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Abstract: Developing reliable numerical models for infill walls has become essential given their evident 
contributions to the overall performance of RC frames. For probabilistic-based analyses, the single strut 
approach is often used to simulate masonry infills due to their inherent simplicity and their relatively low 
computational cost. However, due to the variability of the material and geometric characteristics of infill walls, 
it is essential to consider these aspects to define the properties of strut models. In this context, this study 
discusses the specific effects that the aspect ratio and the strength of the masonry infill have on the global 
performance of infilled RC frames. To support the discussion, three frames with three aspect ratios (frame 
height/span length) have been analysed using a detailed finite element modelling approach with three types 
of infills in terms of strength (weak, moderate, and strong infills). The infill contribution to the behaviour of each 
case was assessed to address the influence of the aspect ratio and the strength on the global performance of 
the infilled RC frames. Overall, the study highlights the need for further research addressing the uncertainty 
associated with using predefined empirical expressions that do not adequately consider the effect of certain 
infill characteristics, namely its geometric and mechanical characteristics, to define the properties of strut 
models.  

Keywords: Reinforced concrete frames, numerical modelling, Detailed finite element modelling, 
strut model. 
 
 

1 Introduction  
Diversity is a prominent aspect of building stocks around the world, reflecting different architectural purposes 
and materials. Regional-scale performance-based earthquake engineering (PBEE) studies try to reflect this 
diversity by considering different characteristics of reinforced concrete (RC) frames taxonomy (Crowley et al., 
2021; Crowley et al., 2004). These characteristics include the building age, geometric aspects, seismic design 
level, etc. (see (Crowley et al., 2022; Crowley et al., 2021; Martins & Silva, 2020; Villar-Vega et al., 2017) 
among others). In a complimentarily way, the contribution of infill walls is increasingly being identified as 
essential for a realistic representation of the overall behaviour of RC frames, given their significant impact on 
performance. In this context, single strut models are found to be an efficient modelling approach for PBEE due 
to their simplicity and affordable computational cost. The parameters of strut models should be mostly driven 
by experimental data. However, due to the scarcity of such data regarding infill walls and the manifold 
parameters relevant for modelling their behaviour, existing PBEE studies either use strut models whose 
parameters are based on empirical data that might not be relevant for the structures under analysis or discard 



WCEE2024  Mohamed H.  & Romão X. 

 
 

2 

the structural contribution of infill walls altogether (De Risi et al., 2022; Di Domenico et al., 2022). Therefore, it 
is essential to develop reliable numerical models for infill walls, as they have a significant impact on the overall 
performance of RC frames under earthquake loading. 

Strut models were developed in response to the observation by (Polyakov, 1956) that infill walls act as braces 
for the surrounding RC frame. Since then, several studies (e.g., see (Asteris et al., 2013; Asteris et al., 2011; 
Basha et al., 2020; Mohamed & Romão, 2020, 2021; Mohammad Noh et al., 2017) and references therein) 
have been proposed to quantify the structural contribution of infills. Due to the cost and resources involved in 
experimental tests, existing strut model properties have typically been derived from a single test (Liberatore et 
al., 2017) with a single or a limited number of specimens, rather than from regression analyses based on a 
database of experimental results. As a result, the estimates of the strut model parameters have a significant 
level of uncertainty (De Risi et al., 2018; Huang et al., 2020; Mohamed & Romão, 2018b). This uncertainty can 
be even greater when the parameters are estimated across different types of infills with various material and 
geometric properties, as commonly considered in regional-scale PBEE studies (Asteris et al., 2019; Del Gaudio 
et al., 2018; Mohamed & Romão, 2018b). 

In light of this, the proposed study investigates the effect of the geometric and material variability of infill walls, 
more specifically the aspect ratio and the strength of the infill, on the global performance of infilled RC frames. 
A validated numerical modelling strategy is used to model several RC frame specimens with several aspect 
ratios and mechanical properties. The study highlights the urgent need to develop models that consider these 
parameters, and the need to define a more comprehensive approach that can accommodate the variability of 
infill walls. 

 

 

2 Research methodology and modelling  
To study the significance of the variation of infill wall characteristics, three frames with different infill walls were 
modelled. Table 1 presents the main characteristics of the considered cases, and Figure 1 defines these 
variables. Detailed Finite Element (DFE) analysis is performed using ANSYS to accurately capture the 
contribution of infill walls under lateral loading. The validated finite element modelling approach proposed in 
(Mohamed & Romão, 2018a) is adopted in this study. Figure 2 shows the schematic finite element mesh 
components for a one-bay and one-story masonry-infilled RC frame to illustrate the adopted modelling 
strategy. As can be seen, RC and masonry components are modelled using the 3D solid finite element known 
as SOLID65 in ANSYS (2012).  

To reduce the number of element types and the computational effort, the smeared modelling approach is used 
for steel rebars, in which the SOLID65 element represents both the steel and concrete of RC members. The 
masonry brick units are modelled according to their real geometry, and contact elements along with a cohesive 
zone material model are used to represent the interaction between the brick units and the RC frame (Lourenço 
& Rots, 1997). The proposed modelling approach is able to capture the more common failure mechanisms of 
masonry infills and the flexural failure modes of the RC elements but does not account for the shear failure of 
RC elements or the cyclic degradation of materials.  

To focus on the contribution of the infill wall and to minimize the effect of the surrounding RC frame from the 
analysis, the authors adopted the approach proposed by (Mohamed & Romão, 2021). _More specifically, for 
each specimen listed in Table 1, the corresponding bare RC frame was analysed using the same numerical 
model as for the infilled frame. The contribution of the infill wall to overall behaviour was then extracted by 
subtracting the results of the bare frame analysis from the results of the infilled frame analysis. 
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Figure 1 Definition of the considered wall variables defined in Table 1. 

 

Table 1  The main characteristics of the considered specimens. 
no Specimen ID Wall 

length L 
(mm) 

Height H 
(mm) 

Aspect 
ratio a* 

In�ill strength 
classi�ication 

Masonry 
compressive 
strength fm 
MPa 

Wall 
thickness 

1 WR1 900 1150.00 0.65 

W
ea

k 1.00 110 
2 WR2 1800 1150.00 1.60 1.00 110 
3 WR3 2550 1150.00 2.20 1.00 110 
4 MR1 900 1150.00 0.65 

M
od

er
at

e 3.00 110 
5 MR2 1800 1150.00 1.60 3.00 110 
6 MR3 2550 1150.00 2.20 3.00 110 
7 SR1 900 1150.00 0.65 

St
ro

ng
 7.00 110 

8 SR2 1800 1150.00 1.60 7.00 110 
9 SR3 2550 1150.00 2.20 7.00 110 
*a is the aspect ratio of the panel expressed as the wall length over its height (L/H) 
The columns of RC frames were set to be 150*150 mm2, the beam cross-sections were 150*250 mm mm2, 
and the concrete compressive strength is 30 MPa 
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Figure 2 Adopted modelling strategy for RC element and infill walls. 

 

3 Results and Discussion  
3.1  Capacity curves of the infilled frames and of the infills  
The capacity curves of RC infilled frames provide comprehensive information to achieve a better understanding 
of their seismic behaviour. As such, capacity curves were determined numerically by applying a monotonically 
increasing lateral displacement at the top of each frame until reaching a lateral drift value of 1.2%. Figure 3 
shows the capacity curves for three types of infills (weak, moderate, and strong) with three different aspect 
ratios (a=0.65, a=1.60, and a=2.20). As can be seen, infilled frames with weak infills exhibit lower lateral 
strength, thus highlighting the lower contribution of infills to the overall lateral strength of the structure. 
However, weak infilled panels in narrow infill walls show a monotonic increase in strength up to a top drift of 
1.2%, which is not the case for the other two types of infills, where strength degradation is observed after a 
lower drift ratio. This observation can be interpreted as follows. Stronger infills are more likely to lose their 
integrity sooner because they exhibit higher stresses due to their higher strength and stiffness. For the 
moderate infills, the panels show a gradual increase in strength up to a top drift of 0.70%, followed by a gradual 
decrease in strength. This behaviour is attributed to the fact that moderate infills are able to sustain some 
damage before losing their integrity. Eventually, strong infilled panels show a sudden drop in strength after a 
top drift of 0.8%. This behaviour is attributed to the fact that strong infills are not able to sustain much damage 
before losing their integrity. 

The aspect ratio of the infilled panel is seen to have a significant impact on its seismic behaviour. Narrower 
panels (i.e., a=0.65) show less strength capacity but have a more ductile behaviour with no sudden drop in 
strength, as seen in cases with strong infills (e.g., see Figure 3 c). In these cases, the overall behaviour of the 
infilled frame is closer to that of the corresponding bare frame. This is in contrast to the capacity curves of 
strong infilled panels with high aspect ratios, which typically show a sudden drop in strength at specific stage 
of loading (the point in which the infill starts to lose its integrity).  The capacity curves of infilled panels show 
that the type of infill and the aspect ratio of the panel have a significant impact on their seismic behaviour.  
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a) Specimens WR1(a=0.65), WR2(a=1.60), 

WR3(a=2.2)    

b) specimens MR1(a=0.65), MR2(a=1.60), 

MR3(a=2.2) 

 
c) Specimens SR1(a=0.65), SR2(a=1.60), SR3(a=2.2)    

Figure 3 Variation of RC frame with masonry infills with different aspect ratios a) weak infills b) moderate 
infills and c strong infills. 

 

In order to gain a more comprehensive understanding of the contribution of the infill to the overall behaviour 
of the infilled frame, and to minimize the influence of the surrounding RC frame, the infill contributions were 
extracted from the previously shown capacity curves using the method proposed by (Mohamed & Romão, 
2021). This method involves isolating the infill from the RC frame and determining its independent lateral load-
carrying capacity. The infill contributions can then be used to assess the relative importance of the infill to the 
overall strength and stiffness of the infilled frame. Figure 4 shows the capacity curves of the infilled panels 
obtained by this process for the different aspect ratios and masonry compressive strengths, plotted as 
horizontal force against top drift ratio (in percentage). It can be seen that narrow panels with an aspect ratio of 
0.65 sustain less lateral force, but do not exhibit a sudden drop in strength when compared to wider panels. 
This effect is more pronounced for stronger infills, which show a sudden drop of up to two-thirds of their overall 
lateral strength. 
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a) Specimens WR1(a=0.65), WR2(a=1.60), 

WR3(a=2.2)    
b) specimens MR1(a=0.65), MR2(a=1.60), 

MR3(a=2.2) 

 
c) Specimens SR1(a=0.65), SR2(a=1.60), SR3(a=2.2)    

 
Figure 4 Contribution of infill walls with different aspect ratios a) weak infills b) moderate infills and c) strong 

infills. 

For a more comprehensive understanding, Figure 5 and Figure 6 show the variation of the top drift ratio 
(corresponding to the maximum lateral force) and maximum lateral of the infilled panel, respectively, with the 
aspect ratio of the panel and masonry compressive strength. In these plots, it is clear that the panel aspect 
ratio has less effect on the top drift ratio corresponding to the maximum force than the strength of the masonry.  
In other words, low-strength infills will reach their damage state significantly faster than high-strength infills. 
This is important for PBEE analyses, since damage state limits are essential for estimating earthquake losses. 
In contrast, the maximum lateral force of the panel is significantly affected by both the strength of the masonry 
and the aspect ratio of the panel. 
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a)                                                                  b) 

Figure 5 Variation of drift corresponding to maximum strength with a) aspect ratio b) strength of masonry. 
 

 
a)                                                                 b) 

Figure 6 Variation of drift corresponding to maximum strength with a) aspect ratio b) strength of masonry. 

 

3.2 Reliability of existing models  
As mentioned in the previous section, existing empirical models are derived from a limited number of 
specimens, which may limit their ability to represent a wide range of infill wall geometries and strengths. In this 
context, Figure 7  shows a scatter plot of the observed lateral contribution of infill walls against the empirically 
estimated values based on commonly used models in literature (Bertoldi et al., 1993; Durrani & Luo, 1994; 
Mainstone, 1971; Moghaddam & Dowling, 1988; Te-Chang & Kwok-Hung, 1984; Turgay et al., 2014). From 
these results, it is clear that none of these models accurately estimated the observed lateral strength for 
different infill panel characteristics or exhibited a uniform uncertainty around the real values. Moreover, some 
models overestimated or underestimated the lateral strength by a large margin. These observations suggest 
that the infill wall aspect ratio and strength can significantly influence the structural behaviour. 
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Figure 7 Scatter plots representing estimated infill contribution in terms of strength using different empirical 

expressions versus the strength obtained from the detailed finite element model. 

 

4 Conclusion  
Single strut models are widely used in PBEE analyses due to their advantages in terms of modelling and 
computational cost. However, their use for modelling the behaviour of buildings with different infill 
characteristics can lead to inaccurate results, as they are typically derived from a limited number of 
experimental tests. This results in significant uncertainties in the estimated parameters of the infill mechanical 
characteristics, which is even greater when the parameters are generalized across different types of infill with 
various material and geometric properties. 

To shed light on this issue, the proposed study investigates the effect of variations in geometric and material 
properties of infill walls on the global performance of infilled RC frames. Results indicate that both the aspect 
ratio and the compressive strength of the masonry have a significant impact on the overall performance of RC 
frames with masonry infills. Furthermore, none of the tested empirical expressions were able to predict the 
expected behaviour of the infill walls modelled using a detailed finite element approach. The study highlights 
the need for empirical models that define the mechanical characteristics of strut models to consider these 
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parameters, and the need to define a more comprehensive approach that can accommodate the variability of 
characteristics of infill walls. 
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