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Abstract 

Structural visual inspection documentation is essential for 

monitoring, maintaining, rehabilitating, and reinforcing 

structures. Close-Range Photogrammetry (CRP) and 

Terrestrial Laser Scanners (TLS) are cutting-edge 

technologies that are commonly used in surveying. In this 

article, these technologies were integrated to capture a 

railway bridge. The lower deck and lateral deck surfaces 

were captured using TLS, while the upper deck, track and 

laterals of the deck were captured using CRP-UAV 

photogrammetry. Post-processing techniques allowed the 

fusion of TLS and CRP models to produce a precise 3D 

model of the entire railway bridge deck. 

Introduction 

Railway infrastructure is crucial for economic growth, 

low-carbon emission, and energy-efficient transport. 

Framed on the railway infrastructure, bridges, and 

viaducts face problems due to aging, overloading, lack of 

maintenance, and poor inspection. To remain competitive 

in comparison to other means of transport, digitalization 

in railway infrastructure is a crucial aspect, particularly in 

what concerns the structural condition assessment. The 

traditional human-dependent inspection methods are 

typically costly and time-consuming. Advances in 

robotics and remote sensing technologies provide non-

destructive, contact-free ways to capture the 3D state of 

the infrastructure and improve inspection efficiency. 

Digital three-dimensional reconstruction models are 

representations of assets that may be developed using 

active or passive vision systems. In general, active 

systems employ their own source of illumination for 

measurements, whereas passive systems use ambient light 

in the scene (Popescu et al., 2019). Each method has 

benefits and limitations in terms of resolution, speed, and 

scene depth. In a hybrid system, the benefits of both 

systems may be combined. 

Active systems are then divided into two types: methods 

based on triangulation (Atif & Lee, 2017; El-etriby, 2015; 

Spectra, 2019) and Time-of-Flight based technologies 

(ToF) (Foix et al., 2011; Görüm, 2019; Zhong et al., 

2019). Passive approaches include Multi View Stereo 

(MVS) and Structure-from-Motion (SfM) technologies. 

Overall, the emphasis has been placed on LiDAR and 

SfM. LiDAR is simply an extension of the notions of the 

ToF sensor. It measures the time it takes for the reflected 

light to return when a laser is used to illuminate the target 

item; however, the laser emitter and receiver are placed in 

the same sensor. To deal with occlusion issues, terrestrial 

LiDAR, also known as Terrestrial Laser Scanning (TLS), 

requires a complex setup and must scan an object from 

many locations. This approach has proven its worthiness 

in surveying applications for instance in landslide 

characterization (Görüm, 2019; Zhong et al., 2019). 

LiDAR has the advantage of precisely measuring any 

target volume for geometry monitoring. This approach, 

however, is more costly, has a higher cost, is time-

consuming, and laborious when compared to passive 

systems, making it less suitable for geometry monitoring.  

Passive systems implement the multiple point of object 

view , using imaging cameras and geometry to reconstruct 

the scene, covering all digital photogrammetry techniques 

(Chiabrando et al., 2013). The process of reconstructing a 

3D scene using Close-Range Photogrammetry (CRP) 

includes camera calibration, sequential image acquisition, 

feature correspondences, geometry, dense matching, 

surface modeling and texture matching (Khaloo et al., 

2018; Popescu et al., 2019). SfM generates a 3D model of 

the target by combining a series of 2D images acquired by 

a sensor camera at various locations and estimating the 

relative camera’s positions and orientations (Siddique et 

al., 2021). To merge the images and build the 3D model, 

corresponding points in the images are retrieved and 

matched. Depending on the camera sensor used, the 3D 

point cloud contains color and intensity information. 

Essentially, triangulation can compute the 3D coordinates 

of each point in the scene if they are shared by two or more 

photographs of known camera position and orientation. In 

the case of unknown position and orientation, there is a 

geometric restriction that must be satisfied to estimate 

them, called epipolar constraint (Khaloo et al., 2018; 

Masoumian et al., 2022). In contrast with active systems, 

which require more time for acquisition and the direct 

result is the point cloud, SfM requires less time for 

acquiring the images; but needs more time for 

reconstruction (Popescu et al., 2019). The point resolution 

achieved from SfM may be comparable to laser 

triangulation. However, it depends on the camera’s 

resolution and number of images used for 3D modelling.  

The advent and evolution of new technologies, such as 

TLS and CRP-based on Unmanned Aerial Vehicles 



(UAV), aid in the acquisition of data, which leads to 

accurate and exact 3D representations of complex objects 

after processing. Even if numerous multi-surveys are 

used, no single sensor can provide comprehensive 

information on large and complex items. The combination 

of TLS and CRP-based on UAV techniques 

(Chatzistamatis et al., 2018; Luhmann et al., 2020) 

enables the creation of models of complex objects by 

employing each technology using specific settings that 

provide the best operating performance. The raw data 

received from these technologies may be used to produce 

point-clouds dense enough to provide a digital 

representation of the real object. 

Popescu et al. (2019) assessed the performance of three 

imaging methods for 3D geometric modelling of existing 

concrete railway bridges: TLS, CRP-based on UAV, and 

infrared scanning integrated in a 3D camera. The findings 

showed that all the tested approaches can be used to 

produce 3D models, although at varying degrees of 

completeness. TLS and photogrammetry produced 

substantially denser data than infrared scanning. Denser 

point clouds improve visualization but need more 

processing time and storage. They conclude that 

photogrammetry is the best technology regarding cost-

efficiency. Khaloo et al. (2018) created a 3D model of a 

bridge using CRP-based on UAV technique. This 

methodology enables inspection surveys as well as the 

precise anomalies monitoring. The results are compared 

to models created using TLS. The findings show that the 

UAV inspection approach surpassed TLS in terms of 

completeness and resolution, giving superior 3D models 

with the precision needed to fix problems and satisfy the 

infrastructure managers’ demands. TLS has the advantage 

of capturing consistent point clouds without needing 

specialized engineering knowledge, if stable positioning 

and mutual overlaps are guaranteed. On the other hand, 

CRP-based on UAV can measure remote locations not 

accessible by TLS or terrestrial images and can fill gaps 

in point clouds if parts of objects are only visible from one 

measurement system. The high resolution of images 

compared to LiDAR can result in a higher quality textured 

3D model.  

Luhmann et al. (2020) and Chatzistamatis et al. (2018) 

developed a hybrid technique combining UAV 

photogrammetry and LiDAR to build an accurate 3D 

model of a historic church envisaging the damage 

assessment. However, the high precision of TLS in 

scanning civil engineering assets suggest it has a higher 

accuracy (geometry) than CRP-based on UAV. Currently, 

there is no work available on the application of hybrid 

processing techniques on railway bridges.  

The data acquisition for railway bridges has a unique 

aspect in comparison to buildings concerning the UAV 

photogrammetry, namely the requirement of an upward 

camera to collect images under the bridge's deck. The 

number of UAVs with this specification is quite restricted. 

On the other hand, a TLS sensor does not have this 

limitation since it has ground support under a bridge and 

works within the data acquisition range. However, for 

security considerations, it is usually not permitted to 

operate over the deck. 

Thus, this work intends to give innovative contributions 

to the thematic of the structural condition assessment of 

concrete railway bridges using advanced reality capture 

technologies, with special emphasis on the following 

aspects: 

- The development of a reality capture framework in 

railway bridges employing a hybrid vision system, for 

which pratically no applications were found in the 

existing bibliography. Typically, the railway environment 

presents significant challenges to reality capture due to 

rigorous safety requirements as well as limited 

accessibility to bridge components and railway corridor. 

- The establishment of a precise geometric and high-

quality 3D image-based model of the condition state of an 

existing railway bridge using a CRP-based UAV and 

TLS, leveraging the capability of both technologies. 

Methodology 

The proposed methodology for railway bridge inspection 

uses a fusion of both active and passive vision systems to 

collect data, and is divided in four phases, as depicted in 

Figure 1.   

The first phase, recognition and preparation, requires the 

collection of project details and a review of the target 

structure’s inspection history. This phase also involves 

visiting the site to identify any potential risks, selecting 

technical staff and equipment such as TLS and UAV, and 

creating an acquisition plan that outlines procedures and 

permissions required.  

In a second phase, data acquisition, a precision 

topographic survey of the structure’s control points 

should be performed. This step is crucial for 

georeferencing and calibrating the point cloud data. 

Control points must be placed along the entire structure 

and can be marked with auxiliary targets or using 

significant points of the structure. The coordinates of 

these control points are obtained using GNSS receivers 

with RTK support and an electronic theodolite. To 

conclude phase two, the point cloud is captured using TLS 

and images are captured using an UAV. The TLS must 

meet specific requirements to provide high-quality point 

clouds and images, while the UAV shall preferably have 

high autonomy, obstacle proximity sensors, RTK 

positioning accuracy, and high-resolution cameras. Both 

data acquisitions must be done as close to the structure as 

possible for higher image resolution and should be 

performed safely. 

The third phase, digital railway bridge, involves aligning 

the TLS point clouds and reconstructing a 3D geometric 

model of the structure using SfM techniques on 

georeferenced images captured by the UAV. The derived 

point cloud should be registered and exported to the 

desired format, with the removal of neighboring objects 

or background noise. 

Finally, the fourth phase involves the condition 

assessment of the railway bridge by specialized experts. 

Surface anomalies can be easily visualized, and a virtual 



inspection is performed over the digital model of the 

railway bridge. Also, the final report is created. 

Technologies 

This section discusses the technologies used for the reality 

capture adopting a data fusion process based on active and 

passive vision systems. In terms of hardware, TLS 

(active) and CRP-UAV (passive) devices were used, 

whereas the dedicated required software is discussed. 

The TLS employed was BLK360 from Leica Geosystems. 

It has an integrated spherical imaging system and 

thermography panoramic sensor system. It allows to take 

photos and point clouds, which are then transferred by 

Wi-Fi protocol to a mobile device running Leica Cyclone 

Field 360 or locally saved to be later synchronized with 

Leica Cyclone Register 360. It is important to note that 

the Leica does not permit data to be synchronized outside 

Leica’s software solutions. Leica Cyclone Field 360 is a 

mobile device app available for iOS and Android 

platforms, that is used to collect data from the LiDAR and 

process it into Leica Cyclone Register 360. The software 

manages the scanner’s capture settings, examines scans 

and images data, and includes capabilities like tagging 

measurements, text, or audio files. The desktop solution 

for point cloud processing is Leica Cyclone Register 360, 

which gets the point cloud data either collected from the 

mobile app or scanning device and performs the 

synchronization by sharing the same IP address and 

network Port. This desktop software allows the user to 

handle projects with hundreds of scans without reducing 

performance and includes capabilities such as automated 

alignment (registration), measuring, and noise clean-up. 

In terms of UAVs, the DJI Mavic 2 Enterprise Advanced 

(M2EA) equipped with a ½” CMOS sensor and a true 

focal length of 9 mm from DJI company, was used. This 

UAV includes a camera with enhanced quality, is lighter, 

and can avoid obstructions, allowing a safer flight. The 

outputs desired in this phase are images covering all 

structural components from all directions to be able to 

reconstruct the full structure. Being a passive vision 

system, it does not generate point clouds automatically. 

As a result, the photos captured by the UAV mounted 

sensor are used to perform a SfM technique for point 

clouds generation. 

SfM technique may be used with a variety of commercial 

and open-source software packages capable of 

reconstructing scenes. ContextCapture, Pix4Dmapper, 

Agisoft Photoscan, and Recap are some examples of 

commercial software. The commercial software used for 

point cloud data fusion was ContextCapture from 

Bentley. It enables hybrid processing for the development 

of meshes, dense point cloud, orthophoto, as well as some 

AI detection tools that combine the best of both 

technologies, the versatility and convenience of high-

resolution images, reinforced by the increased precision 

of point clouds. 

Case Study 

For the application of the methodology developed to 

railway bridge inspection, an extremity module of the 

west access viaduct to the Pirâmides bridge in Aveiro, in 

Portugal, inserted in the railway extension of access to the 

port of Aveiro, is the object of study. The module consists 

of four 25-m continuously supported spans for a total 

length of 100 m. 

The bridge deck has a U-shaped cross section, with the 

bottom slab being 0.45 m thick in the center part, and 0.40 

m thick at either laterals and connecting two main 

   

   

   

    

     

               

                      

                   

               
         

          
           

   

   

    

                         

  

Figure 1: Methodology for railway bridge virtual visual inspection 



prestressed girders of 1.60 m high and 0.60 m wide. Each 

girder has a 0.60 m wide and 0.50 m height cantilever on 

the deck's wings serving as walkways. 

 

Figure 2: Extremity module of the west access viaduct to the 

Pirâmides bridge in Aveiro, in Portugal 

Data Acquisition 

The railway bridge was marked with 50 Ground Control 

Points (GCPs) and 8 Automatic Tie Points (ATPs) for 

georeferencing and photogrammetry, respectively. These 

targets were placed mostly on the columns and deck 

directly on the concrete surface, as shown in Figure 3. The 

GCPs were measured using topographic support, while 

the ATPs allowed for automated image detection in 

ContextCapture. 

 

Figure 3: GCP and ATP marked over the railway bridge 

The laser scanning was performed in high density mode, 

which results in a point spacing of 5 mm at a distance of 

10 m. A complete scan, including panoramic image 

capture, takes about 5 min in this specific mode. Figure 4 

shows the LiDAR system in operation. Table 1 provides 

an overview about the collected data. 

 

Figure 4: LiDAR system in operation 

The registration was done manually, followed by an 

optimization using the Iterative Closest Point (ICP) 

algorithm. The ICP algorithm is a traditional approach for 

rigid registration. It alternates between nearest point query 

in the target set and distance minimization between 

related points, and it is guaranteed to converge to a locally 

optimum alignment. The final registration had an average 

mean error of about 17 mm. Figure 5 shows the registered 

point cloud with the scan stations distribution. 

Table 1: Laser Scan data 

Parameter BLK360 

Stations 113 

3D points (bill.) 2.9 

Scan duration (h) 12 

Mean resolution (mm) 9 

Registration precision (mm) 17 

Data Size (GB) 60.1 

 

Figure 5: TLS station distribution (in red) 

The M2EA has a maximum flight time of around 30 min 

and was operated by an experienced pilot in a stop-and-

go mode, which allowed for stable image recording. A 

flight path with nadir photographs and oblique views was 

performed. Figure 6 shows the UAV in operation. Table 

2 provides a summary of the essential flight data. 

 
Figure 6: UAV in operation 

In general, the image quality from the UAV flights was 

good in terms of sharpness and exposure, as demonstrated 

in Figure 7. However, some of the images were 

overexposed, especially on surfaces with high contrast, 

particularly the lower bridge deck surface. Despite this, 

the photogrammetric processing went smoothly, which 

can be verified by the good image quality. 

 
Figure 7: Sample images from the aerial survey 



Table 2: UAV data 

Parameter M2EA 

Images 3533 

Focal length (mm) 9 

Sensor size (mm) 6.4 

Flight duration (h) 8 

`Ground coverage (ha) 2.77 

Mean GSD (mm/px) 1.04 

Data size JPEG (GB) 45.9 

Results 

The data processing result in both a dense point cloud 

(Figure 8a) and a texture mapping (Figure 8b). Texture 

map allows to incorporate components in the scene 

reconstruction that are smaller than the distance between 

points in the dense point cloud. To carry out data fusion, 

a high-performance computer is necessary. In this case, 

an Intel i7-11700 8-core with 32 GB RAM and a Nvidia 

GeForce RTX 3090 24GB graphics card were used. 

The model generated using TLS data in Context Capture 

encompasses the lateral and bottom deck parts of the 

railway bridge and features a high Level Of Accuracy 

(LOA) including the reconstruction of the catenary wires. 

However, the texture may not be as visually appealing 

compared to the results produced using high resolution 

images (Figure 9a). In contrast, the model created in 

Context Capture using UAV image data encompasses the 

lateral and upper deck components and presents a high 

level of texture detail (Figure 9b).  

  

a) b) 

Figure 8: Outputs: a) dense point cloud b) texture map 

As a result, the goal was to develop a model that 

incorporates both types of data collection to create a 

fusion with information about the entire deck. LiDAR 

technology provided a detailed point cloud of the railway 

bridge’s lateral and bottom deck portions, as well as the 

ground beneath the deck with mean resolution of 9 mm, 

equivalent to LOA30, while photogrammetry technology 

produced highly detailed lateral and upper deck portions 

with mean resolution (GSD) of 1.04 mm/px, 

corresponding to LOA40. 

The integration of information from both collection 

techniques has been proven to be highly effective, with 

the potential to build a coherent georeferenced model. To 

validate the geometric survey, a comparison between the 

design (as-designed) and real geometry (as-is) of the 

deck’s cross-section was performed as presented in Figure 

10 with mean absolute error (MAE) calculated to be 2.73 

mm, which shows the accuracy of the methodology and 

technologies used in this study. Figure 11 show the 

achieved results using Context Capture software, and 

some close images are presented in Figure 12 . It is 

important to highlight that the results of this study have 

significant implications for the industry, as they provide a 

powerful tool for surveying and monitoring large 

infrastructure projects such as railway bridges.  

 

 

a) 

 

b) 

Figure 9: Model of Span's Railway Bridge: a)TLS data 

b)CRP-based on UAV data 

 

Figure 10: Cross-section comparison of the as-designed (top) 

and as-is (bottom) 

Such a digital model could be used further for inspection 

purposes to identify single and multiple anomalies, 

typically related to concrete cracks and delamination; loss 

of material, water damage; corrosion, and degradation of 

bearings. All experimental information can be used 

further for the development, updating, and validation of 

numerical models of the bridges under service trains, 

envisaging the development of a reliable and accurate 



Digital Twin (DT). DT allows a dynamic representation 

of the bridge, which includes a management model that 

acts as a link between the physical and virtual 

counterparts (Adibfar & Costin, 2022; Chiachío et al., 

2022; Jeong et al., 2016). Alternatively, visual inspection 

or structural repair can be considered, although they 

require offline involvement (VanDerHorn & Mahadevan, 

2021). A functional DT should be capable of simulation, 

learning, and management (Chiachío et al., 2022) and 

allow practical applications for Bridge Management 

Systems (BMS) (Jiang et al., 2021). 

 

Figure 11: Reality capture of the extremity module of the west 

access viaduct to the Pirâmides bridge in Aveiro, in Portugal 

 

Figure 12: Example images of 3D state output 

Conclusions 

This research article detailed all the procedures and 

challenges faced in conducting a survey and 3D modeling 

of a railway bridge through the integration of TLS and 

UAV-photogrammetry technologies. The aim was to 

generate a precise and realistic 3D representation of the 

railway infrastructure to be used on structural inspection 

and assessment of surface damages. The TLS method was 

used to collect data on the bridge’s lower and lateral deck 

surfaces, while the UAV mounted camera was used to 

characterize the upper surface and laterals of the deck. 

The integration of the TLS and photogrammetric models, 

which is possible due to recent advancements in 

processing algorithms, resulted in a highly accurate 3D 

model of the entire railway bridge deck. As future 

investigations, the authors propose several areas for 

further research, including evaluating automat-ed UAV 

flights, automating tie points to speed up the registration 

process, and incorporating artificial intelligence for local 

automated damage identification. These research efforts 

aim to improve the accuracy and efficiency of the survey 

and 3D modeling of railway bridges using TLS and CRP-

based UAV technology. 
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