Koen Bertels
Joao M.P. Cardoso
Stamatis Vassiliadis (Eds.)

Reconfigurable Computing:

* Architectures
= and Applications

Second International Workshop, ARC 2006
Delft, The Netherlands, March 2006
Revised Selected Papers

@ Springer

A New Approach to Assess Defragmentation
Strategies in Dynamically Reconfigurable
FPGAs*

Manuel G. Gericota', Gustavo R. Alves!, Lufs F. Lemos', and José M.
Ferreira?

! Department of Electrical Engineering - ISEP,
Rua Dr. Anténio Bernardino de Almeida, 4200-072 Porto, Portugal,
{mgg,gca,1f1}@isep.ipp.pt,
2 Department of Electrical and Computer Engineering - FEUP,
Rua Dr. Roberto Frias, 4200-465 Porto, Portugal,
jmf@fe.up.pt

Abstract. Fragmentation on dynamically reconfigurable FPGAs is a
major obstacle to the efficient management of the logic space in recon-
figurable systems. When resource allocation decisions have to be made at
run-time a rearrangement may be necessary to release enough contiguous
resources to implement incoming functions. The feasibility of run-time
relocation depends on the processing time required to set up rearrange-
ments. Moreover, the performance of the relocated functions should not
be affected by this process or otherwise the whole system performance,
and even its operation, may be at risk.

Relocation should take into account not only specific functional issues,
but also the FPGA architecture, since these two aspects are normally
intertwined. A simple and fast method to assess performance degradation
of a function during relocation and to speed up the defragmentation
process, based on previous function labelling and on the application of
the Euclidian distance concept, is proposed in this paper.

1 Introduction

Field Programmable Gate Arrays (FPGAs) experienced a considerable evolution
in the last two decades. Shorter reconfiguration times and the new features intro-
duced recently, such as run-time partial reconfiguration and self-reconfiguration,
made possible the implementation of the concept of virtual hardware defined in
the early 1990s: the hardware resources are supposed to be unlimited and im-
plementations that oversize the reconfigurable logic space available are resolved
by temporal partitioning [1].

Generally, an application comprises a set of functions that are predominantly
executed in sequence, or with a low degree of parallelism, in which case their

* This work is supported by an FCT program under contract POSC/EEA-
ESE/55680,/2004

simultaneous availability is not required. Functions may be swapped in real time,
becoming operational only when needed and being substituted if their availability
is no longer required. However, when the logic space of an FPGA is shared among
several functions belonging to a number of different applications, each with its
own requirements in spatial and temporal terms, fragmentation of the logic space
may occur [2]. The solution to this problem is to consolidate unused areas within
the FPGA without halting the operation of currently running functions. If a
new function cannot be allocated immediately due to lack of contiguous free
resources, a suitable rearrangement of a subset of the executing functions must
be implemented to overcome the problem.

In general, there is a tendency to model the FPGA as a regular array struc-
ture and to regard defragmentation as a strictly packing problem [3-5]. While
in the first generations of FPGAs this assertion was true regarding the CLBs
position inside the array, it was inaccurate when other resources were consid-
ered. The presence of dedicated routing resources available to enhance specific
applications (like counters and adders), which have a tremendous impact on
function performance, were mainly responsible for this inaccuracy. The problem
was aggravated in more recent generations by the introduction of memory blocks
and of dedicated Digital Signal Processing (DSP) blocks distributed among the
FPGA array.

In an FPGA, the access to the reconfiguration mechanism is independent
from the operation of the running functions. Therefore, defragmentation may be
implemented as a background process, running concurrently with the operation
of currently implemented functions, without disturbing or impairing them, in-
stead of just when a new incoming function is claiming area to be implemented.
As a result, waiting times will be reduced and the overall system performance
improved. A metric to determine when to perform defragmentation is proposed
in [6].

2 Labelling functions

To enhance the performance of specific types of functions, FPGA architectures
present some special features, like dedicated carry lines to increase speed of arith-
metic functions (e.g. counters or adders). In the architecture of Virtex FPGAs
from Xilinx, which were used during the experimental phase of this research
work, these lines span the FPGA vertically, enabling only the interconnection
of vertically adjacent CLBs. The use of dedicated carry lines, with very low
propagation delays (in the order of a few picoseconds), enabled us to achieve an
operating frequency of circa 145 MHz for a 24-bit binary counter implemented
on an XCV200, and 450 MHz in the case of an XC4VFX12.

However, the maximum frequency of operation decreased dramatically if one
or more of these dedicated carry lines were substituted by generic interconnec-
tion resources. Figure 1 shows how the maximum frequency of operation of the
24-bit counter decreases, in percentage terms, for both FPGAs, as a function of
the number of dedicated carry lines that are broken. Notice that despite belong-

ing to different FPGA generations, the counter exhibited a similar behavior in
both cases. From this simple example it becomes obvious that it is mandatory
for any defragmentation procedure to take into account both architectural and
functional aspects, before making any function relocation decisions.

70 N
60 \ —— XCV200
50 B —-— XC4VFX12

Decrease on the maximum
frequency of operation (%)

Initial 1 2 3 4 5 6 7 8 9 10 11
Number of dedicated carry lines broken

Fig. 1. Performance degradation

If this function is active, i. e. if the function is currently being used by an
application, dynamic relocation techniques, as those described in [2], must be
applied during the defragmentation procedure, otherwise the function operation
will be temporarily halted, which may consequently disrupt the operation of
the whole system. Moreover, relocation must be performed keeping as much as
possible the vertical orientation of the function placement. Besides, no more
than one of the dedicated carry lines linking vertically adjacent CLBs should be
broken. This means that only one adjacent CLB may be relocated at a time and
that vertical adjacency must not be lost.

These two pieces of information, verticality and adjacency, are essential to
enable an efficient defragmentation and should be attached as a label to the
function configuration file.

To evaluate the influence of changes in shape and in relative position of CLBs
in different functions, the same type of experiments were performed over a sub-
set of the ITC’99 benchmark circuits [7]. The objective was to determine which
parameters are involved in the performance degradation of particular functions
so as to be able to formulate a simple set of rules to support logic space manage-
ment. The experiments consisted of displacing vertically and horizontally each
one of the functions and changing its relative shape, from a square-like shape
to a rectangular one and rotating it 90°. These stressing conditions helped to
bring into evidence which parameters are mostly responsible for performance
degradation, when functions are moved around. The results of the experiments
are summarised in table 1. It is evident that circuits B04, B05, B07, B11, B13
and B14 experienced considerable performance degradation when the relocation
of the whole function was carried out horizontally, since all these functions use
dedicated carry lines on their implementation. This conclusion confirmed the
extremely high importance of keeping intact dedicated carry lines.

Table 1. Evaluation of function performance degradation due to reshaping

Variation in the maximum
. Number of frequency of operation (%
Circuit reference occupied CLBs Verticaly Horizgnt)al
relocation relocation
BO1 6 —5.5 0.0
B02 1 0.0 0.0
B03 11 -1.9 —4.9
B04 54 —6.1 —29.3
B05 103 —-17.3 —36.9
B06 5 —2.7 0.0
B0O7 31 —23.6 —37.8
B0O8 17 —5.8 —5.8
B09 12 —-1.8 —-4.9
B10 20 —-7.5 —7.6
B11 39 —-10.5 —36.0
Bi12 119 0.0 —-1.2
B13 37 —4.3 —42.8
B14 333 —13.5 —47.8

Some functions, like B11, comprise hundreds of gates but have a reduced
number of carry lines. In this case, it is necessary to have a simple method to
quickly identify the columns that contain these lines. Otherwise, the ability to
reshape the function during defragmentation will be heavily constrained. The la-
bel attached to the function configuration file must indicate the relative position
inside the function of the column that must be left as it is.

3 Proximity vectors

The first circuit on the list, B0O1, exhibits a different behaviour when compared
to those previously observed. Horizontal relocations do not degrade its perfor-
mance, most probably because it uses no carry lines. However, vertical reloca-
tions decrease its maximum frequency of operation.

The most noticeable aspect of its implementation was the great number of
high fanout signals that leave the CLBs located in the central column. To reduce
propagation delays these CLBs were strategically positioned by the design tools
in the centre of the function floorplan. If the circuit is shifted horizontally, the
relative position of the central CLBs is not affected. However, if the central
location of these two CLBs is changed, propagation delays will increase and the
maximum frequency of operation of this function will decrease. This hypothesis
was confirmed by rotating the function 90° and relocating it in only one CLB
column.

The CLBs with output signals that drive a large number of inputs, despite
keeping their central location, are now, on average, far from their destination

inputs than they were before. This means an increase on the propagation delay
not only due to an increase in the length of interconnection lines, whose im-
pact is minor, but mainly because each line has to cross a greater number of
Programmable Interconnect Points (PIPs). The small distance that signals have
to cross means that small segments linking adjacent routing arrays are used to
route them. Therefore, if a new segment has to be added, a new PIP has also
to be used, which leads to a noticeable increase in the propagation delay. The
other benchmark circuits exhibited a similar behaviour.

A systematic analysis of this problem led to the development of a new method
to assess the impact of relocating CLBs whose output signals drive a large num-
ber of inputs: the application of the concept of proxzimity vectors, a vector associ-
ated to each interconnection and linking the CLB source to the CLB destination.

The length of each vector, called prozimity factor, is expressed in CLB units
and calculated as the modulus of the distance between the CLB source and the
CLB destination:

| fpz| = V7% + 2 (1)

where:

r=CLB destination row - CLB source row

r=CLB destination column - CLB source column

If the sum of all proximity vectors of one CLB output is minimised (eq.
2), the proximity factor associated to that output will also be minimised. This
corresponds, in terms of the propagation delay of a given output, to the best
position of that CLB inside the function.

| fpoxl = min’y (fo1, o2, s foa) (2)
d

When relocating the CLB, if the proximity factor F., increases, then per-
formance degradation of the function will occur. Generically, we can say that
minimising each output proximity factor of a function results in the minimisa-
tion of its global proximity factor, which corresponds to the best performance
(maximum frequency of operation). The application of this concept to the re-
maining circuits showed a consistent reproduction of results, confirming the ini-
tial hypothesis.

The concept of proximity vectors is based on the application of the Euclidian
distance measurement to each net. Since routing is constrained to horizontal and
vertical wires, it seems, at first, that the use of the Manhattan distance mea-
surement would be more reasonable. However, a series of experiments performed
to compare the use of the two distance measurement methodologies showed a
greater correlation between maximum frequency of operation and the Euclidian
distance measurement.

The main advantages of this approach are as follows:

1. It can be easily automated and integrated in existing design tools;

2. The computation time of the proximity vectors is extremely low when com-
pared to previous proposed approaches, since only the nets that will be
affected by relocation need to have their proximity factor (before and after
the relocation) calculated;

3. There is no need to perform a complete analysis of the function performance
after each CLB relocation, since, if the minimisation of the global proxim-
ity factor of the CLB was assured, the minimisation of the global proximity
factor of the overall function is assured, and therefore, no performance degra-
dation occurs.

All these factors enable this method to be used at run time to quickly and
reliably assess the strategy used to manage the defragmentation procedure.

4 Conclusions

This paper presents a new approach to assess the performance degradation intro-
duced by the relocation of functions during defragmentation procedures applied
to dynamically reconfigurable FPGAs. The proposed approach is able to guide
the defragmentation procedure in a reliable and fast way enabling the run-time
relocation of running functions, timely releasing enough contiguous space for
new incoming ones while avoiding performance degradation.

Current work is aimed at evaluating the influence of other array hetero-
geneities (that are present in more recent generations of FPGAs), namely mem-
ory blocks and dedicated DSP blocks. The influence of hardware embedded pro-
cessors and the rule they may play in the implementation of defragmentation
strategies on run time reconfigurable systems will also be addressed in the future.

References

[1] Ling, X.-P., Amano, H.: WASMII: a Data Driven Computer on a Virtual Hardware,
Proc. 1st IEEE Workshop on FPGAs for Custom Computing Machines (1993), 33-42

[2] Gericota, M. G., Alves, G. R., Silva, M. L., Ferreira, J. M.: Run-Time Defragmen-
tation for Dynamically Reconfigurable Hardware, in: New Algorithms, Architectures
and Applications for Reconfigurable Computing. Springer (2005) 117-129

[3] Teich, J., Fekete, S., Schepers, J.: Compile-time optimization of dynamic hardware
reconfigurations, Proc. Intl. Conf. on Parallel and Distributed Processing Techniques
and Applications (1999) 1097-1103

[4] Handa, M., Vemuri, R.: An efficient algorithm for finding empty space for online
FPGA placement, Proc. Design, Automation Conf. (2004) 960-965

[5] Vinh, P. C., Bowen, J. P.: Continuity Aspects of Embedded Reconfigurable Com-
puting, Innovations in Systems and Software Engineering: A NASA Journal, Springer-
Verlag, Vol. 1, No. 1, (2005) 41-53

[6] Ejnioui, A., DeMara, R. F.: Area Reclamation Strategies and Metrics for SRAM-
Based Reconfigurable Devices, Proc. Intl. Conf. on Engineering of Reconfigurable
Systems and Algorithms (2005)

[7] Politcnico di Torino ITC’99 benchmarks. Available at:
http://www.cad.polito.it /tools/itc99.html

