. Besides, the self-attention mechanism is limited in
modelling input dependencies unless the number of layers
or heads increases with the input length. Hence, multi-head
attention mechanism-based models are required to deal with
these problems.

In summary, the models available in the literature lack
robustness and accuracy to deal with background noise. Criti-
cal common difficulties are: (i) identifying efficient features to
neutralise noise, (ii) addressing gradient vanishing and explod-
ing phenomena, (iii) minimising the effect of audio intensity
variation, and (iv) improving effective parallel processing.
The proposed model aims to deal with these problems more
flexibly and smoothly.

III. METHODOLOGY

Humans selectively focus on parts of the inputs to acquire
relevant information. The concept of attention was brought
into the Neural Network (NN) domain under this pretext.
Thus, when attention is applied, some parts of the inputs are
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improved, as they assume more weight in predicting the final
output. Attention can be calculated using different approaches,
such as dot product attention, additive attention, and scaled
dot product attention. The intuitions between them are the
same: knowing which parts of the inputs are most important
to predict the final output.

Suppose that [x1, x2, X3, ....., X,] are audio data samples
with [y1, y2,...., yr] labels, where n €R and L are the total
number of samples and classes, respectively. This study mod-
elled the two datasets as L = 5 and L = 8 class classification
problems. The goal is to train the proposed model on the
training dataset and classify the test data samples by providing
all the labels’ corresponding prediction probabilities.

A. Scaled Dot Product Attention

The query Q is a vector where each row corresponds to one
query, meaning it is a simple set of queries. Its dimension is
[seq_len_qg x di], where seq_len_qg and d; = dj are the total
numbers of queries and dimensions of each query, respectively.
Similarly, the dimensions of the key K and value V vectors are
[seq_len_k x di] and [seq_len_v x d,], where seq_len_k and
seq_len_v are the numbers of keys and values, and dj and d,
are the dimensions of each key and value, respectively. When
a query is made, the model finds which values are similar
to that specific query. Values cannot be accessed directly but
through the keys when a query is made. Each value has a
corresponding unique key, and the number of keys must equal
the number of values, but their dimensions do not have to be
equal. In short, the query and value vectors are like two sets
of questions and answers, where the keys are the access to
the answers. The attention mechanism maps the set of queries
into a set of key-value pairs using:

Attention(Q, K, V) =softmax( QKT)V @))

, K, N7

where QKT is the dot-product between the query and key
vectors. The reason for taking the dot product is that it gives
a similarity score between two vectors. Now, let’s assume that
Q—jg represents the scaled dot-product, which gives scaled
simkilarity scores. Then, the softmax operation is performed,
which converts all the scaled similarity scores into probabil-
ities so that all constraints are in the range between [0, 1].
Now, this operation outputs some weights, i.e., the attention
weights, between 0 (zero) and 1 (one) and is multiplied by
V. Hence, when a query is made, the model will ultimately
output a weighted summation of all the values corresponding
to that particular query. Figure 2 depicts the scaled dot-product
mechanism.

B. Multi-Head Attention

The attention mechanism is called self-attention when Q,
K, and V matrices are equal. In the multi-head attention
mechanism, these matrices are passed through corresponding
Dense layers to project them into lower dimensions. After
that, the split heads mechanism transforms each Qp, Kp and
Vp according to the batch size using (Qp, Batch_size),
(Kp, Batch_size) and (Vp, Batch_size), where Qp, Kp
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and Vp are the corresponding outputs of Q, K and V
matrices of the Dense layers, respectively. These operations are
performed several times, equal to the number of heads. Then,
the scaled dot product attention mechanism is applied for
each case. Finally, they are concatenated and passed through
another Dense layer to obtain the weighted average of the
values corresponding to a given query, as shown in Figure 3.

C. Encoder

The proposed model processes the raw inputs using a unique
preprocessing mechanism and then applies a DLP transforma-
tion before entering further steps. First, the Mel-spectrogram
features are passed through a Dense layer with a linear
activation function to reduce their dimensions. They are then
multiplied by the square root of the model dimension before
being sent to the SPE layer.

1) Linear Projection: Let’s consider a vector v in
two-dimensional space and a point p not on the vector line
but inside the vector space. Then, p is the projection of p onto
the vector line. Now, let’s assume that i is the dimension of
the vector space and the linear projection must satisfy:

argmine | D (pi — p)* = argmine > _(pi — p)*
i i

=argming D _(cv; = p)’. (2
i

where cv; is equal to p;, i.e., is a scalar multiplication
between ¢ and v;. Equation 2 is minimised by differentiating
it with respect to ¢. Now, dd—c >y — p)? would be equal
to 2(3; (cv;2 — >, vip). After making some rearrangements,
one can obtain:

:_c Z(cv,' - p)2 = 2(cvv — vp) = 0. (3)

Satisfying the condition: 2(cvv — vp) = 0, where v is the
transpose of v, will help calculate the value of ¢ as:

c= @) lop. 4)

Thus, the linear projection matrix P of p point onto the v
vector is idempotent and can be formulated as:

P = (dv)" 4. (5)

a) Implementation: Therefore, the point projection p on
some vector v is a function that indicates the points closer
to it along the vector. The closest one is the Euclidean

distance /> .(p; — p)*> over dimension i, as suggested by
Equation 2. Of course, there are other points further away
from the Euclidean distance. Hence, the linear projection can
effectively represent a higher-dimensional vector space onto a
specific number of dimensions. A Dense layer with a linear
activation function can mimic this operation.

Let’s assume that the input is a vector of dimension ; thus,
the goal is to construct a linear projection matrix of dimension
J, where j < i. For simplicity, let’s assume that the input is
XijkeR|i=1,2,....m;j=1,2,...,mk=1,2,...,1}.
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If Y;jk, Wijk, and b; represent the output vector, weight vec-
tor, and bias, respectively, then the output Z;ji, is formulated
as:

Zijk = Wijk Xijk + b;. (6)

Thus, the definition of Z;j; becomes {Z;jx €R |i =
1,2,....m;j = 1,2,....,n;k = 1,2,...,d} with d being
the model’s dimension. Now, the output of the proposed DLP
Layer is further modified by performing a scalar multiplication
between Z;;; and K using:

Pijr = Z;ijk K, N

where K = +/d. In other words, each @ j, k)’h element of
Ziji is multiplied by Vd for all possible values of i, j and k.

b) Effects: Current state-of-the-art attention
mechanism-based models feed N-dimensional inputs
directly into the PE layer, resulting in improper mapping of
the positions of the vector elements. The above-mentioned
technique can overcome this problem by representing
higher-dimensional inputs in lower dimensions before
transmitting them to the PE layer.

13015

Qutput

QK Softmax Matrix
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Block diagram of the scaled dot-product attention mechanism: The Query, Key, and Value matrices are generated using three Dense layers with

2) Spectrogram-Specific Positional Encoding: The relative
or absolute positions of the sequence elements must be con-
sidered to enhance the model’s efficiency. The PE layer is best
suited for that purpose. Let’s - assume x is the desired position
in an input sequence, and PE, € R? is its corresponding
encoding with d as the encoding dimension. Then, f : N —
R¢ produces the output vector as [34]:

PED = fo® = ¥, i 1=2k (8)
cos(wy - x), if i=2k+1,
where wy = m is the frequency component and con-

sidered as fixed according to currently available transformer-
based models. However, this approach is most likely not
suitable to deal with spectrogram-specific tasks for several
reasons: (i) wy is predetermined, which follows a fixed expo-
nential decay mechanism, may not optimally represent the
positional relationship, (ii) all dimensions are equally treated
ignoring the fact that different dimensions may benefit from
different positional representations, and (iii) the encoding
scheme is static, does not evolve during training, and is not
adaptable to the data characteristics. This study proposes a
learnable SPE layer aiming to address these concerns. Hence,
it introduces learnable amplitudes Ay and phases ¢ for the
sinusoidal components using:

SPE,") = f(x)®

) Ak -sin(wg - x + ), if i@ =2k, 9

| Ak ccos(wi x4+ p), if i =2k+1, (
where Ay and wy represents amplitude and phase of k"
frequency component. The PE layer’s outputs pass through a
Dropout layer and are fed as inputs to the encoder multi-head
attention layer, together with the encoder padding mask.

3) Encoder Layer: Each encoder layer consists of two
parts. A multi-head attention layer is used in the first part
according to the formulation presented in Section III-B.
It produces a weighted average of V matching a specific
Q. Now, let’s suppose M;j is the output of the multi-head
attention block, which can be obtained by concatenating
Attention(Qp, Kp, Vp) of Equation 1 over the number
of heads, H. The input of the encoder layer becomes I;j; =
Pijr + SPE. Then, there is a Dropout [35] layer and a Layer
Normalization (LayerNorm) [36], and during the forward is
considered:

e1 = M;jr(iji), (10)
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(1)
(12)

e> = Dropout(r)(ey); r = rate,

e3 = Layer Norm(l;j; + e2).

The second part contains multiple Dense layers with the
Gaussian Error Linear Unit (GELU) [37] activation function
and a LayerNorm. Here, e3 is fed to two Dense layers
followed by a Dropout layer with a dropout rate of r. Finally,
a LayerNorm operation is performed on (e3 + e¢) to obtain
the final embedded outputs of the encoder layer. During the
forward pass, these can be formulated as:

e = GELU (W} e3); Wiy R, (13)
es = GELU(W}ieq); W}, eRP™d, (14)
e¢ = Dropout (r)(es), (15)
e = Layer Norm(e3 + eg), (16)

where b and n represent the batch size and time steps, with u
being the number of neurons in the Dense layer.

D. Proposed Model

The architecture of the proposed model is illustrated in
Figure 4. Instead of directly feeding the Mel-log filterbanks
features as in the case of [20], the Mel-spectrogram features
are passed to the model as inputs. It comprises four identical
encoder layers within the encoder block. The outputs of the
first encoder layer are fed back as input to the second one, and
the process continues. Finally, the last encoder layer outputs
are reshaped and passed through the TCNs block.

1) Temporal Convolutional Networks: The deeply encoded
data representations are processed with TCNs to preserve
the temporal order and learn both short and long-term rela-
tionships. A series of transformations is undertaken using
1D-CNN, Batch Normalisation, Dropout layer, and ReLU
activation function. On top of that, a residual connection is
used, aiming to enhance the model’s stability and facilitate
gradient flow. However, before the TCNs, the encoder output
e € RP*"*d g passed through a Global Average Pooling
Layer, which operates along the time dimension. It outputs
g(e) € Rbxd by reducing the shape into (b x d). The used
TCNs are constructed as:

K—1
Cr= ) glex) Wi; G eR/, (17)
k=0
Ci1 = ReLU (BatchNorm(C;)), (18)
Cr2 = Dropout (C1), (19)
Ry = ReLU(Cp2 + g(er)); R, € RV, (20)

where f denotes the number of filters, Wj refers to the
weight of the k" kernel filter, and e,_j signifies the input
element at time step ¢ — k. The padding is causal to prevent
information leakage from future time steps. The classification
block contains a Dropout layer and a Dense layer. It uses
a softmax activation function and Oy, . neurons to provide
probability scores of possible classes according to:

E| = Dropout(r)(Ry),
E, = softmax(W;}kEl); Wi‘;k €RP* Osize

2y
(22)
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E. Categorical Cross Entropy Loss

The proposed model uses the categorical cross-entropy
function to calculate the loss. From an architectural point of
view, predicted scores from the model’s output are first passed
through a softmax operation. Then, the cross-entropy loss is
calculated as illustrated in Figure 5.

Let’s assume #; and p; are the base truth and model’s
score for i in the C classes, respectively. The categorical
cross-entropy function includes a softmax operation before

calculating the cross-entropy loss (CE). If f(p;) = Zecl’;p.
j 1

is the output of the softmax operation, then CE can be
formulated as:

C .
ePi
CE =) tilog(—¢—).
; z] eDi

The labels are one-hot for multi-class classification, so only
the positive class Cpos keeps its term in the loss. There is
only one element of the target vector ¢, which is non-zero
(t; = tpos)- Thus, CE can be reduced as:

(23)

ePpos

Z,C ePi

The model needs to calculate its gradient for the output
neurons to optimise the loss function and facilitate the back-
propagation operation. Therefore, the derivative of the loss
function with respect to the positive class is formulated as:

ePros ePpos

8
i (si) (5 ) e

Again, its derivative concerning the negative class has the
following form:

b | ( ePneg ) ePpos (26)
—log = .
8 Preg ZJC ePi Z}C ePi

IV. EXPERIMENTS

An NVIDIA DGX Station with four NVIDIA Tesla V100
Tensor Core GPUs and 128G B of RAM was used for training
the proposed model. The CUDA (version 11.2) was used
for computing on the GPUs, and the open-source Tensorflow
machine learning platform was used to develop the implemen-
tation code.

CE = —log(

)- (24)

A. Preprocesssing

The input raw audio signals are preprocessed by (i) sepa-
rating the percussive components such as background noise,
(ii) removing silent and near-silent components from the edges
based on the decibel threshold, (iii) energy normalization
to ensure the same maximum amplitude of all the signals,
(iv) audio augmentation by using the pitch shifting technique,
and (v) applying symmetric zero-padding with centring when
the length of the original data samples was greater or less
than the expected sample, i.e., sampling rate x duration.
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AWGN was added to the test datasets to examine the model’s
robustness using [38]:

> Signal®
RSignal = Ta

(27)
R
_ Signal
Roise =y TOGNR/T0)” (28)
Noise = Gaussian(u, o, number of samples), (29)
Signal = Signal + Noise, 30)

where Rgignar and Rpyoise represent the root mean squared
value of the signal and noise, respectively. The val-
ues of w and o were assumed to be 0 and Rpyise,
respectively.

After that, the signals were transformed into
Mel-spectrograms with a sampling rate, hop length, number
of generated Mel bands, and Fast Fourier Transform
(FFT) component numbers of 44100, 300, 128, and 2560,
respectively. The lowest and highest frequencies were 20Hz
and (sampling rate/2). The output of the preprocessing step
was a three-dimensional (3D) array of the form: (number of
samples, time steps, Mel bands).

B. Implementation

The scaled dot product attention was developed accord-
ing to the formulation in Section III-A using the t#f.matmul,

~
Multi-head Attention

Cross Entropy

I

c
s~ CE= —erlog(f(pi))

Architecture of the adopted loss function: The model’s scores are passed through a softmax operation followed by a traditional cross-entropy

tf.mat.sqrt and tf.nn.softmax packages. The multi-head atten-
tion mechanism was built by defining a ‘class’ called
‘MultiHeadAttention’ using the tf.keras.layers.Layer package
according to the formulation presented in Section III-B, com-
bining the scaled dot product attention.

The proposed model consists of two distinct parts: (i) an
encoder block with four identical attention-based encoder
layers and (ii) an output block containing a TCNs block,
a Dropout, and a Dense layer, as described in Section III-D.
The tfkeras.layers.Layer package proved its worthiness in
developing the encoder layers based on the proposed attention
mechanism. The dimension of the input sequence was reduced
using a DLP layer according to the formulation presented in
Section III-C.1. After that, it was fed into a SPE layer built
as described in Section III-C.2, followed by a Dropout layer.
The output of the Dropout layer and an encoder mask, built
to let the model know the actual data location, were finally
fed into the encoder layer as inputs using the tf.keras.Input
package.

The final phase of the code implementation contained the
model’s training and testing tools. The values and labels
of features from the Mel-spectrogram were entered into the
model for training. The categorical cross-entropy function
of tf.keras.losses.CategoricalCrossentropy was used to calcu-
late the loss and the adaptive moment (Adam) estimate of
tf.keras.optimizers.Adam was used as an optimiser of the pro-
posed model. Accuracy, recall and Fj score of sklearn.metrics

Authorized licensed use limited to: b-on: UNIVERSIDADE DO PORTO. Downloaded on November 06,2025 at 15:50:18 UTC from IEEE Xplore. Restrictions apply.



13018

were used to evaluate the proposed model. On the other
hand, the Friedman Chi-Square statistical test mechanism was
developed using the scipy.stats.friedmanchisquare module.

C. Dataset

This study used an open benchmark IDMT-TRAFFIC
dataset [39] from Fraunhofer Institute for Digital Media
Technology in Germany. It contains 17,506 stereo audio
snippets, each lasting two seconds. It also includes recorded
vehicle passing and a variety of street-side background
noise. The collection contains recordings from four dis-
tinct recording locations, four distinct vehicle types: bus,
car, motorcycle, and truck, three different time limit areas,
and dry and wet weather/road conditions, including move-
ment direction. The recordings were made using high-
quality sE8 small-diaphragm condenser microphones and
medium-quality Microelectromechanical Systems (MEMS)
microphones. The complete dataset was divided into training
and testing sets using a ratio of 80:20 to meet the demands.

Another state-of-the-art Vehicle Interior Sound Classifica-
tion (VISC) dataset [40] was used to examine the proposed
model’s generalizability. These data samples were collected
from the driving point of view of eight different vehicle types:
bus, minibus, pick-up truck, sports car, jeep, truck, crossover,
and YouTube car. It contains 5,980 samples, each lasting
three to five seconds with 48K Hz frequency. The dataset was
divided into training and testing subsets using a ratio of 80:20
to verify the model’s generalisation ability.

D. Model Training

The proposed model and baselines were trained using
an NVIDIA DGX Station V100 for up to 100 epochs.
It contains 1.86 to 4.5M trainable parameters depending on
different hyperparameters. On the other hand, models based
on CNN and LSTM networks only required 15K — 98K
and 140K — 298K parameters for training. The choice of
different hyperparameters profoundly impacted the model’s
performance. An appropriate set of hyperparameters was
obtained after randomly choosing their values and perform-
ing many trial-and-error tests. In the preprocessing step, for
Mel-spectrograms construction, the following sets of hyperpa-
rameters proved their worthiness: sampling rate, hop length,
number of generated Mel bands, lowest frequency, and FFT
component values of 44100, 300, 128, 20Hz, and 2560,
respectively. The following combination of hyperparameters
during model training provided the best overall outcomes:
num_head = 4, num_layer = 4, units = 1024, p = 0.1,
d = 128, Ir = 0.0001, and time_steps = 295, where
num_head, num_layer, units, p, d and [r represent the
number of attention heads, number of encoder layers, number
of neurons of the Dense layers, dropout rate, dimensionality of
the representations used as input to the multi-head attention,
and learning rate of the model, respectively. The proposed
model took 1.5 —2.0 hours to complete the training for up to
100 epochs using the aforementioned computational platform.
On the other hand, 1D-CNN and LSTM models took 1.2 and
1.5 hours, respectively, to finish training for the same number
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of epochs. In addition to Dropout layers, the k-fold cross-
validation with k = 5 and EarlyStopping mechanism with a
patience = 10 were used to address the overfitting problems.

E. Results

The proposed model and the two baselines under study
were trained on the same system using the same datasets
according to the aforementioned settings. It demonstrated good
performance improvements on all used metrics compared to
these baselines:

o ID-CNN [16], [17]: The authors proposed a 1D-CNN
architecture for environmental sound classification prob-
lem. A similar model was developed, trained and
evaluated on the two used datasets.

o LSTM [18], [19]: The effectiveness of LSTMs in captur-
ing long-term temporal dependencies was used to classify
urban sounds. An identical model was implemented,
trained, and evaluated using the same experimental setup.

1) Evaluation Metrics: Precision, recall, and F; score were
used as evaluation metrics to assess the performance of the
proposed model relative to the selected baselines. The first
step was to get all the individual predictions in the test
dataset. Assuming that the test dataset size was N, and the
true and predicted labels were 7; and Pj, respectively. The
model calculated the confidence scores for all labels. Then,
the confidence scores were sorted. The True Positives (7 P)
and Negatives (T N) are the instances where the actual and
predicted labels are positive and negative, respectively. On the
other hand, False Positives (FP) and Negatives (FN) are
the instances where the predicted labels are positive, but the
actual labels are negative, and vice versa. The accuracy score
reveals which fraction was predicted correctly among all the
label predictions and calculates the fraction between 7' P and
T P + F P. Their formulations are [41]:

. TP
Precision = ———, 31
TP+ FP
TP
Recall = ————, (32)
TP+ FN
F = 2(Precision x Recall) (33)

Precision + Recall

For multi-class classification tasks, the final F| score is
the average of the Fj score of each class, with weighting
depending on the ‘Average’ parameter. Let’s assume that y
and y are the set of true and predicted pairs, respectively.
Then, for the Micro Average, the employed formula is:

_lyn3Jl

Precision(y, y) := N (34)
y

If L, y;, and y; represent the set of labels, the subset of y
with label le L, and the subset of § with label /€ L, respectively,
then the employed formula for Macro Average is:

1

m Z Precision(yy, y;).

leL

(35)

Precision(y, y) :=
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TABLE I
PERFORMANCE COMPARISON OF THE PROPOSED MODEL AND THE BASELINES IN TERMS OF F| SCORE (BEST VALUES IN BOLD)
I3 IDMT VISC
Score Proposed CNN LSTM  Proposed CNN LSTM
Macro Average 76.19 56.38  67.25 93.88 91.74  92.78
Micro Average 94.00 92.75  93.37 94.14 92.47 9348
Weighted Average 93.58 89.96  91.28 94.14 92.56  93.46
TABLE 11
PERFORMANCE COMPARISON OF THE PROPOSED MODEL AND THE BASELINES AS OF RECALL SCORE (BEST VALUES IN BOLD)
Recall IDMT VISC
Score Proposed CNN LSTM Proposed CNN LSTM
Macro Average 74.04 56.87  64.47 93.82 91.65  93.00
Micro Average 94.00 9275  93.38 94.15 9247  93.48
Weighted Average 94.00 9275  93.38 94.15 9247  93.48

Lastly, the employed formula for Weighted Average is:

> Il Precision(y. ).

. 1
Precision(y, y) := m
leL leL

(36)

Tables I, II, and III summarise the results obtained for the
proposed model and the two considered baselines. As it is a
multi-class classification problem, the evaluation metrics con-
sidered three approaches: the macro average, which represents
the unweighted mean of the metrics computed independently
for each label; the micro average, which calculates metrics
globally by aggregating the total counts of TPs, TNs, FPs, and
FNs; and the weighted average, which computes the mean of
the metrics for each label weighted by the number of instances
for each label in the test dataset. The proposed model achieved
a weighted average score of F) of 93.58 and 94.14% on the
IDMT and VISC test datasets, which are 3.87 and 2.46%, and
1.68 and 0.72% higher than the corresponding scores from the
1D-CNN and LSTM baselines, respectively.

The proposed model surpassed the baselines under study
by achieving a weighted average Recall Score of 94.00 and
94.15% on the two used datasets. Concerning statistics,
an improvement of 1.33 and 1.78% compared to the 1D-CNN
model was achieved. Likewise, considering the weighted mean
Precision Score, the proposed model improved by 1.84% on
the IDMT test dataset compared to the LSTM-based baseline.

Table IV summarises the comparison of the proposed model
with the baselines under consideration regarding the accuracy
of the IDMT and VISC test datasets, consisting of 1751 and
897 audio samples, respectively. It achieved an accuracy of
94.80 and 95.87%, while for LSTM and 1D-CNN models,
the accuracy was 92.74 and 93.37%, and 92.47 and 92.68%,
respectively. Regarding statistics, improvements from 2.17 to
1.51% and from 3.55 to 3.33% were achieved compared to
the considered baselines on the two used test datasets.

2) Statistical Test: The main idea of performing statistical
tests is to determine whether the prediction distribution of a
model poses any significant difference in statistics concern-
ing some specific property. A null hypothesis was defined,
assuming no difference between the model’s predictions and
choosing a significance level of 5%. Using the Friedman
Chi-Square [42] as the test statistic, the outputs for the VISC

and IDMT datasets were: (statistic = 7.36; p = 0.025) and
(statistic = 49.77; p = 1.55¢!1), respectively. Since the
p-value was less than the significance level, it can be argued
that the null hypothesis is invalid, and there are significant
statistical differences between the model’s predictions.

V. DISCUSSION

Monitoring traffic acoustic events is one of the most
challenging tasks in ML due to its diverse acoustic char-
acteristics. The audio clips are recorded using microphones
where the target events are usually far away. Therefore,
there are often overlapped simultaneous events, and the pres-
sure/intensity of the target sound event may be less than
the background/ambient noise. Consequently, traditional ML
models fail to provide reliable performance, but DL models are
a sought-after solution to these problems. Thus, models based
on CNN and LSTM are the current state-of-the-art to solve the
problems of monitoring acoustic events efficiently [43], [44],
[45], [46]. However, these models demonstrate difficulties
dealing with external noise, variation in sound intensities,
and capturing long-range audio features; therefore, further
improvements are needed.

Consequently, this study proposes a hybrid model for
monitoring road traffic acoustic events using a multi-head
attention-based transformer in combination with TCNs to learn
long-range dependencies between audio features and overcome
the above-mentioned challenges. Additionally, it introduces a
unique preprocessing mechanism and presents a new DLP
approach to downscale the feature dimensions before further
processing. It also proposes a learnable SPE layer to capture
spectrogram-specific positional information efficiently. It com-
prises an encoder block containing four identical encoder
layers for deeply encoding the preprocessed input. The TCNs
block handled the deeply encoded output to capture short and
long-term dependencies. The classification block contains a
Dense layer with the softmax activation function, preceded
by a Dropout layer to produce the probability scores of the
predicted labels.

The state-of-the-art IDMT-TRAFFIC dataset, containing
17,506 stereo audio clips, was used for model training and
testing. It contains audio samples of five distinct classes,
mainly bus, car, motorbike, and truck. Thus, this study
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TABLE III
PERFORMANCE COMPARISON OF THE PROPOSED MODEL AND THE BASELINES REGARDING PRECISION SCORE (BEST VALUES IN BOLD)
Precision IDMT VISC

Score Proposed CNN LSTM  Proposed CNN LSTM

Macro Average 79.38 56.13  81.69 94.08 9229  93.05

Micro Average 94.00 92.75  93.38 94.15 92.47 9348

Weighted Average 93.39 87.49  91.67 94.26 93.01 93.82

TABLE IV TABLE V

PERFORMANCE COMPARISON OF THE PROPOSED MODEL AND THE
BASELINES WITH THE BASELINES ON THE TEST DATASET
(BEST VALUES IN BOLD)

Models Accuracy (IDMT) (%) Accuracy (VISC) (%)
Proposed 94.80 95.87
1D-CNN 92.74 92.47

LSTM 93.37 92.68

modelled the dataset as a multi-class classification problem
with five classes: bus, car, motorcycle, truck, and non-vehicle.
Another dataset called VISC, which contains 5890 audio sam-
ples of eight classes: bus, minibus, pick-up truck, sports car,
jeep, truck, crossover, and car (automobile), was used to verify
the model’s generalisation ability. The two datasets were split
into training and testing datasets. Many researchers convert
multichannel audio signals to a single channel before further
processing [47], resulting in poor noise robustness. Therefore,
this study directly converted the stereophonic audio signals
into Mel-spectrograms following the preprocessing steps to
overcome this drawback. The categorical cross-entropy func-
tion was used as the loss function to facilitate the proper
learning of the proposed model.

The results of the proposed model were compared with
previously published 1D-CNN and LSTM-based models.
State-of-the-art metrics were used to evaluate its performance,
mainly Precision, Recall, F score, and accuracy. Also, the
Friedman Chi-Square statistical test was performed to deter-
mine the differences in the model’s prediction distributions
regarding statistics. Figures 6 and 7 represent the confusion
matrices obtained for the models based on the IDMT and
VISC test datasets, demonstrating the superior performance
of the proposed model relative to the baselines under study.
With a highly imbalanced dataset like IDMT, it achieved a
higher accuracy score than its counterparts.

The impact of loudness and environmental noise on
the model’s performance was also examined. The ampli-
tude was adjusted to achieve various loudness lev-
els [48], and the loudness values were computed using the
ITU BS.1770 algorithm [49]. The proposed model performed
well at different loudness levels, as shown in Table V. The
original audio data samples of the VISC dataset possess a
mean loudness of —17.64 d B, which led to the best accuracy
score. The proposed model was also tested with four different
mean loudness levels: —25.66 dB, —28.76 dB, —31.68 dB,
and —36.12 d B, which were obtained by changing the ampli-
tude of the original signals by a factor of 30%, 40%, 50%,
and 70%, respectively. The accuracy decreased as the loudness
from the alignment level (around —20 dB) shifted further,
except for —36.12 dB.

PERFORMANCE OF THE PROPOSED MODEL WITH DIFFERENT LOUDNESS
LEVELS ON THE VISC DATASET (BEST VALUE IN BOLD)

Mean Loudness (dB)

Accuracy (%) (Proposed)

Original (-17.64) 95.87
-25.66 95.83
-28.76 95.15
-31.68 91.78
-36.12 92.14

TABLE VI

ACCURACY COMPARISON OF THE MODELS UNDER STUDY WITH
DIFFERENT SNR LEVELS ON THE IDMT TEST DATASET
(BEST VALUE IN BOLD)

Mean SNR (dB) Proposed (%) CNN (%) LSTM (%)
-30 46.60 47.92 34.27
-20 46.60 58.99 40.32
Original (0.0) 94.80 92.74 93.37
10 93.49 92.06 92.58
20 95.26 92.00 92.92
30 95.09 92.06 92.92

AWGN, which can mimic natural random processes, was
added to the original test datasets to examine the model’s
robustness on various noise levels. The proposed model exhib-
ited good resilience against various Signal-to-Noise Ratio
(SNR) levels, particularly for higher positive values, as shown
in Table VI. Even more interesting was that the model outper-
formed the original audio signals in accuracy at a mean SNR
of —20 dB. However, it was also observed that the accuracy
decreased significantly with negative SNR values.

Several ablation experiments were conducted to examine
the effects of various structural designs and parameters on the
proposed model, as shown in Table VII. Thus, the model’s
response was investigated without the proposed preprocessing
mechanism, learnable SPE layer, TCNs block, and DLP mech-
anism. Without the proposed SPE layer, the model suffered
a 9.29% reduction in prediction accuracy. Also, without the
TCNs, its accuracy decreased by 3.71% from the original
value. The effect of the number of encoder layers (4, 8 and
12) on its performance was also tested, indicating that a higher
number of layers might not increase the performance. The
computational cost also varied based on these attributes.

Dropout layers with a rate of r were used to avoid the
model’s overfitting. It is accomplished by randomly setting
input units to 0 (zero) with a particular frequency specified
by r at each step during training. The model was trained
and tested with different values of r to observe its effect.
It was found that gradually increasing its value from 0.1 to
0.3 decreased the model’s accuracy on the IDMT test dataset.
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TABLE VII

ABLATION STUDY ON THE VISC DATASET (W AND W/O REPRESENT
WITH AND WITHOUT, BEST VALUES IN BOLD)

Attribute Parameters (M) Accuracy (%)
Original 1.86 95.87
w/o Preprocessing 1.86 91.81
w/o SPE 1.86 86.96
w/o TCNs 1.32 92.31
w/o DLP 1.85 87.79
w 8 layers 3.18 95.31
w 12 layers 4.50 91.81

This study also examined the sigmoid and softmax-
based attention mechanisms to justify their influences on
the model’s performance. The experimental results demon-
strated the superior results of the softmax-based attention
mechanism by improving the model’s accuracy by 6.24%
on the IDMT test dataset compared to its counterpart. The
model presented in [12] led to an opposite conclusion, i.e.,
more effective performance of the sigmoid-based attention
mechanism for sound classification tasks. The opposite finding
may be attributed to using layered attention with CNNs instead
of a full attention mechanism.
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Gong et al. [20] suggested that a transformer model can
only outperform CNN-based models with over 14M worth of
training samples. However, publicly available audio datasets
in this domain contain a much lower number of data samples.
Therefore, the transfer learning approach, i.e., using a pre-
trained model, is necessary to achieve superior results. The
proposed model did not require any transfer learning technique
and was trained on the IDMT dataset that contains only 17K
samples. It still achieved superior performance compared to
the CNN-based model under study. Although the proposed
model may suffer from the overfitting problem, the previously
mentioned requirement of training data volume for trans-
former models is problem-specific, which should be explored
further.

Comprehensive comparisons with the considered baselines
demonstrated the quality of the proposed model by outper-
forming them in most commonly used metrics. However, it has
several shortcomings. It was modelled to classify only five
classes, namely, Bus, Car, Motorbike, Truck, and non-vehicle,
in the IDMT dataset, and eight classes were considered for
the VISC dataset. A real road traffic environment may contain
more classes, such as bicycles and ambulances. The problem is
that publicly available state-of-the-art traffic audio datasets are
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sparse compared to general-purpose acoustic datasets. There-
fore, more attention should be given to building good-quality
datasets in this area. Also, only AWGN was considered for
examining the robustness of the model. Mixing the original
signals with real-world noises for further robustness testing
also needs to be considered. Another disadvantage of the
proposed model is the computational cost and implementation
in real-life practice. The 1D-CNN model only required 15K
parameters for training and can be better suited for some
real-world deployments than the proposed model.

VI. CONCLUSION

Models for monitoring traffic acoustics events can be cru-
cial to improve the performance of ITS because video-based
models lack efficiency in cases of occlusion, low light, snowy,
and rainy conditions. Therefore, the research community
has recently been focused on developing solutions based
on acoustics. However, the current state of the art, mainly
based on LSTM and CNN models, needs further improvement
in capturing long-term relationships between different audio
features to tackle background noise and improve efficiency.
Therefore, this study presented a hybrid model combining the
attention mechanism and the TCNs to solve these problems
efficiently. It proposed a learnable SPE layer suitable for
capturing spectrogram-specific positional information and a
DLP mechanism to downscale feature values before passing
them to the SPE layer. Attention mechanisms based on the
softmax function constituted the encoding block with four
identical encoding layers to encode the preprocessed inputs.
The deeply encoded output from the encoder block was
processed by the TCNs block to extract short and long-term
relationships between the features and a classification block to
output the prediction distribution of the predicted classes. Two
state-of-the-art baseline models were used for comprehensive
performance comparison, and two benchmark datasets were
used to train and evaluate the models. The results demonstrated
the superior performance of the proposed model, achieving
an accuracy improvement of up to 3.55% compared to the
studied baselines. In the future, the proposed model will be
tested on other state-of-the-art datasets containing more vehi-
cle classes. Also, further robustness tests will be performed by
mixing real-world noise with the original signals. In addition,
research will be undertaken to study and improve real-world
deployment skills.
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