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ABSTRACT

People living in cities incur significant costs owed to traffic congestion, meaning that small im-
provements in drivers’ experience in urban traffic can lead to significant economic and health
benefits. Drivers are guided by greedy principles as a result of selfish behavior, incomplete and
imperfect information, bounded rationality, and lack of a central coordination entity. This results
in the sub-optimal User Equilibrium, distinct from the System Optimum where global travel time
is minimized. The goal of this work is to mitigate the gap between User Equilibrium and the
System Optimum, by performing a city-scale analysis of traffic congestion, modeling drivers as Q-
learning agents, and using the concept of difference reward functions to find routes that minimize
global costs by internalizing external costs created by excessive congestion. To implement these
concepts, a mesoscopic simulator was developed to accurately represent the phenomenon of traffic
congestion, while allowing analysis at the scale of a city. Attained results with presented methods
revealed that agents were able to learn better paths in a dynamic environment, and point towards
reductions in global cost metrics in the order of 0.5% when using less greedy reward functions,
approaching the System Optimum.

Keywords: Operations, Traffic assignment, Dynamic traffic assignment, Mesoscopic simulation,
Reinforcement Learning, Difference reward
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INTRODUCTION

Since the 1950s, the world has gone through a process of rapid urbanization. In 1950 the urbaniza-
tion rate in Europe was only 51.7% (1, 2), which has risen to 74.5% by 2018 (2), and is estimated
to reach 83.7% in 2050 (/, 2). This increasing trend is common to the entire world, with urban
population accounting for 29.6% of the world population in 1950, 53.9% in 2015, and 68.4% by
2050 (1), and is particularly expressive in Asia and Africa, which are expected to contribute with
90% of the 2.5 billion increase in urban population until 2050 (2). Car ownership is also steadily
increasing in the European Union (EU), at a yearly rate of 1.2%, totaling 246.3 million passenger
cars (3) for a population of 446.7 million in 2022 (4). These two trends contribute to a high and
ever-increasing traffic congestion burden that urban residents incur. The European Commission
estimates that total passenger congestion costs amount to 0.98% of the Gross Domestic Product of
the EU 28 member states (EU28), or nearly 140 B€ /year. And congestion costs are only expected
to continue increasing in the EU, by about 50% by 2050 to nearly 200 B€ /year (5). It is, therefore,
paramount to find ever-smarter solutions so that people can live harmoniously in dense commu-
nities, as it is only expected that cities will grow in size and population, accentuating congestion
problems.

The way people move on a traffic network is guided by greedy principles, where each user
selects the most convenient route for themselves. This is the result of applying the concept of Nash
equilibrium (6) to the traffic assignment problem to arrive at an economic equilibrium. There are
some advantages associated with this strategy, namely not requiring communication with fellow
users (7, 8). It is also intrinsically fair, allowing users to have distinct ways of evaluating possible
paths, and entitling every user to make self-interested decisions (8, 9). The equilibrium situation in
which everyone is greedy is called User Equilibrium (UE), for no user may improve their individual
outcomes by unilaterally changing paths (/0).

This situation differs from the System Optimum (SO) (/0), where a global system utility
function is optimized. This global utility function can be defined so as to attain relevant societal
goals such as better infrastructure usage through reduced congestion costs, pollution, and infras-
tructure maintenance (//). A consequence of the definition of SO is that any other solution is
suboptimal. In fact, Klein et al. (/2) assessed that the SO solution is optimal but ‘unstable’, due to
the inherent unfairness (9) of some users making concessions for the greater good, and that any of
those users’ move towards an individually better path would inevitably stray from the SO. The gap
between UE and SO is also known as the price of anarchy. As pointed out by Lujak et al. (9), UE
can be arbitrarily more costly than SO, and some studies have noted that this price of anarchy can
vary between 0.5% and 15% (13).

Given there is a difference between UE and the SO, there is a margin for improvement.
This work sets out to propose an agent-based Reinforcement Learning (RL) approach to reduce
the gap between UE and SO, using the concepts of Q-learning and difference reward on a large-
scale mesoscopic simulated environment.

LITERATURE REVIEW

Related work

The first and simplest approach to bridge the UE-SO gap is through tolls imposed on users by an
infrastructure management entity or city authority. This approach was first mentioned by Pigou
(I/4) and Knight (/5), which acknowledged that an optimal outcome could only be reached if
externalities were properly internalized by the agents responsible for them through taxes. This
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implies a user being charged a toll fee equal to the externalities it imposes on all other users.
Assuming the time a vehicle takes to cross a road a is a function #,(x,) of the vehicular flow x,
through that road, the toll fee 7}, to be imposed on a road a so that the optimal outcome is achieved
must be the individual penalty 7/ (x,) that another user j incurs due to the decision of i to use road
a, times the number of vehicles x, using road a:

T, = x4-1,(x4) ()

In this line of investigation, Ramos et al. (/6) applied RL to a simple macroscopic traffic model
using the Bureau of Public Roads (BPR) (/7) formula, associated with a tolling scheme based
on Equation 1, where agents learn by deciding between the K shortest paths. Recent work also
focuses on more realistic alternatives to SO tolling, also known as first-best tolling, due to the
impracticality of tolling all roads. These tolling schemes are divided into second-best tolling,
where only a subset of links is subject to toll charge (/8); and third-best tolling, where other goals
are set without consideration for the overall impact of tolls on other roads, of which no-queue
tolling is an example, where only links with frequent queue formation are tolled (/9).

Other approaches that have found traction in the literature are related to auctions and nego-
tiations, for their versatility and ability to describe feasible and fair distributed multi-agent traffic
systems. The basis for current methods on reservations and interactions between vehicle and inter-
section agents was introduced by Dresner and Stone (20). This concept was further expanded by
Vasirani (27) and Vasirani and Ossowski (22) through a distributed, market-inspired mechanism
based on combinatorial auctions, where intersection agents participate in the market as suppliers
and vehicle agents as buyers. Schepperle and Bohm (23) proposed the valuation-aware variant /ni-
tial Time-Slot Auction, and in a related paper Schepperle et al. (24) propose Time-Slot Exchange,
an optional mechanism through which vehicle agents can bilaterally negotiate slot exchanges after
obtaining an initial slot they are not satisfied with. More recently, Rahimi-Farahani et al. (25) pro-
posed a forced-node route guidance system, where a selected set of intersection and roundabout
agents makes binding decisions on which roads vehicles should use so as to avoid congestion, and
Elimadi et al. (26) proposed an Agent Node-Centric approach where vehicle agents book times for
crossing intersections while intersection agents adjust booking times according to demand.

Q-learning
Q-learning is a model-free RL algorithm proposed by Watkins (27). Provided with a function that
maps a (state, action) pair to a reward, it finds an optimal policy that maximizes total reward. Q-
learning draws many parallels from the generic paradigm of Dynamic Programming (DP) in that
it maintains a data structure that is successively modified to compute optimal policies (28).

Q-learning algorithms work by maintaining a structure, or a function Q : § x A — R, that
is built by the Q-learner from memory of past decisions and is used to decide the next course of
action. This function Q(s,a) is used to estimate the quality of the decision for an action a € A
given that the agent is currently at state s € S, so given a set of actions a that an agent may perform
starting in state s, the best action is such that maximizes Q(s,a). The agent’s learning process
consists of progressively updating the Q function according to the rewards that the agent obtains
from the actions it takes.

One of the fundamental principles of Q-learning is that the Q function can express not only
instantaneous rewards but also future rewards. This is done by updating the Q with the following
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formula:
O(sr,ar) < (1 —a)Q(sr,ar) + oer; + A 'mjle(StH,a)) 2)

where « is the learning rate, r; is the reward for moving from state s, to s, 1, max, Q(s;+1,a) is an
estimate of the maximum possible future reward that can be obtained from transitioning to s;. 1,
and A is the discount factor, which represents how important future rewards are.

The generic formulation of the Q-learning algorithm leaves the exploration vs. exploitation
problem as an open question. A particular type of Q-learning algorithms that addresses this issue
is called e-greedy, because they exploit the action with the largest expected reward with a usually
large probability 1 — &, but occasionally explores the environment with probability € to try to find
better alternatives (and as such, escape local minimums) by selecting a random action.

Difference reward

Difference reward is a technique introduced by Tumer and Wolpert (29) to model a reward function
that is sensitive to agent decisions while taking into account the global cost function. A difference
reward is the reward that the agent receives as a result of it being a part of the system; so it translates
to how much the global utility increased or decreased due to the actions of one agent. Therefore,
if rewards are negative costs, the agent will indirectly try to minimize their negative impact on
global cost. More formally, a difference reward, or difference utility DU, is defined by Tumer and
Wolpert (29) for agent 1 as a utility of the form

DU(z) = G(z) = I'(f(2)) 3)

where G is the global utility function, and I'(f) does not depend on the decisions of agent 7.
Tumer and Agogino (30) suggest a way in which this generic framework can be materialized in a
more understandable way, with DU expressed by:

Di=G(z) —G(z—zi+¢i) 4)

where z is a global solution, z; is the action of agent i, and ¢; is a fixed constant. Under this notation
system, z —z; +¢; is the global state if the action of agent i is replaced by a constant ¢;; this constant
is typically a neutral element such as a zero vector, so that G(z) reflects the global utility including
the actions of agent i, and G(z — z; + ¢;) represents the global utility if agent i was completely
removed from the system.

This reward function was created so agents could rapidly converge toward a global opti-
mum. The intuitive reason behind its effectiveness is that the agent is aware of its actions’ influence
over other agents in the system (3/) and will aim to maximize its positive impact in the global util-
ity function; or otherwise, if rewards are negative, the agent will seek to minimize its negative
impact in the system. In sum, difference reward internalizes externalities caused by the agent’s de-
cisions, and as such constitutes a form of Pigouvian tax imposed on agents to prevent an unwanted
market outcome of excessive congestion (14, 15).

According to Tumer and Wolpert (29), the quality of a reward function g; for agent i on a
system with a global cost function G depends on its factoredness and learnability. Factoredness
is associated with the alignment between the reward function and the global utility; i.e., if the
designed reward function g frequently increases when G also increases, then the reward function
has a high degree of factoredness. Learnability is associated with agents easily understanding their
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roles in the greater picture of the system; it is akin to a signal-to-noise ratio, since high learnability
corresponds to the agent getting a “cleaner” signal (317).

The application of difference reward to alleviate traffic congestion was spearheaded by
Tumer et al. (32) using a simple static scenario with one origin-destination (OD) pair and 9 time
slots (so, 9 possible “routes” in total). Grunitzki et al. (37) further expanded this analysis by
considering a dynamic traffic assignment scenario with 13 junctions and 24 two-way links, with
a significantly larger number of possible routes. Both are relatively small and simple scenarios,
which cannot be compared with the real-world scenario of a large city with thousands of junctions
and roads, that have to move hundreds of thousands of vehicles per hour.

METHODOLOGY

Data

The traffic network under analysis is the traffic network of the city of Porto!. It is geographically
bounded by the borders of the municipality of Porto, plus complementary roads and major high-
ways that cross municipality borders. This data was obtained from OpenStreetMap (OSM) (33),
using JOSM (34) to download a local working version.

All available OSM data was downloaded for the bounding box with coordinates (41.05°,
—8.70°) and (41.20°, —8.50°) (latitude, longitude respectively), yielding a total of 212.2 MB raw
OSM data including versioning metadata (porto-unbounded. osm). This data was then filtered to
remove less important roads outside the municipality of Porto, so that an OSM file was obtained
containing all data inside the municipality of Porto plus motorways in the vicinity (porto.osm),
totaling at 100.8 MB. Finally, the OSM file is converted to the SUMO (Simulation of Urban
MObility) (35) format and stored as porto.net.xml, with 18.1 MB. The network file includes all
roads traversable by motorized vehicles, except for roads classified in OSM as living_street
and service since they have very low through traffic.

Some manual fixes were made to improve the quality of the network data. The majority of
fixes were made directly to the public OSM dataset, and those that could not be done in OSM were
made in the resulting SUMO files.

The traffic network that was used in this study (see Figure 1) contains:

* 4690 junctions;

8749 edges;

11544 lanes, each lane with an average length of 105.42m;

16823 connections;

404 traffic light programs and 54 roundabouts.

Note that, as per the SUMO network format, a traffic light program usually controls one junction
but may simultaneously control multiple junctions that are geographically near each other.

The data used in this study is available at https://github.com/dmfrodrigues/dynaminator-data
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FIGURE 1 Traffic network of the municipality of Porto with relevant road classes. Rendered
with JOSM (34).

The Traffic Assignment Zones (TAZ) and demand data were provided by the municipality
of Porto. This dataset includes:

* A SUMO network file, named porto-armis.net.xml.

* A SUMO TAZ file, named porto-armis.taz.xml, where TAZ edges are identified with

respect to network file porto-armis.net.xml.

* Two files of demand data corresponding to demand estimates between 09:00-10:00 and
10:00-11:00, named matrix.9.0.10.0.armis.fma and matrix.10.0.11.0.armis.
fma respectively. The demand data files are in VISUM (36) O-format (37) to represent
origin-destination (OD) matrices, with estimated vehicle counts between each pair of
TAZs over a 1 h period. The TAZs are identified with respect to TAZ file porto-armis.
taz.xml.

The TAZ file identifies 119 TAZs in the city of Porto and its vicinity, and also identifies
the edges of porto-armis.net.xml that are part of each TAZ; in total, there are 1086 edges from
porto-armis.net.xml that are part of TAZs. Filesmatrix.9.0.10.0.armis.fma andmatrix.
10.0.11.0.armis.fma contain 102731 and 96431 OD pairs respectively. Figure 2 presents an
exploratory visualization of demand data from 09:00-10:00.

Since the roads and IDs used in porto-armis.net.xml are different from those in porto.
net.xml, it was necessary to identify the edges in porto.net.xml that corresponded to edges in
TAZs in porto-armis.net.xml, and create a new SUMO TAZ file porto.taz.xml that uses the
edge IDs in porto.net.xml.
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FIGURE 2 Exploratory visualization of demand data from 09:00-10:00. Left: TAZs mapped
by the number of departures (green) and arrivals (red). Right: Overview of major vehicle
flows between TAZs.

DynamiNATOR

A new mesoscopic, event-driven dynamic traffic simulator, named DynamiNATOR (38), was de-
veloped to perform the experiments in this work®. The simulator implements congestion effects,
stopping at traffic lights, right-of-way rules, queues, and queue spill-back. This simulator was
inspired on SUMO (39), a microscopic timestep-based traffic simulator that uses a car-following
algorithm, considered the most widely used open-source traffic simulator in the scientific area. To
contextualize the developed simulator, Figure 3 shows an overview of the data types that Dynam-
iINATOR consumes and produces, and how that data is obtained and visualized, respectively. It
receives a network description, composed of files *.net.xml and *.taz.xml describing the net-
work and the TAZs, both in SUMO format (40, 41). Demand is provided in a * . fma file, in VISUM
O-format (37). Outputs are in the form of: route files, containing the list of edges that vehicles
traverse, and can be provided to SUMO for further processing or to visualize vehicle routes; edge-
data files, containing time-variable edge data, and can be visualized with SUMO GUI (Graphical
User Interface); and netstate files, also known as raw dumps, contain a list of timesteps, each of
which is a snapshot of the network state at a time instant, containing the position and velocity of
each vehicle.

This model requires three parameters. Average vehicle gap 1, is the average value of the
sum of the vehicle length and the distance between the front of the vehicle and the back of the next
vehicle in a traffic jam. It is therefore the effective space that vehicles take up in a queue. Its value
was empirically estimated as /, = 6.52m using JOSM (34) and Bing aerial imagery (42). Queue
dissipation speed v, is the average speed of all vehicles in a dissipating queue. Its default value
was estimated to be v, = 3.44 m/s from vy = ¢ 1,, where ¢ = 1900 h~! is the default value for

2The simulator was made publicly available at https://github. com/dmfrodrigues/dynaminator
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FIGURE 3 Data flow diagram of DynamiNATOR.

base saturation flow rate provided in the Highway Capacity Manual (43) without any adjustments.
Critical gap t., is the minimum headway between consecutive vehicles that a less-priority vehicle
can accept when joining a higher-priority flow. Ashalatha and Chandra (44) point to typical values
of the critical gap between 2 s to 3 s, so it was decided to use t., = 2.5s.

Model

The traffic network is modeled as a set of junctions and edges. An edge is a road with one or more
lanes in a single direction. A junction is a space-limited area that serves as an interchange where
vehicles may change between edges, and it may be controlled by traffic lights. The atomic unit
of road in this model is the lane, and the atomic unit of traffic flow is the vehicle. A vehicle is
described by its position (lane and offset since the beginning of the lane), speed, and state. Its state
is one of either:

* MOVING: the vehicle is moving under uncongested flow;

» STOPPED: the vehicle is stopped at a queue or is part of a queue that is dissipating;

* LEFT: auxiliary state, indicating the vehicle left the environment.

Uncongested flow occurs when vehicles travel relatively unimpeded at a constant self-
selected speed which depends on the vehicle density K in the current lane. Greenshields (45)
model was adopted for its simplicity to determine vehicle speed choice under uncongested flow,
following Equation 5 where Kjay, is the jam density (calculated as Kjay = 1 /1,) and vy is the free-
flow speed, assumed to be the speed limit of the corresponding lane. The speed that a vehicle
adopts when traversing a lane is constant and determined when the vehicle enters the lane. This
means any vehicle j entering a lane after vehicle i has no impact on the speed of vehicle i. Addi-
tionally, if v is calculated to be less than v,, v is set to v, so as to avoid issues when the vehicle
density K approaches the jam density Kjay.

K
V=" (1_Kjam> )

A traffic queue can occur if the traffic light controlling a connection is red, or if a vehicle
must yield to another vehicle according to right-of-way rules. A queue is represented as a First-In
First-Out (FIFO) data structure, and may only form at the end of a lane. The offset of vehicle i that
is in a queue is given by

xizL—n?-lv (6)
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where L is the edge length, and n? is the ordinal position of the vehicle in the queue, where n? =0
would indicate that vehicle i is at the front of the queue. Similarly, the length g and the position x,
of the end of a queue of size Q are given by

q=0-1l, (7
xg=L—gq 3

If the obstacle that created the queue disappears, the queue dissipates at constant speed v,. The
capacity of a queue is the number of vehicles that can fit in that queue, and is calculated from
Equation 9. This formula prevents the edge case where the capacity may be less than one vehicle.

Cy= {E—‘ )

Ly
Queue spill-back was also implemented so that if a vehicle tries to move to a lane with a full queue,
the queue spills back to the current lane.

If a vehicle in a low-priority connection approaches a prioritized intersection, it must yield
if there are any vehicles in a higher-priority connection. Specifically, each connection ¢ keeps a
timestamp 7. of the last time it was used, and a vehicle trying to use a low-priority connection
must wait at least until a time interval of 7., has passed since the most recent usage of a connection
with higher priority; in other words, if a vehicle is trying to use a connection ¢, and R, is the set
of connections ¢’ with higher priority than c, the vehicle must wait until at least the time instant ¢
described in Equation 10.

! =t +maxiy (10)
c'eR,

When a vehicle enters a lane, it can change to any other lane on the same edge. A vehicle
is never prohibited from changing lanes, but if the destination lane is full, the vehicle is enqueued
at the previous junction. Lane changing does not incur any penalty since it would not signifi-
cantly impact travel time; additionally, penalties are already incurred at traffic lights, prioritized
intersections, and high-density uncongested lanes.

DynamiNATOR is an event-driven simulator, meaning the environment state is only up-
dated when significant events occur. The two most significant events that are implemented in the
simulator are: EventUpdateVehicle, which is scheduled when a vehicle is under uncongested flow,
and is triggered when the vehicle reaches the end of a lane and intends to change lanes or be en-
queued; EventPopQueue, which is triggered when a queue must be popped. Event-driven design

leads to a very high-performance simulator, as shown in the results section on the comparison with
SUMO.

Reinforcement Learning
Under the developed model, a state s(/) consists of being at the very end of a lane /, and an action
a(c,l") consists of the physical action of using connection ¢(/,1’) to move from lane [ to lane
I, followed by changing lanes in the same edge ¢’ from lane !’ to lane I”, and in the meantime
traversing the full length of edge ¢'. For a state-action pair to be valid, the action connection must
start at the same lane state.

The e-greedy Q-learning algorithm was implemented as described by Equation 2. We
assumed that if s; is a final state, then Va,Q(sr,a) = 0. As such, if we have a state-action pair
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(s.f,l ,a f,l) that leads to s, the reward is the cost that the vehicle incurred to go from state s
to sy through action ay_1 (which is the cost of traversing e plus the cost of changing lanes). This
reasoning hints at the general conclusion that an initial estimate for Q(s,a) can be made by the
following process. Consider a = a(c(s,l*),s*), such that s* is the result of executing action a from
state s. We additionally define that [ is the initial position at lane /*. We then have for the initial
estimate of Q,

Qo(s,a) = [c| + |If — s*| + |5 ~ s¢] (1D

where |c| is the cost of traversing connection c; |IJ — s*| is the cost of changing lanes from the
start of lane /* until reaching state s*, while traversing the edge e that both lanes belong to; and
s* ~~ s is the shortest path from s* to sy, making |s* ~» s¢| the cost of this path. |c| was set to 0
in prioritized intersections; for traffic light-controlled intersections, it was estimated from the red
period r and cycle length C by using the expression |c| = 7> /2C (46). In order to reduce memory
usage and speed up the learning process, it was decided to use the same Q-matrix for all vehicles
that have the same goal TAZ.

The learning rate & should ideally be set to a small value, which we suggest to be no larger
than o = 0.003 so as to avoid excessive instabilities in the Q-values during the time period of a
traffic light cycle. However, in practice these relatively small values of o caused excessively slow
learning, and values of « as high as 0.5 led to faster learning without significant detected Q-value
instabilities.

For this problem we know that there are final states, because a vehicle strives to maximize
its rewards but the ultimate goal is to reach its destination. Additionally, all rewards are negative
and the second main goal is to optimize the total rewards. Therefore, a value of A = 1 is not
problematic from a theoretical perspective, and experiments have shown that this value of the
discount factor did not cause difficulties during the learning process.

The metrics that were used to evaluate the performance of the learning process and agents’
decisions were the instantaneous number of vehicles in the network, and the travel time of the vehi-
cles that left the simulation in the previous Af seconds. In all the experiments that were conducted,
the value At = 600s = 10min was considered.

Reward functions

Difference reward reflects the negative impact the agent has on the overall system performance, so
it includes two components. The first component is the time it took for the vehicle to take action
a from state s, similar to the greedy reward function. This is considered a negative impact on
overall system performance because the agent does not have an option not to travel, so while
having to travel, it should still strive to pick the shortest path. The second component is the
additional costs incurred by other vehicles in the network that are associated to the choice of
action a; in other words, the negative effects of the agent on other vehicles. This component is the
most complex to quantify, since determining the exact value of the negative effects of an agent’s
decisions can only be done by performing the entire simulation without the considered vehicle;
this is not computationally feasible in a useful time frame. The alternative, as was adopted for this
model, is to estimate the negative impact by making some simplifications. The negative effects
of a vehicle on others is one of the following: slowing down other vehicles in the uncongested
flow section, since the vehicle’s presence increases vehicle density in the lane; or causing a longer
queue, so vehicles in the queue take more time to leave the queue.
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As for the first component, it was estimated by determining the vehicle density with and
without the vehicle i at lane [” where the vehicle is, and then the speed of vehicles with and without
vehicle i is calculated. The time it would take to travel the length of the lane is then determined
for the cases with and without vehicle i, and the difference in travel times is considered to be the
negative impact of vehicle i on each individual vehicle that was at lane [” at the time vehicle i
leaves it.

For the second component, all the vehicles in the queue at lane I” as of the time vehicle i
leaves [” are considered to incur a time delay of T;, because all those vehicles were forced to leave
the queue T; seconds later than they would if vehicle i was not in that queue. The time penalty was
estimated to be T, = 1, /v,,.

Thus, the process to calculate the difference reward is as follows:

N
Ky = A (12)
N—1
Kywo = T (13)
K,
vW:maX{vq,vo(l— w )} (14)
Kjam
K.
vWO:maX{vq,vo (1—KW°>} (15)
jam
tw =L/vy (16)
Iwo = L/Vwo 17)
Atmoving = lw — Iwo (18)
Atqueue — Tq (19)
r = —1 — Iexternalities — —f — W [(N - 1)Atmoving + (Q - 1)Alqueue} (20)

where L is the length of the lane, N is the number of vehicles in the lane, Q is the number of
vehicles in the queue, and w is the greediness factor, a weighing factor that defines how concerned
an agent is with the negative effect it has on other agents; w = 0 is equivalent to a purely greedy
agent, while w = 1 refers to an agent that is very concerned with its impact on the system and with
the way its actions will contribute toward the SO. For comparison, the reward function of a greedy
agent would be r = —t, which is equivalent to Equation 20 with w = 0.

RESULTS & DISCUSSION

Comparison with SUMO

Three experiments were conducted to compare DynamiNATOR with SUMO in terms of perfor-
mance. Each experiment contains three trials, and was conducted as follows:

1. The scenario was simulated with DynamiNATOR, using the Q-learning algorithm with
greedy reward. Route files were obtained from DynamiNATOR, and execution time was
recorded.

2. Route files obtained from DynamiNATOR were supplied to SUMO, running those routes
in a similar scenario. The execution time was recorded.

Table 1 presents the results of these experiments, showing that DynamiNATOR was significantly
faster than SUMO in all the experiments, with speedup ratios between 22.52 and 32.51. It can be
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concluded that DynamiNATOR meets the goal of high performance, particularly when compared
with SUMO.

TABLE 1 Execution times of simulators DynamiNATOR and SUMO for similar scenarios.

Scale | Simulation time (h) | DynamiNATOR (s) SUMO (s) Speedup
0.2 1 4.8534+0.083 128.045+2.921 | 26.39
0.1 2 4.310£0.023 140.130£2.683 | 32.51
0.05 4 5.076 £0.007 114.307+2.065 | 22.52

Reinforcement Learning

To evaluate different assignment strategies, a common scenario was established (Figure 4). This
scenario includes a warm-up process where the demand scale is progressively increased over the
simulation, allowing agents to gain some insight into the traffic network before loading it with a
higher number of vehicles, preventing gridlocks. Warm-up occurs until # = 100h, after which point
the scale is fixed at 0.45. Higher values of the demand scale caused simulations to diverge due to
excessive congestion and simulator limitations.

Warm-up schedule

0.5 T T T T \
0.4 AI_I_I_I .
0.3 Bl
2
S
wn
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0.1 Bl
0 \ \ \ \ \ \ \ \ \
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FIGURE 4 Scenario used to evaluate assignment strategies, showing warm-up schedule.

Figure 5 shows the number of vehicles and average travel time of vehicles leaving the
simulation. Data points were sampled at in-simulation periods of p = 600s, and the average travel
time of vehicles leaving the simulation at each sample was calculated from the travel time of
vehicles that left the simulation since the last sample, during time period (¢t — p,t].

As presented in Figure 5, the number of vehicles in the simulation initially shows a step
increase as a natural consequence of the warm-up program designed for this experiment. Once the
program reaches maximum scale at = 100h, the number of vehicles slowly decreases from 6253
to 5651, a 10% decrease. Another pattern that can be observed is that, as the number of vehicles
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in the simulation increases, the slope of the number of vehicles is increasingly negative. This is
because vehicles with the same goal share the same Q-matrix, so the more vehicles there are in the
network, the more updates to the Q-matrix there are, so agents learn faster.

Average travel time is initially large, reaching 15.23 min, which can be linked to an initial
stage where a few Q-value estimates differ significantly from observed rewards, so the agents go
through a very rapid adaptation process. After that, average travel time presents a more stable
behavior. Travel time increases immediately after the demand scale increases, since agents are
using knowledge of a less congested network to navigate a more congested network, and are taking
longer paths but also adapting to the new congestion conditions. After the increase in travel time
caused by increasing scale, travel time slowly decreases as agents learn better actions to navigate
the congested network more efficiently. When the last stage starts, average travel time rises up to
7.785 min, and then slowly decreases until it reaches the final value of 7.031 min.

Vehicles in simulation and travel time

8000 10
—— #vehicles —— Travel time

6000

4000 A

#vehicles
Travel time (min)

0 20 40 60 80 100 120 140 160 180 200
Simulation time (h)

FIGURE 5 Number of vehicles and average travel time of vehicles leaving the simulation.

Both of these results clearly show that the agents are learning, albeit at a slow pace; note that
the simulation spans over a period of 200h. This can be explained by the high level of detail that
was chosen for the network, which means vehicles have to take a much larger number of actions
to reach their final destinations, so expected future reward values also take longer to propagate to
previous actions’ Q-values.

Five experiments were then conducted with Q-learners using the difference reward func-
tion, for distinct values of the greediness factor w € {0.0,0.1,0.5,0.75,0.9}. The higher the greed-
iness factor corresponding to the reciprocal of greediness (so, the more concerned agents are with
the overall system performance), the more learning difficulties agents had at the beginning of the
simulation (up to t = 100h), Figure 6. At the later stage ¢ > 100h, the travel time presents a similar
trend for all the experiments. The final average travel times in Table 2 were calculated by averaging
the travel times of vehicles leaving the simulation in the period [198,200] h. There is a decreasing
trend of the final average travel time as w increases in agreement with the literature (37). However,
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the relative differences of 0.4% are small when compared to the mean values, and these differences
smaller than the values around 1% in literature (/3) under similar conditions. The SO - UE gap is
most noticeable in high-load situations, with the considered scenario presenting medium loads so
as to avoid divergent behavior of the model under high loads.

Travel time
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FIGURE 6 Travel time for agents using difference demand with distinct values of greediness
factor w.

TABLE 2 Execution time and final travel time for different values of greediness factor w.

w | Execution time (s) | Final average travel time (s)

0.00 4411.5 419.680
0.10 4043.3 419.319
0.50 3576.3 418.512
0.75 3585.1 417.344

0.90 3738.7 417.836
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CONCLUSION

The results of this work show that the Q-learning agents were able to learn in a large-scale, com-
plex, and noisy scenario of a large city, and that the employment of difference reward functions
with different greediness factors yielded better global cost results than purely greedy agents by a
factor of about 0.5% in medium-congestion scenarios. The significance of this result is owed to
its cumulative effect over a large number of vehicles, which turns this apparently small relative
gain into a large absolute gain in the order of 700 M€ /year in the EU28. These results also show
that DynamiNATOR is significantly faster than SUMO, meaning the conducted study would only
be possible by using DynamiNATOR, as these simulations would require about 27 times more
execution time using SUMO.

This work makes contributions at three levels. The scientific contributions are in the form
of studying and applying new traffic assignment strategies from a theoretical standpoint by build-
ing on existing scientific literature. The deliverables that resulted from this work, including a
mesoscopic large-scale traffic model and simulator, and implementations of different assignment
strategies, constitute valuable technological contributions. From a more practical perspective, the
simulator and assignment strategies can be used as a virtual laboratory so that stakeholders can
use them for pure or applied research and to guide public policy on infrastructure. Furthermore,
this strategy can be extended in the future as a routing service for drivers, providing directions to
individual users that make the overall system more efficient. This vision is increasingly a reality,
with the increasing incorporation of technological devices and user interfaces in vehicles that allow
users to obtain directions and alternative paths.

Regarding future work, implementing a mechanism to resolve gridlocks automatically
would greatly enhance the quality of this virtual laboratory, by allowing simulations under higher
traffic demand. A natural extension of this model would be towards multimodal transportation with
the inclusion of a diverse mix of vehicles, including most notably trucks, buses, and bikes, as well
as pedestrian traffic to simulate the impedance they exert on vehicles when crossing roads. The
adopted approach based on g-greedy Q-learning can be extended to use other techniques, namely
with SARSA (47) that can be effortlessly implemented in DynamiNATOR, as well as updating
Q-values at the end of each vehicle’s route so that rewards and expected future rewards can readily
propagate to upstream states, and evaluate knowledge-based approaches, for potential improve-
ments in learning speed. The extensible way in which the code was developed also allows other
promising distributed multi-agent approaches, such as auctions and negotiation, to be applied in
future studies at the scale of a city. Besides, this methodology can be redesigned for better suit-
ability in real-world scenarios, since learning can be modified from a centralized to a distributed
process.
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