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Abstract

Structural visual inspection documentation is essential for
monitoring, maintaining, rehabilitating, and reinforcing
structures. Close-Range Photogrammetry (CRP) and
Terrestrial Laser Scanners (TLS) are -cutting-edge
technologies that are commonly used in surveying. In this
article, these technologies were integrated to capture a
railway bridge. The lower deck and lateral deck surfaces
were captured using TLS, while the upper deck, track and
laterals of the deck were captured using CRP-UAV
photogrammetry. Post-processing techniques allowed the
fusion of TLS and CRP models to produce a precise 3D
model of the entire railway bridge deck.

Introduction

Railway infrastructure is crucial for economic growth,
low-carbon emission, and energy-efficient transport.
Framed on the railway infrastructure, bridges, and
viaducts face problems due to aging, overloading, lack of
maintenance, and poor inspection. To remain competitive
in comparison to other means of transport, digitalization
in railway infrastructure is a crucial aspect, particularly in
what concerns the structural condition assessment. The
traditional human-dependent inspection methods are
typically costly and time-consuming. Advances in
robotics and remote sensing technologies provide non-
destructive, contact-free ways to capture the 3D state of
the infrastructure and improve inspection efficiency.

Digital three-dimensional reconstruction models are
representations of assets that may be developed using
active or passive vision systems. In general, active
systems employ their own source of illumination for
measurements, whereas passive systems use ambient light
in the scene (Popescu et al., 2019). Each method has
benefits and limitations in terms of resolution, speed, and
scene depth. In a hybrid system, the benefits of both
systems may be combined.

Active systems are then divided into two types: methods
based on triangulation (Atif & Lee, 2017; El-etriby, 2015;
Spectra, 2019) and Time-of-Flight based technologies
(ToF) (Foix et al., 2011; Goriim, 2019; Zhong et al.,
2019). Passive approaches include Multi View Stereo
(MVS) and Structure-from-Motion (SfM) technologies.
Overall, the emphasis has been placed on LiDAR and
SfM. LiDAR is simply an extension of the notions of the

ToF sensor. It measures the time it takes for the reflected
light to return when a laser is used to illuminate the target
item; however, the laser emitter and receiver are placed in
the same sensor. To deal with occlusion issues, terrestrial
LiDAR, also known as Terrestrial Laser Scanning (TLS),
requires a complex setup and must scan an object from
many locations. This approach has proven its worthiness
in surveying applications for instance in landslide
characterization (Goriim, 2019; Zhong et al., 2019).
LiDAR has the advantage of precisely measuring any
target volume for geometry monitoring. This approach,
however, is more costly, has a higher cost, is time-
consuming, and laborious when compared to passive
systems, making it less suitable for geometry monitoring.

Passive systems implement the multiple point of object
view , using imaging cameras and geometry to reconstruct
the scene, covering all digital photogrammetry techniques
(Chiabrando et al., 2013). The process of reconstructing a
3D scene using Close-Range Photogrammetry (CRP)
includes camera calibration, sequential image acquisition,
feature correspondences, geometry, dense matching,
surface modeling and texture matching (Khaloo et al.,
2018; Popescu et al., 2019). SfM generates a 3D model of
the target by combining a series of 2D images acquired by
a sensor camera at various locations and estimating the
relative camera’s positions and orientations (Siddique et
al., 2021). To merge the images and build the 3D model,
corresponding points in the images are retrieved and
matched. Depending on the camera sensor used, the 3D
point cloud contains color and intensity information.
Essentially, triangulation can compute the 3D coordinates
of each point in the scene if they are shared by two or more
photographs of known camera position and orientation. In
the case of unknown position and orientation, there is a
geometric restriction that must be satisfied to estimate
them, called epipolar constraint (Khaloo et al., 2018;
Masoumian et al., 2022). In contrast with active systems,
which require more time for acquisition and the direct
result is the point cloud, SfM requires less time for
acquiring the images; but needs more time for
reconstruction (Popescu et al., 2019). The point resolution
achieved from SfM may be comparable to laser
triangulation. However, it depends on the camera’s
resolution and number of images used for 3D modelling.

The advent and evolution of new technologies, such as
TLS and CRP-based on Unmanned Aerial Vehicles



(UAV), aid in the acquisition of data, which leads to
accurate and exact 3D representations of complex objects
after processing. Even if numerous multi-surveys are
used, no single sensor can provide comprehensive
information on large and complex items. The combination
of TLS and CRP-based on UAV techniques
(Chatzistamatis et al., 2018; Luhmann et al., 2020)
enables the creation of models of complex objects by
employing each technology using specific settings that
provide the best operating performance. The raw data
received from these technologies may be used to produce
point-clouds dense enough to provide a digital
representation of the real object.

Popescu et al. (2019) assessed the performance of three
imaging methods for 3D geometric modelling of existing
concrete railway bridges: TLS, CRP-based on UAV, and
infrared scanning integrated in a 3D camera. The findings
showed that all the tested approaches can be used to
produce 3D models, although at varying degrees of
completeness. TLS and photogrammetry produced
substantially denser data than infrared scanning. Denser
point clouds improve visualization but need more
processing time and storage. They conclude that
photogrammetry is the best technology regarding cost-
efficiency. Khaloo et al. (2018) created a 3D model of a
bridge using CRP-based on UAV technique. This
methodology enables inspection surveys as well as the
precise anomalies monitoring. The results are compared
to models created using TLS. The findings show that the
UAYV inspection approach surpassed TLS in terms of
completeness and resolution, giving superior 3D models
with the precision needed to fix problems and satisfy the
infrastructure managers’ demands. TLS has the advantage
of capturing consistent point clouds without needing
specialized engineering knowledge, if stable positioning
and mutual overlaps are guaranteed. On the other hand,
CRP-based on UAV can measure remote locations not
accessible by TLS or terrestrial images and can fill gaps
in point clouds if parts of objects are only visible from one
measurement system. The high resolution of images
compared to LiDAR can result in a higher quality textured
3D model.

Luhmann et al. (2020) and Chatzistamatis et al. (2018)
developed a hybrid technique combining UAV
photogrammetry and LiDAR to build an accurate 3D
model of a historic church envisaging the damage
assessment. However, the high precision of TLS in
scanning civil engineering assets suggest it has a higher
accuracy (geometry) than CRP-based on UAV. Currently,
there is no work available on the application of hybrid
processing techniques on railway bridges.

The data acquisition for railway bridges has a unique
aspect in comparison to buildings concerning the UAV
photogrammetry, namely the requirement of an upward
camera to collect images under the bridge's deck. The
number of UAVs with this specification is quite restricted.
On the other hand, a TLS sensor does not have this
limitation since it has ground support under a bridge and
works within the data acquisition range. However, for

security considerations, it is usually not permitted to
operate over the deck.

Thus, this work intends to give innovative contributions
to the thematic of the structural condition assessment of
concrete railway bridges using advanced reality capture
technologies, with special emphasis on the following
aspects:

- The development of a reality capture framework in
railway bridges employing a hybrid vision system, for
which pratically no applications were found in the
existing bibliography. Typically, the railway environment
presents significant challenges to reality capture due to
rigorous safety requirements as well as limited
accessibility to bridge components and railway corridor.

- The establishment of a precise geometric and high-
quality 3D image-based model of the condition state of an
existing railway bridge using a CRP-based UAV and
TLS, leveraging the capability of both technologies.

Methodology

The proposed methodology for railway bridge inspection
uses a fusion of both active and passive vision systems to
collect data, and is divided in four phases, as depicted in
Figure 1.

The first phase, recognition and preparation, requires the
collection of project details and a review of the target
structure’s inspection history. This phase also involves
visiting the site to identify any potential risks, selecting
technical staff and equipment such as TLS and UAV, and
creating an acquisition plan that outlines procedures and
permissions required.

In a second phase, data acquisition, a precision
topographic survey of the structure’s control points
should be performed. This step 1is crucial for
georeferencing and calibrating the point cloud data.
Control points must be placed along the entire structure
and can be marked with auxiliary targets or using
significant points of the structure. The coordinates of
these control points are obtained using GNSS receivers
with RTK support and an electronic theodolite. To
conclude phase two, the point cloud is captured using TLS
and images are captured using an UAV. The TLS must
meet specific requirements to provide high-quality point
clouds and images, while the UAV shall preferably have
high autonomy, obstacle proximity sensors, RTK
positioning accuracy, and high-resolution cameras. Both
data acquisitions must be done as close to the structure as
possible for higher image resolution and should be
performed safely.

The third phase, digital railway bridge, involves aligning
the TLS point clouds and reconstructing a 3D geometric
model of the structure using SfM techniques on
georeferenced images captured by the UAV. The derived
point cloud should be registered and exported to the
desired format, with the removal of neighboring objects
or background noise.

Finally, the fourth phase involves the condition
assessment of the railway bridge by specialized experts.
Surface anomalies can be easily visualized, and a virtual
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Figure 1: Methodology for railway bridge virtual visual inspection

inspection is performed over the digital model of the
railway bridge. Also, the final report is created.

Technologies

This section discusses the technologies used for the reality
capture adopting a data fusion process based on active and
passive vision systems. In terms of hardware, TLS
(active) and CRP-UAV (passive) devices were used,
whereas the dedicated required software is discussed.

The TLS employed was BLK360 from Leica Geosystems.
It has an integrated spherical imaging system and
thermography panoramic sensor system. It allows to take
photos and point clouds, which are then transferred by
Wi-Fi protocol to a mobile device running Leica Cyclone
Field 360 or locally saved to be later synchronized with
Leica Cyclone Register 360. It is important to note that
the Leica does not permit data to be synchronized outside
Leica’s software solutions. Leica Cyclone Field 360 is a
mobile device app available for iOS and Android
platforms, that is used to collect data from the LIDAR and
process it into Leica Cyclone Register 360. The software
manages the scanner’s capture settings, examines scans
and images data, and includes capabilities like tagging
measurements, text, or audio files. The desktop solution
for point cloud processing is Leica Cyclone Register 360,
which gets the point cloud data either collected from the
mobile app or scanning device and performs the
synchronization by sharing the same IP address and
network Port. This desktop software allows the user to
handle projects with hundreds of scans without reducing
performance and includes capabilities such as automated
alignment (registration), measuring, and noise clean-up.

In terms of UAVs, the DJI Mavic 2 Enterprise Advanced
(M2EA) equipped with a 2” CMOS sensor and a true

focal length of 9 mm from DJI company, was used. This
UAV includes a camera with enhanced quality, is lighter,
and can avoid obstructions, allowing a safer flight. The
outputs desired in this phase are images covering all
structural components from all directions to be able to
reconstruct the full structure. Being a passive vision
system, it does not generate point clouds automatically.
As a result, the photos captured by the UAV mounted
sensor are used to perform a SfM technique for point
clouds generation.

SfM technique may be used with a variety of commercial
and open-source software packages capable of
reconstructing scenes. ContextCapture, Pix4Dmapper,
Agisoft Photoscan, and Recap are some examples of
commercial software. The commercial software used for
point cloud data fusion was ContextCapture from
Bentley. It enables hybrid processing for the development
of meshes, dense point cloud, orthophoto, as well as some
Al detection tools that combine the best of both
technologies, the versatility and convenience of high-
resolution images, reinforced by the increased precision
of point clouds.

Case Study

For the application of the methodology developed to
railway bridge inspection, an extremity module of the
west access viaduct to the Piramides bridge in Aveiro, in
Portugal, inserted in the railway extension of access to the
port of Aveiro, is the object of study. The module consists
of four 25-m continuously supported spans for a total
length of 100 m.

The bridge deck has a U-shaped cross section, with the
bottom slab being 0.45 m thick in the center part, and 0.40
m thick at either laterals and connecting two main



prestressed girders of 1.60 m high and 0.60 m wide. Each
girder has a 0.60 m wide and 0.50 m height cantilever on
the deck's wings serving as walkways.

Figure 2: Extremity module of the west access viaduct to the
Piramides bridge in Aveiro, in Portugal

Data Acquisition

The railway bridge was marked with 50 Ground Control
Points (GCPs) and 8 Automatic Tie Points (ATPs) for
georeferencing and photogrammetry, respectively. These
targets were placed mostly on the columns and deck
directly on the concrete surface, as shown in Figure 3. The
GCPs were measured using topographic support, while
the ATPs allowed for automated image detection in
ContextCapture.
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Figure 3: GCP and ATP marked over the railway bridge

The laser scanning was performed in high density mode,
which results in a point spacing of 5 mm at a distance of
10 m. A complete scan, including panoramic image
capture, takes about 5 min in this specific mode. Figure 4
shows the LiDAR system in operation. Table 1 provides
an overview about the collected data.

-

Figure 4: LIDAR system in operation

The registration was done manually, followed by an
optimization using the Iterative Closest Point (ICP)
algorithm. The ICP algorithm is a traditional approach for
rigid registration. It alternates between nearest point query
in the target set and distance minimization between
related points, and it is guaranteed to converge to a locally
optimum alignment. The final registration had an average

mean error of about 17 mm. Figure 5 shows the registered
point cloud with the scan stations distribution.

Table 1: Laser Scan data

Parameter BLK360
Stations 113
3D points (bill.) 2.9
Scan duration (h) 12
Mean resolution (mm) 9
Registration precision (mm) 17

Data Size (GB) 60.1

Figure 5: TLS station distribution (in red)

The M2EA has a maximum flight time of around 30 min
and was operated by an experienced pilot in a stop-and-
go mode, which allowed for stable image recording. A
flight path with nadir photographs and oblique views was
performed. Figure 6 shows the UAV in operation. Table

Fi'gure 6: UAV in operation

In general, the image quality from the UAV flights was
good in terms of sharpness and exposure, as demonstrated
in Figure 7. However, some of the images were
overexposed, especially on surfaces with high contrast,
particularly the lower bridge deck surface. Despite this,
the photogrammetric processing went smoothly, which
can be verified by the good image quality.

o |

Sample images from the aerial survey

Figure 7:



Table 2: UAV data

Parameter M2EA
Images 3533
Focal length (mm) 9
Sensor size (mm) 6.4
Flight duration (h) 8
*Ground coverage (ha) 2.77
Mean GSD (mm/px) 1.04
Data size JPEG (GB) 45.9

Results

The data processing result in both a dense point cloud
(Figure 8a) and a texture mapping (Figure 8b). Texture
map allows to incorporate components in the scene
reconstruction that are smaller than the distance between
points in the dense point cloud. To carry out data fusion,
a high-performance computer is necessary. In this case,
an Intel i7-11700 8-core with 32 GB RAM and a Nvidia
GeForce RTX 3090 24GB graphics card were used.

The model generated using TLS data in Context Capture
encompasses the lateral and bottom deck parts of the
railway bridge and features a high Level Of Accuracy
(LOA) including the reconstruction of the catenary wires.
However, the texture may not be as visually appealing
compared to the results produced using high resolution
images (Figure 9a). In contrast, the model created in
Context Capture using UAV image data encompasses the
lateral and upper deck components and presents a high
level of texture detail (Figure 9b).

Figure 8: Outputs: a) dense point cloud b) texture map
As a result, the goal was to develop a model that
incorporates both types of data collection to create a
fusion with information about the entire deck. LIDAR
technology provided a detailed point cloud of the railway
bridge’s lateral and bottom deck portions, as well as the
ground beneath the deck with mean resolution of 9 mm,
equivalent to LOA30, while photogrammetry technology
produced highly detailed lateral and upper deck portions
with mean resolution (GSD) of 1.04 mm/px,
corresponding to LOA40.

The integration of information from both collection
techniques has been proven to be highly effective, with
the potential to build a coherent georeferenced model. To
validate the geometric survey, a comparison between the
design (as-designed) and real geometry (as-is) of the
deck’s cross-section was performed as presented in Figure
10 with mean absolute error (MAE) calculated to be 2.73
mm, which shows the accuracy of the methodology and
technologies used in this study. Figure 11 show the
achieved results using Context Capture software, and

some close images are presented in Figure 12 . It is
important to highlight that the results of this study have
significant implications for the industry, as they provide a
powerful tool for surveying and monitoring large
infrastructure projects such as railway bridges.

Figure 9: Model of Span's Railway Bridge: a)TLS data
b)CRP-based on UAV data
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Figure 10: Cross-section comparison of the as-designed (top)
and as-is (bottom)

Such a digital model could be used further for inspection
purposes to identify single and multiple anomalies,
typically related to concrete cracks and delamination; loss
of material, water damage; corrosion, and degradation of
bearings. All experimental information can be used
further for the development, updating, and validation of
numerical models of the bridges under service trains,
envisaging the development of a reliable and accurate



Digital Twin (DT). DT allows a dynamic representation
of the bridge, which includes a management model that
acts as a link between the physical and virtual
counterparts (Adibfar & Costin, 2022; Chiachio et al.,
2022; Jeong et al., 2016). Alternatively, visual inspection
or structural repair can be considered, although they
require offline involvement (VanDerHorn & Mahadevan,
2021). A functional DT should be capable of simulation,
learning, and management (Chiachio et al., 2022) and
allow practical applications for Bridge Management
Systems (BMS) (Jiang et al., 2021).

Figure 11: Reality capture of the extremity module of the west
access viaduct to the Piramides bridge in Aveiro, in Portugal

Figure 12: Example images of 3D state output

Conclusions

This research article detailed all the procedures and
challenges faced in conducting a survey and 3D modeling
of a railway bridge through the integration of TLS and
UAV-photogrammetry technologies. The aim was to
generate a precise and realistic 3D representation of the
railway infrastructure to be used on structural inspection
and assessment of surface damages. The TLS method was
used to collect data on the bridge’s lower and lateral deck
surfaces, while the UAV mounted camera was used to
characterize the upper surface and laterals of the deck.
The integration of the TLS and photogrammetric models,
which is possible due to recent advancements in
processing algorithms, resulted in a highly accurate 3D
model of the entire railway bridge deck. As future
investigations, the authors propose several areas for
further research, including evaluating automat-ed UAV
flights, automating tie points to speed up the registration
process, and incorporating artificial intelligence for local

automated damage identification. These research efforts
aim to improve the accuracy and efficiency of the survey
and 3D modeling of railway bridges using TLS and CRP-
based UAV technology.
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