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Preface 

 

 
This is the second book devoted to the 3

rd
 Stochastic Modeling Techniques and 

Data Analysis (SMTDA) International Conference held in Lisbon, Portugal, 

June 11-14, 2014. Revised and expanded forms of papers from the conference 

presentations are included. 

  

SMTDA main objective is to publish papers, both theoretical or practical, 

presenting new results having potential for solving real-life problems. Another 

important objective is to present new methods for solving these problems by 

analyzing the relevant data. Also, the use of recent advances in different fields is 

promoted such as for example, new optimization and statistical methods, data 

warehouse, data mining and knowledge systems, computing-aided decision 

supports and neural computing. 

 

The first Chapter includes papers on Stochastic Modeling, First Passage Time 

and Copulas, whereas contributions on Statistics, Distributions, Bayesian 

Modeling are included in the second Chapter. 

Papers on Model building and Modeling of particular cases are included in the 

third Chapter, and Data Analysis methods, techniques and applications are 

presented in the fourth Chapter. 

Statistics in Health Sciences and Sports are presented in the fifth Chapter along 

with Statistical Modelling and Applications papers included in the sixth 

Chapter. 

Chapter seven includes papers on Experimental Design and Related Topics, 

whereas Information Theory and Risk Analysis topics are analyzed in Chapter 

eight. 

Time Series, Signals, Networks papers along with works on Statistical Quality 

Control are included in Chapters nine and ten. 

 

Many thanks to the authors for their contribution and our sincere thanks to the 

referees for their hard work and dedication in providing an improved book form. 

We acknowledge the valuable support of the SMTDA committees and the 

secretariat. We are happy for editing another book of the SMTDA series. 

 

November 2015 

 
Lidia Filus, Northeastern Illinois University, Chicago, Illinois, USA 
 

Teresa Oliveira, Aberta University, Portugal 
 

Christos H Skiadas, ManLab, Technical University of Crete, Chania, Greece 
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An inverse First-passage Problem for
One-dimensional Diffusions reflected between

two boundaries

Mario Abundo

Dipartimento di Matematica
Università Tor Vergata, Roma, Italy
(E-mail: abundo@mat.uniroma2.it)

Abstract. We study an inverse first-passage problem for a one-dimensional, time-
homogeneous diffusion X(t) reflected between two boundaries a and b, which starts
from a random position η. Let a ≤ S ≤ b be a given threshold, such that P (η ∈
[a, S]) = 1, and F an assigned distribution function. The problem consists of finding
the distribution of η such that the first-passage time of X trough S has distribution
F.
Keywords: First-passage-time,Inverse first-passage problem, Reflected diffusion.

1 Formulation of the problem and main results

Diffusion processes with reflecting boundaries appear in many applications in
Economics and Finance (see e.g. Ball and Roma [7], Bertolla and Caballero
[8], De Jong [11], Krugman [14], Svensson [26]), in Queueing (see e.g. Abate
and Whitt [1], [2], Harrison [12], Srikant and Whitt [25], Ward and Glynn [28],
[29]), and Mathematical Biology (see e.g. Ricciardi and Sacerdote [23]).

In all these, the knowledge of the distribution of the first-passage-time
(FPT) of the reflected diffusion through an assigned barrier is very important.
Although FPT problems have been studied mostly for ordinary diffusions, i.e.
without reflecting (see e.g. Abundo [6], Darling and Siegert [10], Ricciardi and
Sato [24], and references therein), more recently some results appeared about
the FPT of a one-dimensional reflected diffusion, through a threshold S (see
e.g. Chuancun and Huiqing [9], Lijun et al. [17], Qin Hu et al. [22]).

In this paper, we focus on FPT problems for a one-dimensional, temporally
homogeneous reflected diffusion process X(t) with boundaries a and b, which
is the solution of the stochastic differential equation with reflecting boundaries
(SDER):

Stochastic Modeling, Data Analysis and Statistical Applications (pp. 3-17 )
Lidia Filus - Teresa Oliveira - Christos H Skiadas (Eds)

c© 2015 ISAST



4 M. Abundo

{
dX(t) = µ(X(t))dt+ σ(X(t))dBt + dLt − dUt
X(0) = η ∈ [a, b]

(1)

where
Bt is standard Brownian motion,
the initial position η is a random variable, independent of Bt,
L = {Lt} and U = {Ut}, t ≥ 0,
are the regulators of points a and b, respectively, namely the local times of

X at a and b.
The processes L and U are uniquely determined by the following properties

(see e.g. Harrison [12]):
(i) both Lt and Ut are continuous nondecreasing processes with L0 = U0 =

0;
(ii) X(t) ∈ [a, b] for every time t ≥ 0;
(iii) L and U increase only when X = a and X = b, respectively, that is,∫ t
0

1{X(s)=a}dLs = Lt and
∫ t
0

1{X(s)=b}dUs = Ut, for any t ≥ 0.

We suppose that the coefficients µ(·) and σ(·) are sufficiently regular (see
e.g. Lions and Sznitman [21]), so that, for fixed initial value the SDER (1)
has a unique strong solution X(t), which remains in the interval [a, b] for every
time t ≥ 0.

For this reason,
X(t) is also called a regulated diffusion between a and b.
If S ∈ [a, b] is a threshold such that P (a ≤ η ≤ S) = 1, we consider the

FPT of X through S, namely τS = inf{t > 0 : X(t) = S},
and we denote by
τS(x) = inf{t > 0 : X(t) = S|η = x}
the FPT of X through S with the condition that η = x.
We assume that τS(x) is finite with probability one ∀x ∈ [a, S], and that it

possesses a density f(t|x).

The inverse FPT problem for diffusions generally focuses on determining
the barrier S, when f(t|x) is given (see e.g. Abundo [6], Zucca and Sacerdote
[27]). Since we assume that the initial position η is random, we consider a

slight modification of the problem, that is the following inverse first-passage-
time (IFPT) problem.
For a given distribution F, our aim is to find the density g of η (if it exists) for

which it results P (τS ≤ t) = F (t).

This IFPT problem has interesting applications in Mathematical Finance,
in particular in credit risk modeling, where the FPT represents a default event
of an obligor (see e.g. Jackson et al. [13]), in Biology, specially in the framework
of diffusion models for neural activity (see e.g. Lansky and Smith [16]), and in
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Queueing theory (see e.g. Abate and Whitt [1], [2], Harrison [12]). For ordinary

diffusions, it was studied in Jackson et al. [13] in the case of Brownian motion,
while some extensions to more general processes were obtained in Abundo [4],
[5].

Let
Lh(x) = µ(x)h′(x) + 1

2σ
2(x)h′′(x), x ∈ (a, b),

the infinitesimal generator of X(t),
acting on C2−functions h on (a, b).
We recall the following result by Chuancun and Huiqing [9]:

Theorem 1
Let X be the solution of the SDER (1) with deterministic and fixed initial

condition X(0) = x, and
let S ∈ [a, b]. For x ∈ [a, S] and
θ ≥ 0, suppose that u(x) satisfies the following equation:{

Lu(x) = θu(x), x ∈ (a, S)

u′(a) = 0
. (2)

Then, if u(S) 6= 0 for S ∈ [x, b],
the Laplace transform of τS(x) is explicitly given by:

E
(
e−θτS(x)

)
=
u(x)

u(S)
. (3)

�

By taking the n− th derivative of E
(
e−θτS(x)

)
with respect to θ, and cal-

culating it at
θ = 0, we obtain (see Abundo [3]):

Proposition 2
For n = 1, 2, . . . , the n− th order moments of τS(x),
if they exist finite, are the solutions to the problems:{

LTn(x) = −nTn−1(x), x ∈ (a, S)

Tn(S) = 0, T ′n(a) = 0
, (4)

where T0(x) ≡ 1.

Now, we report the explicit solutions of problems (2) and (4) for the Laplace
transform and the moments of τS(x), in the case of reflected Brownian motion
with drift µ. By solving (2) by quadratures and using (3), we get that the
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Laplace transform of τ
(µ)
S (x) is:

E
(
e−θτ

(µ)
S (x)

)
= e−(S−x)(

√
µ2+2θ−µ) · θe

−2(x−a)
√
µ2+2θ + µ2 + θ + µ

√
µ2 + 2θ

θe−2(S−a)
√
µ2+2θ + µ2 + θ + µ

√
µ2 + 2θ

. (5)

For a→ −∞ the right-hand member of (5) tends to

e−(S−x)(
√
µ2+2θ−µ), which is the well-known expression of the Laplace trans-

form of the first-hitting time of ordinary Brownian motion with drift µ to S,
when starting from x < S.

Taking the limit as µ goes to zero in (5), we obtain:

E
(
e−θτ

(0)
S (x)

)
=
e−x
√
2θ + e−(2a−x)

√
2θ

e−S
√
2θ + e−(2a−S)

√
2θ

. (6)

In the special case a = 0, the expression above writes:

e−x
√
2θ + ex

√
2θ

e−S
√
2θ + eS

√
2θ

=
cosh(x

√
2θ)

cosh(S
√

2θ)
, x ∈ [0, S]. (7)

Then, Laplace transform inversion yields that, for a = 0 and x ∈ [0, S] the

density of τ
(0)
S (x) is, for t ≥ 0 (cf. e.g. Darling and Siegert [10], Qin Hu et al.

[22]):

f (0)(t|x) =
π

S2

∞∑
k=0

(−1)k(k +
1

2
) cos

[
(k +

1

2
)
πx

S

]
exp

[
−(k +

1

2
)2
π2t

2S2

]
(8)

By solving (4) by quadratures, with n = 1 and n = 2, we obtain:

T
(µ)
1 (x) =

1

2µ2

[
e2µ(a−S) − e2µ(a−x)

]
+
S − x
µ

, x ∈ [a, S]. (9)

T
(µ)
2 (x) =

x2

µ2
− x

µ3

(
e2µ(a−S) + 1 + 2Sµ+ e2µ(a−x)

)
+ c1 + c2e

−2µx, (10)

where the constants c1 and c2 can be easily calculated.
Letting µ go to zero, we obtain:

T
(0)
1 (x) = −x2 + 2ax+ S(S − 2a), x ∈ [a, S]. (11)

and
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T
(0)
2 (x) =

x4

3
− 4

3
ax3 − 2S(S − 2a)x2 +Ax+B, x ∈ [a, S],

for certain constants A and B. In particular, for a = 0, we get

T
(0)
1 (x) = −x2 + S2, T

(0)
2 (x) = x4

3 − 2S2x2 + 5
3S

4

Explicit formulae for the Laplace transform of the first-hitting time to a
barrier S are known also for reflected OU process, reflected Bessel process and
some other processes (see Chuancun and Huiqing [9], Lijun et al. [17]), but
they involve special functions. An explicit spectral representation of the hitting
time density was found in Qin Hu et al. [22] for reflected BM, and in Linetsky
[19], [20] for Cox-Ingersoll-Ross (CIR) and OU processes.

1.1 The IFPT problem for reflected Brownian motion with drift

For a given barrier S ∈ [a, b], and X(0) = η ∈ [a, S], let us suppose that τS(x)
is a.s. finite for every x ∈ [a, S], and it possesses a density f(t|x).

Moreover, we suppose that the initial position η has a density g(x) with
support (a, S); for θ ≥ 0 we denote by

f̂(θ|x) =
∫ +∞
0

e−θxf(t|x)dt the Laplace transform of f(t|x)

and by

ĝ(θ) =
∫ S
a
e−θxg(x)dx the (possibly bilateral) Laplace transform of g.

Then, the density of τS is obtained as f(t) =
∫ S
a
f(t|x)g(x)dx and taking

the Laplace transform on both sides we get f̂(θ) =
∫ S
a
f̂(θ|x)g(x)dx .

Now, we go to solve the IFPT problem, in the case when X = X(µ) is
reflected BM with drift µ, between the boundaries a and b.

For a given FPT distribution function F (or equivalently for a given FPT
density f = F ′)

our aim is to find the density g of the random initial position η, if it exists,
such that

P (τS ≤ t) = F (t). The following result holds (see Abundo [3]):

Theorem 3
For S ∈ [a, b], let X(µ) be BM with drift µ, reflected between the boundaries

a and b and starting from the random position η ∈ [a, S]; suppose that the FPT
of X(µ) through S has an assigned probability density f and denote by

f̂(θ) =
∫∞
0
e−θtf(t)dt, θ ≥ 0,

the Laplace transform of f.

Then, if there exists a solution g to the IFPT problem for X(µ), its Laplace
transform ĝ(θ), for θ ≥ 0, must satisfy the equation:
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f̂(θ) =

[θe2a
√
µ2+2θĝ(

√
µ2 + 2θ + µ) + (µ2 + θ + µ

√
µ2 + 2θ )ĝ(µ−

√
µ2 + 2θ )]

×
{
θe−S(

√
µ2+2θ−µ)e2a

√
µ2+2θ + (µ2 + θ+µ

√
µ2 + 2θ )eS(

√
µ2+2θ+µ)

}−1
(12)

In particular, if µ = 0, the above formula writes:

f̂(θ) =
ĝ(
√

2θ) + ĝ(−
√

2θ)e−2a
√
2θ

e−S
√
2θ + e(S−2a)

√
2θ

, θ ≥ 0. (13)

Furthermore, if µ = 0 and we require that the density g is symmetric with
respect to (a+ S)/2,

then:

ĝ(θ) =
e−Sθ + e−(2a−S)θ

1 + e(S−a)θ
f̂

(
θ2

2

)
, θ ≥ 0. (14)

�

If f̂(θ) is analytic in a neighbor of θ = 0, then the k−th order moments of

τS exist finite and they are obtained in terms of f̂(θ) by

E(τkS) = (−1)k ∂k

∂θk
f̂(θ)|θ=0.

The same thing holds for the moments of η, if ĝ(θ) is analytic.
Thus, we obtain:

E(τ
(µ)
S ) =

1

µ
E(S − η)− 1

2µ2
e2µaE

(
e−2µη − e−2µS

)
. (15)

Remark 4 Let X(t) be regulated BM, and suppose that τS has Gamma dis-
tribution. Then, it can be shown that a solution g to the IFPT problem, with
g symmetric with respect to (a+ S)/2 does not exist (see Abundo [3]).

Now, we further investigate the question of the existence of solutions to the
IFPT problem. Referring to regulated drifted BM, we will prove the existence
of the density g of the initial position η ∈ [a, S] for a class of FPT densities f.

For the sake of simplicity, we limit ourselves to the case when µ = 0, a =
0, S = 1 < b and g is required to be symmetric with respect to 1/2; in fact,
for µ 6= 0 the calculations involved are far more complicated.

For any integer k ≥ 0, set Ik(θ) =
∫ 1

−1 e
−θxxkdx; as easily seen,
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I0(θ) = 2 sinh(θ)/θ and the recursive relation

Ik(θ) = (−1)keθ−e−θ
θ + k

θ Ik−1(θ) allows to
calculate Ik(θ), for every k.
The following proposition holds (see Abundo [3]).

Proposition 5
Let X be regulated BM between the boundaries 0 and b, and let S = 1 < b;
suppose that the Laplace transform of f(t) has the form:

f̂(θ) = f̂2k(θ) :=
cosh(

√
θ/2)

cosh(
√

2θ)

(
1 +

1

2k

)[√
2

θ
sinh

(√
θ

2

)
− I2k

(√
θ

2

)]
,

(16)
for some integer k > 0. Then, there exists the solution g = g2k of the IFPT

problem for X, relative to the FPT density f, and it results:

g2k(x) =

(
1 +

1

2k

)(
1− (2x− 1)2k

)
, x ∈ (0, 1). (17)

�
As an application of the results for regulated BM, we consider now the

piecewise-continuous process ξ(t), obtained by superimposing to BM a jump
process, namely, for η ∈ [a, S] and t < T, we set ξ(t) = η + Bt, where T
is an exponentially distributed time with parameter λ > 0; we suppose that
for t = T the process ξ(t) makes an upward jump and it crosses the barrier
S, irrespective of its state before the occurrence of the jump. This kind of
behavior is observed e.g. in the presence of a so called catastrophes.

Next, let us consider the reflected diffusion X with boundaries a, b, associ-
ated to ξ. Then, for η ∈ [a, S] the FPT of X over S is τS = inf{t > 0 : X(t) ≥
S}. Conditionally on η = x, we have:

P (τS(x) ≤ t) = P (τS(x) ≤ t|t < T )P (t < T ) + 1 · P (t ≥ T )

= P (τS(x) ≤ t)e−λt + (1− e−λt).

Taking the derivative, we obtain the FPT density of X, conditional to the
starting position x :

f(t|x) = e−λtf(t|x) + λe−λt
∫ +∞

t

f(s|x)ds.

By straightforward calculations, we obtain its Laplace transform:

f̂(θ|x) =

∫ ∞
0

e−θtf(t|x)dt =
θ

λ+ θ
f̂(λ+ θ|x) +

λ

λ+ θ
, θ ≥ 0.

The following result holds (see Abundo [3]).
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Proposition 6 For a = 0 < S < b, if there exists a function g, symmetric
with respect to S/2, which is the solution to the IFPT problem of X(t), relative
to S and the FPT density f, then its Laplace transform is given by:

ĝ(θ) =
2 cosh(Sθ)

(θ2/2− λ)(1 + eSθ)

[
θ2

2
f̂

(
θ2

2
− λ
)
− λ
]
. (18)

�

Remark 7 For λ = 0, namely when no jump occurs,
(18) reduces to (14) with a = 0.

1.2 Reduction of reflected diffusions to reflected Brownian motion

On the analogy of the definition holding for ordinary diffusions (see Abundo
[5], [6]), we introduce the following:

Definition
Let X(t) be a diffusion with reflecting boundaries a and b, which is driven

by the SDER:

dX(t) = µ(X(t))dt+ σ(X(t))dBt + dLt − dUt, X(0) = x ∈ [a, b].

We say that X(t) is conjugated to regulated BM if there exists an increasing
differentiable function V (x), with V (0) = 0, such that, for any t ≥ 0 it results
X(t) = V −1

(
Bt + V (x) + Lt − U t

)
,

where Lt = V ′(a)Lt and U t = V ′(b)Ut are regulators.

A class of reflected diffusions which are conjugated to regulated BM is given
by processes which are solutions of SDERs such as:

dX(t) =
1

2
σ(X(t))σ′(X(t))dt+ σ(X(t))dBt + Lt − Ut, X(0) = x (19)

with σ(·) ≥ 0.
Indeed, if the integral
V (x) :=

∫ x 1
σ(r)dr

is convergent,
by Itô’s formula for
reflected diffusions (see e.g. Harrison [12]), one gets V (X(t)) = Bt+V (x)+

V ′(a)Lt − V ′(b)Ut.

Let us consider a diffusion X with reflecting boundaries a and b, which is
conjugated to regulated BM via the function V.

Then, the process Y (t) := V (X(t)) is regulated BM between the boundaries
V (a) and V (b),
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starting from V (x), that is
Y (t) = V (x) +Bt + Lt − U t ,
where Lt = V ′(a)Lt and U t = V ′(b)Ut are the regulators of Y (t), which

increase only when
Y = V (a) and Y = V (b), respectively.
Thus, for x ∈ [a, S] :

τS(x) = inf{t ≥ 0 : X(t) = S|X(0) = x} = τYS′(V (x)),

where S′ = V (S) and the superscript refers to the process Y.

Therefore, the solution g to the IFPT problem for X, relative to the FPT
density f and the barrier S, can be written in terms of the solution g̃ to the
IFPT problem for regulated BM Y (t) relative to the FPT density f and the
barrier V (S). If one seeks e.g. that g̃ is symmetric with respect to (V (a) +
V (S))/2, then (see (14)) the Laplace transform of g̃ turns out to be:

̂̃g(θ) =
e−V (S)θ + e−(2V (a)−V (S))θ

1 + e(V (S)−V (a))θ
f̂

(
θ2

2

)
, θ ≥ 0. (20)

2 A few examples

Example 1
Let X(t) be regulated BM with boundaries a, b (a < S < b), starting from

η ∈ [a, S] and consider the FPT density:

f(t) =
1

(S − a)2

∞∑
k=0

exp

[
−
(
k + 1

2

)2
π2t

2(S − a)2

]
, (21)

or the corresponding FPT Laplace transform:

f̂(θ) =
tanh((S − a)

√
2θ)

(S − a)
√

2θ
. (22)

Then, the solution g to the IFPT problem for X(t) is the uniform density
in (a, S).

In particular,
for a = 0, S = 1, (21) and (22) become:

f(t) =

∞∑
k=0

exp

[
−1

2

(
k +

1

2

)2

π2t

]
and f̂(θ) =

tanh(
√

2θ)√
2θ

(23)

and the solution g to the IFPT problem is the uniform density in (0, 1).

Example 2
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For a = 0 < S < b, let X(t) be regulated BM starting from η ∈ [a, S], and
consider the FPT density whose Laplace transform is:

f̂(θ) =
π2

2

1 + cosh(S
√

2θ)

cosh(S
√

2θ)(2θS2 + π2)

Then, the solution to the IFPT problem for X
is g(x) = π

2S sin
(
πx
S

)
, x ∈ (0, S).

Example 3
Take a = 0, S = 1, and let X(t) be regulated BM starting from η ∈ [0, 1];

consider the FPT density whose Laplace transform is:

f̂(θ) =

(
1 + e

√
2θ
)(

e
√
2θ − 2e

√
θ/2 + 1

)
θ cosh(

√
2θ)e

√
2θ

Then, the solution to the IFPT problem for X is the triangular density in
[0, 1] :

g(x) =

{
4x, x ∈ [0, 12 ]

4x(1− x), x ∈ ( 1
2 , 1]

.

Example 4
Take a = 0, S = 1, and let X(t) be regulated BM starting from η ∈ [0, 1];

consider the FPT density whose Laplace transform is:

f̂(θ) =
3
(

1 + e
√
2θ
)(

e−
√
2θ(
√

2θ + 2) +
√

2θ − 2
)

θ
√

2θ
(
e
√
2θ + e−

√
2θ
)

Then, the solution g to the IFPT problem for X is a Beta density in [0, 1],
i.e. g(x) = 6x(1− x).

Notice that f̂ and g are obtained as special cases of f̂2k and g2k of Propo-
sition 5, for k = 1.

Example 5
For 0 = a < S < b let X be the jump-process considered at the end of

subsection 1.1, and
let:

f̂(θ) =
1

λ+ θ

[
θ · tanh(S

√
2(λ+ θ))

S
√

2(λ+ θ)
+ λ

]
.

By Laplace inversion, one obtains:

f(t) = e−λt

[ ∞∑
k=0

(
1

S2
+

2λS2

(k + 1
2 )2π2

)
exp

(
− (k + 1/2)2π2t

2S2

)]
,
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which can be written as

f(t) = e−λtφ(t) + λe−λt
∫ ∞
t

φ(s)ds, (24)

where φ(t) is the FPT density considered in Example 1 with
a = 0, i.e.:

φ(t) =
1

S2

∞∑
k=0

exp

(
− (k + 1/2)2π2t

2S2

)
. (25)

Then, the solution g to the IFPT problem for X(t), relative to S ∈ (0, b)

and f̂ , which is symmetric with respect to S/2, is the uniform density in (0, S).

Example 6 (Reflected geometric Brownian motion)

Let 0 < a < S < b, and X(t) the solution of the SDER:

dX(t) = rX(t)dt+ σX(t)dBt + dLt − dUt, X(0) = η ∈ [a, S],

where r and σ are positive constant.
The equation without reflecting is well-known in the framework of Mathe-

matical Finance, since it describes the time evolution of a stock price.
As easily seen,

lnX(t) = ln η + µt+ σBt + L̄t − Ūt,

where µ = r − σ2/2 and L̄t, Ūt are regulators;
thus, lnX(t)/σ is regulated BM with drift µ/σ,
between the boundaries ln a

σ , ln b
σ .

Then, the IFPT problem for X(t) relative to S and the FPT density f,
is reduced to the IFPT problem for regulated drifted BM, starting from ln η

σ ,

relative to lnS
σ and the same FPT density f.

Example 7

Let X be a reflected diffusion in [a, b], which is conjugated to regulated BM
via the function V ; then, examples of solutions to the IFPT problem for X can
be obtained from Examples 1-4 regarding regulated BM.

For instance, let us consider the FPT density

f(t) =
1

(V (S)− V (a))2

∞∑
k=0

exp

[
−

(
k + 1

2

)2
π2t

2(V (S)− V (a))2

]
, (26)

Then, the solution to the IFPT problem for X relative to the barrier S (a <
S < b) is
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g(x) =
V ′(x)

V (S)− V (a)
· 1(a,S)(x). (27)

As explicit examples of reflected diffusions X which are conjugated to reg-
ulated BM, we mention the following.

(i) The process driven by{
dX(t) = 1

3X(t)1/3dt+X(t)2/3 dBt + dLt − dUt
X(0) = η ∈ [a, b]

, (28)

which is conjugated to regulated BM via the function

V (x) = 3x1/3 i.e. X(t) =
(
η1/3 + 1

3Bt + Lt − U t
)3
. Here, as well as in the

next examples, Lt = V ′(a)Lt and U t = V ′(b)Ut .

(ii) For c > 0, the process driven by{
dX(t) = 3c2

8 (X(t))1/2dt+ c(X(t))3/4 dBt + dLt − dUt
X(0) = η ∈ [a, b] (a ≥ 0)

, (29)

which is conjugated to regulated BM via the function

V (x) = 4
cx

1/4 i.e. X(t) =
(
η1/4 + c

4Bt + Lt − U t
)4
.

(iii) (Feller process or CIR model)
For b > a ≥ 0, the process driven by{

dX(t) = 1
4dt+

√
X(t) dBt + dLt − dUt

X(0) = η ∈ [a, b]
, (30)

which is conjugated to regulated BM via the function

V (x) = 2
√
x i.e. X(t) = 1

4 (Bt + 2
√
η + Lt − U t)2.

Notice that the process is always ≥ 0.

(iv) (Wright & Fisher-like process)
For 0 ≤ a < b ≤ 1, the process driven by:

{
dX(t) =

(
1
4 −

1
2X(t)

)
dt+

√
X(t)(1−X(t)) dBt + dLt − dUt

X(0) = η ∈ [a, b]
,

which is conjugated to regulated BM via the function

V (x) = 2 arcsin
√
x.

This equation is used for instance in the Wright-Fisher model for population
genetics and in certain diffusion models for neural activity (see e.g. Lanska et
al. [15]); it results
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X(t) = sin2(Bt/2 + arcsin
√
η + Lt − U t) and so X(t) ∈ [0, 1] for all t ≥ 0.

Notice that, if we take a = 0 and b = 1, both boundaries are attainable and
there is no need for reflection in a and b, because the process without reflecting
cannot never exit the interval [0, 1] (see e.g. Abundo [5]).

If the FPT density is given by (26), from (27) we obtain that the solutions
to the IFPT problems for the processes (i)–(iv) above, relative to the barrier
S, are explicitly given by:

g(x) =
[
3x2/3

(
S1/3 − a1/3

)]−1 · 1(a,S)(x) (i),

g(x) = 1
4

[
x3/4

(
S1/4 − a1/4

)]−1 · 1(a,S)(x) (ii),

g(x) = 1
2

[√
x
(√

S −
√
a
)]−1

· 1(a,S)(x) (iii), and

g(x) = 1
2

[(
arcsin

√
S − arcsin

√
a
)√

x(1− x)
]−1
· 1(a,S)(x) (iv).
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Abstract. The theory of Time Operators has recently been applied into real life
problems with the estimation of innovation probabilities. Based on the assumption
that the asset values follow Geometric Brownian Motion with constant variance within
each trading day, the internal Age of an asset turns out to be a new statistical in-
dex, assessing the average innovations. Moreover, the unpredictability of the t-th
observation Xt is estimated by the distribution of innovations of Xt. The innovation
probabilities and internal Age are estimated using nonlinear stochastic variance mod-
els.
Keywords: Time Operator, Innovation, Financial Data, Stochastic Variance Mod-
els.

1 Introduction

The Time Operator of Dynamical Systems [1–3] has been extended to stochastic
processes and has been related to the complexity of the stock price dynamics
[4]. The application presented in [4] refers to a specific stock from the Athens
stock market during the important Greek elections of June 2012, where the
distribution of innovations within the eigenspaces of the Time Operator has
been computed. In this work, we propose specific models from the literature for
the prediction of the distribution of innovations of an asset, within a predefined
trading period.

In section 2, we present the Time Operator associated with a stochastic
process Xt, t = 1, 2, . . ., through the construction of its eigenprojections, with
eigenvalues the times t = 1, 2, . . .. The average value of the Time Operator
(Rayleigh quotient) defines the internal Age of the process (section 3). When
the process is the evolution of an asset’s price, it is shown [4] that the internal
Age is a function of the variances of each trading day. The values Open Oτ ,
High Hτ , Low Lτ and Close Cτ are known for τ = 1, 2, . . . , T so using the
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more efficient daily variance estimator we find, in section 4, the distribution of
innovations and their mean, i.e. the internal Age.

The novelty of this work is the estimation of the innovation probabilities pτ
from future variances σ2

τ where Open, High, Low, Close values are unknown. In
section 5, we shall employ nonlinear stochastic variance models for the evolution
of σ2

τ and obtain an explicit innovation probability formula corresponding to
each model.

In section 6, we present an application to a stock market index. The esti-
mated variances σ2

τ from stock market data are transformed using the Box-Cox
transformation [5]. The nonlinear stochastic variance model is selected, among
the existing ones, as the one with the best fit to the data.

2 Innovations and Time Operator of Stochastic
Processes

Consider a stochastic process X1, X2, . . . with the correlation scalar product
< X,Y >= E[XY ] and denote by S the σ-algebra generated by the random
variables X1, X2, . . .. Assuming that X1, X2, . . . have finite mean and finite
correlations, they live in the Hilbert space L2(Ω,S, µ), where Ω is their sample
space.

The random variablesX1, X2, . . . , Xt generate the σ-algebras St, t = 1, 2, . . .
which define the natural filtration {Ω, ∅} = S0 ⊆ S1 ⊆ S2 ⊆ · · · ⊆ S of the
stochastic process X1, X2, . . .. From the natural filtration St, t = 1, 2, . . . of
the stochastic process we construct the corresponding sequence of subspaces of
L2(Ω,S, µ):

H0 = span{1Ω}, Ht = L2(Ω,St, µ), t = 1, 2, . . . (1)

where H0 is the Hilbert space of constant random variables. The orthocom-
plement of H0 is the Hilbert space H of fluctuations H = L2(Ω,S, µ) 	 H0.
Every random variable in H has the form:X − E[X]1Ω , X ∈ L2(Ω,S, µ). The
family Ht, t = 1, 2, . . . is a resolution of the identity of the Hilbert space H, i.e.
∧t∈NHt = ∅,∨t∈NHt = H and Ht ⊆ Ht+1, t ∈ N.

The projections: Et : H → Ht, t = 0, 1, 2, . . . onto the spaces Ht are the
conditional expectations:

Et := E[.|St], t = 0, 1, 2, . . . (2)

and define the resolution of identity operator in H : Et, t = 0, 1, 2, . . ..

Definition 1. The self-adjoint operator with spectral projections the condi-
tional expectations Et (2) on the space of fluctuations H is called the Time
Operator of the stochastic process Xt, t = 1, 2, . . .:

T =

∞∑
t=1

t(Et 	 Et−1) =

∞∑
t=1

tPt (3)
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The eigenspaces of the Time Operator are the Hilbert spaces Nt := Ht 	
Ht−1, t = 1, 2, . . . and they are called Innovation Spaces. The projections Pt =
Et 	 Et−1 onto the innovation spaces Nt, t = 1, 2, . . . quantify the innovative
part PtZ of a random variable Z at time step t.

For example, The Time Operator of Bernoulli Processes [3,4] is applied to
the one-dimensional non-stationary random walk

X0 = 0, Xt = Z1 + Z2 + · · ·+ Zt, t = 1, 2, . . . (4)

as follows [4]:

TXt =

∞∑
τ=1

τPτXt =

∞∑
τ=1

τ(Zτ − E[Zτ ]) (5)

where

Zt =

{
1 with probability πt
−1 with probability 1− πt

, t = 1, 2, . . . (6)

3 The Internal Age of an Asset

The innovation probability of a random variable A at time t, is defined as the
probability to observe the random variable A in the innovation space Nt:

pt(A) = prob{A ∈ Nt} =
‖PtA‖2

‖A− E[A]‖2
=
V ar[PtA]

V ar[A]
(7)

The Rayleigh quotient (expectation) of the Time Operator T for the random
variable A is called the internal Age of A and is given by the formulas [4]:

Age(A) =
< A− E[A],T(A− E[A]) >

‖A− E[A]‖2
=

∞∑
t=1

tpt(A) (8)

The internal Age is the average innovation time of the random variable A and
pt(A), t = 1, 2, . . . is the distribution of innovations within the eigenspaces of
T.

When the Time Operator of Bernoulli Processes is applied to one-dimensional
non-stationary random walk Xt (4), the internal Age of Xt is a function of the
variance of the increments (6) [4, Theorem 5.2]:

Age(Xt) =

t∑
τ=1

τ
σ2
τ∑t

ν=1 σ
2
ν

, t = 1, 2, . . . . (9)

where σ2
τ = V ar[Zτ ], and the innovation probabilities of the random walk Xt

are:

pτ =
σ2
τ∑t

ν=1 σ
2
ν

, τ = 1, 2, . . . . , t (10)

Formulas (9) and (10) allow estimation of the innovation probabilities and
internal Age through the estimation of the variances σ2

τ .
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In order to estimate the internal Age and the innovation probabilities of an
asset (stock, currency, etc.), we assume that the asset’s prices Xt, t = 1, 2, . . .
are a non-stationary random walk and the index set Xt, t = 1, 2, . . . of the
random walk observations Xt refers to trading days. Some hours of the day
the market is open (trading period) and the rest of the day the market is closed.
The values Open Oτ , Close Cτ , High Hτ and Low Lτ of the τ -trading day are
the available price information of each trading day. Moreover, we assume that
the prices of an asset follow Geometric Brownian Motion within each trading
day [6]. The variance σ2

t is assumed constant with each trading day, but variable
from one trading day to another.

At time t = T the observation XT corresponds to the present asset’s price,
at the end of today’s trading period, so that the values Open Oτ , Close Cτ ,
High Hτ and Low Lτ are available. Hence, t = T+1 will stand for “tomorrow”,
i.e. the following trading day.

4 Innovation Probability Estimators from High, Low,
Open and Closing Prices

In this section we discuss the estimation of the variance σ̂2
τ = ˆV ar[Zτ ] of the

increment Zτ for each trading day τ for times τ ≤ T . In previous work [4],
we have presented five popular unbiased estimators, namely the close-to-close
estimator σ̂2

CC [7], the high-low Parkinson estimator σ̂2
P [7], the Garman-Klass

estimator σ̂2
GK [8], the Rogers-Satchell estimator σ̂2

RS [9] and the Yang-Zhang
estimator σ̂2

Y Z [10]. Among these known variance estimators:

• Parkinson’s estimator σ̂2
P [7] and the classic close-to-close estimator σ̂2

CC

[7] are less efficient than the Rogers-Satchell estimator σ̂2
RS [9]

• The Yang-Zhang estimator σ̂2
Y Z [10] is not able to estimate the variance

using data from only one trading day.
• The Garman-Klass estimator σ̂2

GK [8] assumes that there is no upward or
downward trend, while the Rogers-Satchell estimator σ̂2

RS [9] does not.

Due to the above three reasons, the Rogers-Satchell estimator σ̂2
RS [9] is the

most efficient drift-independent variance estimator, allowing intraday estima-
tions. Hence, the variance of the τ -trading day is given as follows:

σ̂2
RS(τ) = uτ (uτ − cτ ) + dτ (dτ − cτ ) (11)

where uτ = lnHτ − lnOτ , dτ = lnLτ − lnOτ , cτ = lnCτ − lnOτ .

Corollary 1. The innovation probabilities of the asset’s price at day t, t =
1, 2, . . . , T are estimated as follows:

p̂τ =
uτ (uτ − cτ ) + dτ (dτ − cτ )∑t
τ=1 uτ (uτ − cτ ) + dτ (dτ − cτ )

(12)

The internal Age of the asset’s price at day t is given by:

Âge(Xt) =

t∑
τ=1

τ
uτ (uτ − cτ ) + dτ (dτ − cτ )∑t
τ=1 uτ (uτ − cτ ) + dτ (dτ − cτ )

(13)
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Corollary 1, may be used for the estimation of the internal Age and distri-
bution of innovations of an asset’s price at day t, when t ≤ T . In the following
section, we modify Eq. (12) and Eq. (13), using nonlinear stochastic variance
models for estimations at day t = T + 1, i.e. the following trading day.

5 Innovation Probability Estimators from Nonlinear
Stochastic Variance models

We shall estimate the distribution of innovations and the internal Age of the
random variable XT+1. The formula which gives the innovation probability of
XT+1 for the following trading day (T + 1) is:

p̂T+1 =
σ̂2
T+1

σ̂2
T+1 +

∑T
τ=1 σ̂

2
τ

(14)

where σ̂2
T+1 is estimated from a stochastic variance evolution model and σ̂2

τ

are estimated from Open, High, Low and Closing values τ = 1, 2, . . . , T . The
values OT+1, CT+1, HT+1 and LT+1 have not been observed yet.

In [11] we find a classification of stochastic variance (volatility squared)
models. They all assume that an asset’s price, or stock market index, fol-
lows a Geometric Brownian Motion with variance σ2

τ evolving according to its
own stochastic process. We list the models and the corresponding innovation
probability estimators p̂T+1, in Table 1.

Reference Stochastic Variance Model Innovation Probability p̂T+1

[12] lnσ2
T+1 = α+ βεT

exp (α+βεT )

exp (α+βεT )+
∑T
τ=1 σ

2
τ

[13] lnσ2
T+1 = γ(lnσ2

T − α) + α+ βεT
exp (γ(lnσ2

T−α)+α+βεT )

exp (γ(lnσ2
T
−α)+α+βεT )+

∑T
τ=1 σ

2
τ

[14,15] lnσ2
T+1 = lnσ2

T + α+ βεT
σ2
T exp (α+βεT )

σ2
T

exp (α+βεT )+
∑T
τ=1 σ

2
τ

[16–18] σT+1 = γ(σT − α) + α+ βεT
(γ(σT−α)+α+βεT )2

(γ(σT−α)+α+βεT )2+
∑T
τ=1 σ

2
τ

[19] σ2
T+1 = γ(σ2

T − α) + α+ βεT
γ(σ2

T−α)+α+βεT
γ(σ2

T
−α)+α+βεT+

∑T
τ=1 σ

2
τ

[11] h(σ2
T+1, δ) = α+ γ(h(σ2

T , δ)− α) +
βεT

g(α+γ(h(σ2
T ,δ)−α)+βεT )

g(α+γ(h(σ2
T
,δ)−α)+βεT )+

∑T
τ=1 σ

2
τ

h(σ2
T+1, δ) = h(σ2

T , δ) + α+ βεT
g(h(σ2

T ,δ)+α+βεT )

g(h(σ2
T
,δ)+α+βεT )+

∑T
τ=1 σ

2
τ

Table 1. Forecasting the innovation probability of the following trading day using
stochastic variance models

In Yu et al. [11] the model involves the Box-Cox transformation of the
variance σ2

τ :

h(σ2
τ , δ) =

{
(σ2
τ )
δ−1
δ if δ 6= 0

lnσ2
τ if δ = 0

(15)
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and the innovation probability pT+1 the inverse Box-Cox transformation of the
variance σ2

τ :

g(h(σ2
τ , δ)) =

{
(1 + δ · h(σ2

τ , δ))
1
δ if δ 6= 0

exp(h(σ2
τ , δ)) if δ = 0

(16)

The latest model of Yu et al. [11] is a generalization of the previous, most
popular models:

• For δ = 0, the model of Yu et al. [11] becomes the Wiggins model [13].
• For δ = 0.5, the model of Yu et al. [11] becomes the Stein model [17].
• For δ = 1, the model of Yu et al. [11] becomes the Andersen model [19].

Combining the most appropriate model (the one with the best fit to our
data) with the Rogers-Satchell estimator:

Âge(XT+1) = (T + 1)p̂T+1 +

T∑
τ=1

τ
uτ (uτ − cτ ) + dτ (dτ − cτ )

σ̂2
T+1 +

∑T
τ=1 uτ (uτ − cτ ) + dτ (dτ − cτ )

(17)
where p̂T+1 are given from Table 1 and uτ , cτ , dτ are the quantities of Eq. (12).

In the case of the general model of Yu et al. [11] the transformed variances
are assumed to follow an Ornstein-Uhlenbeck process [11], which is a mean-
reverting process with parameters: α is the long-run variance, γ is the rate at
which the transformed variance h(σ2

τ , δ) reverts to α, β is the constant variance
of the Gaussian increment:

h(σ2
τ , δ)− γ(h(σ2

τ−1, δ)− α)− α (18)

In Zhang and King [20] we find Monte Carlo simulation techniques for
the estimation of the parameters α, β, γ, δ. The process with the independent
increments (18) assumes that the variances of an asset, or an index, revert to
a constant value α in the long-run. This is an empirical assumption [6] and for
statistically significant values of γ estimated to be close to 1 (as in [20]) the
model (19) can be simplified to assume that the variance increments

h(σ2
τ , δ)− h(σ2

τ−1, δ) (19)

are normally distributed, with constant mean and variance. This is the case
we examine in the following section. The most related work to this model
in the literature is the NARCH model of Higgins and Bera [21,22] where the
transformed errors of a time series follow an AR(p) process, generalizing the
ARCH and GARCH models of Engle [23] and Bollersev [24] respectively.

6 Application to Athens Stock Market General Index

We assume that the variance σ2
τ within each trading day is constant and we use

the Rogers-Satchell estimator (11) [9] which is more efficient than the classic
close-to-close estimator.
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δ p-value Decision δ p-value Decision

0,20 0,019 Reject 0,33 0,106 Accept

0,21 0,029 Reject 0,34 0,112 Accept

0,23 0,06 Accept 0,36 0,092 Accept

0,24 0,069 Accept 0,37 0,086 Accept

0,25 0,092 Accept 0,38 0,076 Accept

0,26 0,112 Accept 0,39 0,061 Accept

0,27 0,122 Accept 0,40 0,061 Accept

0,28 0,148 Accept 0,41 0,051 Accept

0,29 0,143 Accept 0,42 0,043 Reject

0,30 0,164 Accept 0,43 0,036 Reject

0,31 0,14 Accept 0,44 0,025 Reject

0,32 0,106 Accept 0,45 0,02 Reject

Table 2. The normality of the increments is tested for several values of δ using the
Kolmogorov-Smirnov test

0.25 0.30 0.35 0.40 0.45
∆

0.04

0.06

0.08

0.10

0.12

0.14

0.16

p-value

Fig. 1. The region δ ∈ [0.23, 0.41] involves transformed variances which are normally
distributed (with significance level 0.05). The highest p-value (0.164) is attained at
δ = 0.30

We found evidence that the variances σ2
τ the Athens General Stock Market

Index from 18th February 2009 to 17th February 2014 are determined by the
model:

h(σ2
τ , δ)− h(σ2

τ−1, δ) = α+ β · ετ (20)

where â = 0.0001, β̂ = 0.1016, δ̂ = 0.30 and ετ are Gaussian zero centered, unit
variance random variables.

We could not reject the hypothesis that the transformed variances h(σ2
τ , δ)−

h(σ2
τ−1, δ) of the Athens General Stock Market Index from 18th February

2009 to 17th February 2014 are normally distributed for δ ∈ [0.23, 0.41]. The
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Kolmogorov-Smirnov tests and their corresponding decision are shown in Table
2. Figure 1 shows the p-value of each Kolmogorov-Smirnov test corresponding
to each selection of the power δ. Data have been obtained from [25] and the
computations have been done in SPSS Statistics 20.

Fig. 2. Histogram of the transformed variances with the estimated normal curve, for
δ = 0.30

We report some of the statistics of the variable h(σ2
τ , 0.30)− h(σ2

τ−1, 0.30).
The sample has 1245 values having mean −0.0001, standard deviation 0.1016,
skewness 0.077 and kurtosis 0.556. The spectrum of the sample is in the interval
[−0.3348, 0.3339].

Corollary 2. The innovation probability pT+1 for the Athens stock market
general index is:

pT+1 =
σ2
T+1

σ2
T+1 +

∑T
τ=1 uτ (uτ − cτ ) + dτ (dτ − cτ )

(21)

where σ2
T+1 = 0.30

√
(uT (uT − cT ) + dT (dT − cT ))0.30 + 0.03εT .

Proof. The highest p-value (0.164) is attained at δ = 0.30, so the variance
evolution model is:

(σ2
τ )δ − 1

δ
−

(σ2
τ−1)δ − 1

δ
= α+ βετ (22)
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Fig. 3. Q-Q plot of the transformed variances for δ = 0.30

where α = −0.0001, β = 0.1016, ετ : zero mean, unit variance normally dis-
tributed random variable. Equivalently, (σ2

τ )δ − (σ2
τ−1)δ = δα + δβετ . There-

fore, the variance is σ2
τ = δ

√
(σ2
τ−1)δ + δα+ δβετ and the innovation prob-

ability pT+1 (21) is proved after substitution of the Rogers-Satchell estima-
tor (11) to the variances σ2

τ , τ = 1, 2, . . . , T and taking into account that
δα = −0.00003 ∼= 0.

From the definition of the internal Age (8), formula (9) and Corollary 2,
the internal Age computation is straightforward:

Corollary 3. The internal Age of the following trading day is:

Âge(XT+1) = (T + 1)p̂T+1 +

T∑
τ=1

τ
uτ (uτ − cτ ) + dτ (dτ − cτ )

σ̂2
T+1 +

∑T
τ=1 uτ (uτ − cτ ) + dτ (dτ − cτ )

(23)
where σ2

T+1 = 0.30
√

(uT (uT − cT ) + dT (dT − cT ))0.30 + 0.03εT and p̂T+1 is given
by Corollary 2.

The transformed variance increments (σ2
τ )δ − (σ2

τ−1)δ are expected to be
practically zero:

E[(σ2
τ )δ − (σ2

τ−1)δ] = E[δα+ δβετ ] = δα+ δβE[ετ ] = δα = −0.00003 ∼= 0

Therefore, we may apply Corollaries 2 and 3 in any period of T trading days
for the estimation of the innovation probability based on Corollary 2 (expected
innovation probability) and compare to the innovation probability estimations
based on Open, High, Low and Close prices. Moreover, we may also estimate
the internal Age, based on Corollary 3 (expected internal Age) and compare
to the internal Age estimations based on Open, High, Low and Close prices.
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Fig. 4. The innovation probability of the following trading day based on Open, High,
Low and Close prices (solid line). The expected innovation probability (dashed line)
is based on Corollary 2.
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Fig. 5. The internal Age of the following trading day based on Open, High, Low
and Close prices (solid line). The expected internal Age (dashed line) is based on
Corollary 3.

We apply previous analysis on March 2013. This month has an extreme
value related to the Cyprus bailout deal where large deposits were seized and
the second-largest bank closed [26].

Based on the previous 3 trading days and the available information at the
end of the present trading day (T = 4), we find the innovation probability and
the internal Age of the following trading day. The values Open, Close, High,
Low of the 5th trading day are not known yet and the expected innovation
probability and the expected internal Age are estimated from Corollaries 2 and
3 respectively. At the end of the 5th trading day, we estimate the innovation
probability and the internal Age using the Rogers-Satchell estimator (Corollary
1). The expected innovation probabilities (Corollary 2) are compared to the
innovation probabilities (Corollary 1) in Figure 4. The expected internal Age
(Corollary 3) is compared to the internal Age (Corollary 1) in Figure 5.
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The internal Age of 5 successive trading days in March 2013 attains its
maximum value at 27th March, i.e. one day after the announcement trading day
date (26th March 2013). Greek firms with large deposits in Cypriot banks and
projects running in Cyprus caused a strong impact on the Athens stock market
index. This impact is quantified through the innovation probabilities and the
internal Age of the corresponding dates demonstrating the high complexity of
this trading period.

The estimations close to the 27th of March 2013 are not satisfactory, due
to the external force that changed the dynamics of the stock value process. As
long as the prices fluctuate according to its own innovations, the prediction of
the innovation probabilities is satisfactory. The change in the dynamics was
caused by a political decision, unpredictable so far for many scientists.

7 Concluding Remarks

We used the Rogers-Satchell estimator of the daily variance, which is more
efficient than the classic close-to-close estimator and drift-independent. The
most recent variance estimator of Yang and Zhang [10] uses data from more
than one trading days.

From Corollary 3 we see that internal Age estimations are computed from
past variances, using the Rogers-Satchell estimator, and future variances, using
a model from Table 1. The most appropriate model is selected as the one with
best fit to the corresponding data.

In case the independent increments Zτ of Eq. (4) of the asset price dynamics
are not Gaussian, Mandelbrot [27] proposed the Pareto distribution to model
the changes in the logarithm of cotton prices. These distributions have infinite
variance:

V ar[Zτ ] = σ2
τ =∞ (24)

In case Eq. (24) is true, i.e. the increments Zτ of Eq. (4) have infinite
variance, the innovation probability is always 100%:

lim
σ2
T+1→∞

pT+1 =
σ2
T+1

σ2
T+1 +

∑T
τ=1 σ

2
τ

=
1

1 +
∑T
τ=1 σ

2
τ

σ2
T+1

→ 1 (25)

The prediction in such a complex environment is not expected to be suc-
cessful, no matter how many previous observations are used.

As shown in Figure 6, the survival function in logarithmic scale does not
fit to a straight line. Therefore, the Pareto distribution does not fit to the
differences of the logarithms of the closing prices.

In case the predicted variance σ̂T+1 of the following trading day is estimated
from a constant known value c (for example the 100-year average variance), Eq.
(14) is of the form:

p̂T+1 =
σ̂2
T+1

σ̂2
T+1 +

∑T
τ=1 σ̂

2
τ

=
c

c+ x
(26)
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Fig. 6. LogLogPlot of the survival function Prob[lnCt − lnCt−1 > k]
. Not power-law scaling.

Eq. (24) shows that periods of low uncertainty and variance (x→ 0) imply
high innovation probability p̂T+1 → 1 the following trading day. Moreover,
periods of high uncertainty and variance (x→∞) imply low innovation prob-
ability p̂T+1 → 0.

We estimated the innovation probabilities and the internal Age of the
Athens general stock market index observations during March 2013. The signif-
icant event associated with this month is the recent bailout program of Cyprus,
resulting to a severe local downward trend at the Athens General stock market
index. The high complexity (measured here from the innovation probabilities
and the internal Age) of specific trading dates is not affected by the sign of
the local drift, i.e. it does not matter whether the local trend is upward or
downward. We have recently illustrated the increasing distribution of innova-
tions as we approach the important Greek elections of June 2012 [4], leading
to an upward trend. The average innovation time is important for the risk
assessment of specific trading days.
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Abstract. Estimation of parameters for processes with independent increments is
many times effected exclusively through fitting an infinitely divisible distribution on
increments obtained from finitely many readings. Ignoring path properties, which
have been involved in data generation in the first place, must have negative effects.
Much work has been done to improve the quality of simulated data from that gen-
erated through cumulative sums of independent random variates. Exact simulation
tries to put in more realism about path properties. In this paper we study this situa-
tion within the simple context of Brownian motion, proposing two estimators which
incorporate properties related to path continuity. Results obtained from simulations
with data generated by various types of algorithms are compared and contrasted with
ones obtained from the less sophisticated variance estimator.
Keywords: estimation from stationary and independent increments, simulated paths
, continuity of paths.

1 Introduction

Parameter estimation, intended so as to help determine the type of stochastic
process one should use for specific data generating mechanisms, is common in
many applications of probability and statistical theory. Once the pioneers of
random processes paved a highway towards deep structural results within the
realm of the mathematically possible, effective use of stochastic models required
a number of tasks. One important statistical task centres around devising reli-
able algorithms to estimate parameters and functionals of particular processes
from a finite number of observations.

One widely used technique involved specifying a probability density func-
tion which captures the true distribution of the observations in a form which
facilitates the estimation problem. The stationary, independent increments
assumption, for example, simplifies many estimation tasks enormously by al-
lowing standard methods like maximum likelihood to take over. However this
type of assumption encapsulates much less than what would identify a partic-
ular process completely. Independent, stationary increments on their own are
not sufficient to force a process to be Lévy. We need right continuity of paths
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besides stochastic continuity. There are many processes which could provide
observations whose differences are effectively identically distributed, as well as
independent, but nowhere close to being the process we want. For example,
the class of all cumulative sums of centred normals with variance δt cannot be
identified with Wiener processes or with the class of all finite evaluations of
a continuous path chosen in compliance with Wiener measure and sampled at
discrete times. Similar considerations apply to Lévy processes.

2 Context

Rather than go for Lévy processes, we plan to take a step or two backwards
and limit ourselves to Brownian motion, which in its simplicity offers a neater
context to come to grips with the basics. We consider Brownian motion Bt,
t ∈ R+, observed as a finite sequence of readings over equally spaced intervals
of time at 0 = t0 < t1 < ... < tn = t. Random variables Bti have increments
Bti+1−Bti which are independent, centred, normally distributed with variance
σ2(ti+1 − ti). The purely distributional properties of the increments might be
what interests a statistician especially if he uses Brownian approximations to
complex estimators via Donsker’s theorem, or the Hungarian construction, to
mention but just two much used approximations.

From the stochastic processes point of view the estimation of a process ex-
clusively through increments loses a lot of information by ignoring the path
properties of the parent process. Processes which jump at fixed times ti in
normal increments are processes in their own right. Brownian motion is much
more than that; including, as it does, the possibility of fleshing itself out on
paths which are continuous with probability 1. We propose to study the dif-
ferences between two scale estimators, which somehow recognize this property,
with the classical one which ignores it.

The sequence of partial sums of centred iid normal random variables Sn =
n∑
i=1

Xi is a discrete-parameter stochastic process, which interests statisticians

for they come across it in many situations involving estimations of all sorts.
Donsker’s theorem tells us that this process can be approximated by Brown-
ian motion. We zoom on the differences between these two processes. Elemen-
tary theory tells us that max

0≤s≤t
Bs is distributed as |Bt|. And this result utilizes

continuity of the paths. The distribution of the maximum of Sn above, suitably
scaled, is different from that of |Bt|. Exact distributions of sum of indepen-
dent, identically distributed random variables are hard to come by and very
messy to establish. A number of published asymptotic results using Brownian
approximations are available. The level of dissatisfaction with random walk
approximations of this type as articulated in [1], has been brought to notice
more than once. We displace this argument slightly by asking ”What are we
missing when we estimate Brownian motion solely through the independent
increments assumption?”
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We develop this idea further by exploiting differences between the exact dis-
tributions for the maximum of finite sums and the Brownian running maximum
translated into statistics which depend on path continuity in the Brownian case.
We quote some results and supply an accompanying graph:

E[ max
1≤i≤n

Si] =
σ√
2π

n−1∑
i=1

1√
i

(1)

E[ max
1≤s≤t

Bs] =

√
2t

π
(2)

Fig. 1. Increase in Expected Maximum of Sums with no of terms n

The first equation is proved in [7]. We note that the expectation for the
Brownian expression is always greater than for finite sums suitably scaled;
σ = 1√

n
. We note how slow is the convergence of the finite sums to 1√

2π
≈

0.797884560802865. At n = 100000 the sum equals 0.796040232112369 . The
emphasis on continuous paths for getting from one time instant to the next,
enforced probabilistically by Wiener measure, lifts the expectation of the max-
imum value slightly higher than if we performed independent jumps at each
time instant.
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In a precise sense these problems have to be analysed in reverse within
the context of simulation. Generating sample values, which are supposed to
come from a Brownian process through independent normal increments, is very
approximative. In some applications this just will not do.

3 Accurate Simulation of Brownian Paths

Simulated Brownian paths have many uses. Not only are they used in replicat-
ing physical and virtual phenomena which resemble Brownian motion, but they
are used extensively in complex computations of various statistical functionals
for which explicit analytical formulas are not known or not easily computable.
High frequency financial data, for instance, needs to be collected and analyzed
in a particular manner with a close watch on running maxima and local min-
ima. This will enable modelling and pricing of barrier options products which
constitute but one example as mentioned in [1]. In such cases the evaluation
of functionals of Brownian paths needs to be carried out with high precision,
not only in financial and actuarial applications but in others within the natural
sciences.

The ability to replicate running maxima and minima credibly is therefore
one feature which would be requested from simulations of Brownian motion.
As we have noted the behaviour of these two extremes depend a lot on the
continuity of paths. Reproducing faithfully maxima and minima has motivated
a lot of work aimed at producing algorithms which are marketed as giving
”exact” simulations. Much ingenuity has been displayed recently resulting
in new developments this area. Actually most research has targeted more
generally diffusion processes, with crucial input of techniques from importance
and rejection sampling [3].

Our interest in simulation stems more from the fact that we would like to
test our estimators using good simulated data. One cannot test accurately
the quality of an estimator if the data on which the testing is effected is not
exactly what it is supposed to be : random selections from a Brownian motion
in our case. One of the arguments being pushed in this paper is that poorly
representative simulated data may favour weaker algorithms, because certain
important features, like properties inherited from continuity of paths, would
be missing in the readings which will be used for calibration and evaluation
purposes. So we settled for four methods, two which ignore continuity of paths,
and two which have continuity inbuilt in their construction.

Furthermore we shall use data generated by four different algorithms:

• using cumulative sums of normal iid rv’s [IID]

• using Brownian bridge interpolations [BB]

• using a Fourier series expansion of the sample paths [FS]

• using first passage times to construct an ”exact algorithm” [EX]

The first algorithm needs no comment. The second consists of a random
N(0, 1) end-point at t = 1 , with mid-points being generated as points of a
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Brownian bridge in the manner of Lévy’s construction. The third is imple-
mented through the series expansion:

Bt = tZ0 +

√
2

π

∞∑
n=1

Zn
n

sinnπt, 0 ≤ t ≤ 1

Continuity of paths is inbuilt through the series of functions, though con-
tinuity of the limit path would be assured only in the presence of uniform
convergence. The fourth algorithm would be classified as an ”exact” simula-
tion. It uses a rejection algorithm as developed in [5] for the generation of a
sequence of hitting times of Brownian motion as it crosses fixed boundaries
starting from zero. The position of the path at intermediate time points ti are
worked out using the distribution of Brownian bridge which is boxed in value
between the values of the boundaries within which the path lives. The relevant
distributional result is given further down in this paper.

4 The Wiener Measure

Sampling paths of a Wiener process randomly means that the probability of a
given measurable set of paths being picked up is precisely the Wiener measure
of that set. Individual paths have Wiener measure 0; let alone paths which pass
through finitely many points at given corresponding instants of time. Being
unable to go directly for Wiener measure, we have to hook on to it through
particular properties of Brownian motion. Gaussianity of the finite-dimensional
distributions of a process is a very important central property, but not sufficient
to declare the process to be Wiener. So, as we have indicated, we shall somehow
insist on continuity of the paths. Continuity of paths, when the readings are
at finitely many points, obviously cannot be imposed directly. So we look
for properties which continuity imposes on the behaviour over time on the
process, and which are recoverable from, and reflected in, the running maxima
and minima processes. Denoting these processes by Mt = max

0≤s≤t
Bs and mt =

min
0≤s≤t

Bs, respectively, the technique for using, as well as enforcing, continuity

properties on the paths is to box individual paths between these two processes
and relate the three processes probabilistically. We shall need some important
results relating to the above, which we now state. First we give two forms of
the joint distributions of (mt, Bt,Mt) for a ≤ x ≤ b, and a ≤ 0, b ≥ 0:

P[mt ≤ a,Bt ∈ dx,Mt ≥ b] =
dx

σ
√

2πt
e

−(x−2(M−m))2

2σ2t (3)

P[mt > a,Bt ∈ dx,Mt < b] =
dx

σ
√

2πt

∞∑
k=−∞

e
−(x+2k(b−a)2)

(2σ2t) − e
−(x−2a+2k(b−a))2

(2σ2t) (4)

By marginalizing through Bt we obtain the conditional distribution function
for the running maximum and minimum:
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P[Mt ≥ b,mt ≤ a|Bt = x] = exp

(
2(b− a)(x− 2(b− a))

σ2t

)
(5)

We obtain a formula for Wiener measure on C([0, 1]) suitably augmented
by a set of probability 0, which we denote by PW, by integrating out x from a
to b to obtain:

PW[{f ∈ C([0, 1] : a < f(s) < b,∀s s.t. 0 ≤ s ≤ t}] =
∞∑

k=−∞

Φ

(
b+ 2k(b− a))

σ
√

2πt

)
− Φ

(
a+ 2k(b− a))

σ
√

2πt

)

+

∞∑
k=−∞

Φ

(
b− 2a+ 2k(b− a))

σ
√

2πt

)
− Φ

(
a− 2a+ 2k(b− a))

σ
√

2πt

)
(6)

These formulas will be found in various forms and variants in [2]. The last
one is of particular interest to us. It has been known since the classical book by
Feller on probability theory, not to mention Lévy’s book on stochastic processes
published in the 1940’s. We shall denote the probability above in this formula
by ΨW(a, b, t, σ). Though it involves a series, the formula it is derived from,
namely (4), converges uniformly in x ∈ [a, b] and does so very fast [6].

5 The Estimators

We propose now to take on an estimation problem for which the classical
method, using exclusively distributional properties of independent increments,
should be unbeatable. Not only does it exhibit unbiasedness but it achieves the
Cramér-Rao minimum. We consider estimation of the variance σ2 for which we
devise two estimators which take continuity of paths into consideration. Such
estimators should be more useful in estimation problems for linear and nonlin-
ear diffusions. Generalizing this work to diffusions should be straightforward.
It will not be attempted here, but left for future work because generalization
will only make the notation and formulas so much more complicated as to
hide the real issues. Since most results are asymptotic, sample size and dis-
cretization errors exert a strong influence. Largely we stay within the scope of
maximum likelihood estimators. Such estimators are not unique in general. In
some cases, more than one likelihood function can be used fruitfully. In our
case we shall involve the running maximum and minimum in one estimator and
the Wiener measure in the other, so as to factor in constraints which continu-
ous paths satisfy.
Denoting increments by Xi = Bti − Bti−1

and letting Mi = max
0≤i≤n

Bti , mi =

min
0≤i≤n

Bti we write the joint density function using the usual iid assumption

and multiply in the conditional distribution function from (5) :
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1

(
√

2πσt)n
exp

(
−1

2σ2δt

n∑
i=1

X2
i

)
exp

2(Mn −mn)(Bn − 2(Mn −mn))

tσ2

We generate our first estimator as the maximizer of the log likelihood:

σ̂2
1 = arg min

s2

[
n log(s) +

1

2δts2

(
n∑
i=1

X2
i −

4

n
(Mn −mn)(Bn − 2(Mn −mn))

)]
(7)

For the second estimator we involve the Wiener measure by maximizing the
probability that the path is included within the latest values of the maximum
and minimum:

σ̂2
2 = arg min

s2

[
n log(s) +

1

2δts2

(
n∑
i=1

X2
i

)
− log(Ψ(mn,Mn, t, s))

]
(8)

These two estimators introduce continuity of paths by stealth, as it were.
They penalize parameter estimates which distributionally make current sample
values of the running maximum and minimum less likely in two different senses.
In this sense they can be considered as being of the maximum likelihood type.
In fact the usual properties can be proved to be asymtotically true but we shall
not indulge in this here.

6 Estimator Performance

We proceed to discuss how we shall test the performance of the estimators.
It is customary to evaluate the qualities of estimators in terms of the usual,
simple statistical properties like unbiasedness and efficiency. We shall indeed
compute means and variances over large samples. Furthermore as benchmark
performer we shall take the likelihood-based, common unsophisticated variance
estimator :

σ̂2
0 =

1

nδt

n∑
i=1

X2
i (9)

Theoretically this is an unbiased, minimum variance estimator- but only rel-
ative to the information which we use in constructing it. This information
excludes any reference to continuity of paths. Unexpected departures from its
proven properties will make us uncomfortable about the quality of the data
on which we are testing. So the usual statistical properties are worth check-
ing. However, from a more pragmatic point of view, in many contexts there are
other criteria in evaluating estimation procedures which would be more crucial.
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Especially within financial modelling exercises, the more frequently closer
to the true value, in absolute terms, the individual estimates are, the much
better the estimators are to be considered. This observation leads us to for-
mulate a criterion that estimators which have a higher probability of giving
estimates closer to the true values than others are somehow to be preferred.
Roughly speaking, we judge estimators which have higher rates of convergence
in achieving consistency to be preferable. More precisely, given estimators
θ̂1, θ̂2, if P[|θ̂1 − θ| > |θ̂2 − θ|] > 0.5 then we declare θ̂2 to be preferable;
more than 50 % of all samples should give θ̂2 estimates which are closer to the
true value. We shall investigate how this probability changes as the number of
observations over a time interval of the same length increases.

In our setting, again for the sake of transparency, we take σ2 = 1 and
the time interval is [0, 1] with n equally spaced instants at which we have the
observations Bi. Four sets of data were generated by the corresponding four
algorithms mentioned earlier. Each set consists of four collections of outputs
from 1000 simulated ”paths”. The difference between the collections is the
frequency at which the paths were measured. These frequencies correspond to
the four values n = 100, 200, 500 and 1000 ( 128, 256, 512 and 1024 for DS2)
giving equally spaced time instants 0, 1

n , ....,
n
n over the unit time interval. DS1

was generated using algorithm IID, DS2 using BB , DB3 using FS and DB4
using EX. Each sequence of n readings, corresponding to one path was used to
give estimates for σ2 by each of the three methods described above.

7 Estimation Results from Simulations

Table 1 gives us the usual statistical measures for estimates from the benchmark
estimator. As far as DS1 and DS2 are concerned, everything is as expected.
Only the distributional properties of Brownian motion are taken into consider-

ation by the simulating algorithms and σ̂2
0 picks them up well enough. From

DS3 and DS4, however, we see actually a deterioration of the estimate means
as the sample size increases! The situation with the variance is also worse than
for the other 2 algorithms. This evidence indicates that the closer the data
generating mechanism follows the behaviour of selections from Brownian mo-
tion, the less faithfully are usual distributional properties observed because of
discretization.

Tables 2 and 3 reveal that the behaviour of σ̂2
1 is statistically very similar

to that of σ̂2
2. The second estimator is consistently more accurate and has

less variability within its results for the datasets which represent Brownian
motion worst. We also see that increasing sample size improved the quality

of the estimates throughout. Compared to results for σ̂2
0 we see that on DS3

and DS4 the two proposed estimators are indeed superior even though not by
much. Considering that we are comparing performances on territory on which

σ̂2
0 should reign supreme, the two estimators have done well.
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Estimator σ̂2
0

No of obs DS1 DS2(*) DS3 DS4

Mean Variance Mean Variance Mean Variance Mean Variance
1000 0.99989 0.000498 0.99978 0.000504 0.97924 0.000921 0.98390 0.007510
500 0.99803 0.000985 0.99838 0.000993 0.98900 0.001048 0.99140 0.000981
200 1.00099 0.002279 0.99648 0.001991 0.99452 0.002518 0.99530 0.002300
100 0.99662 0.005442 0.99950 0.003980 0.99407 0.005551 0.99602 0.004811

Table 1. Means and Variances of σ̂2
0 on All Datasets.

(*) sample sizes for DS2 were in fact 1024, 512 , 256 , 128

Estimator σ̂2
1

No of obs DS1 DS2(*) DS3 DS4

Mean Variance Mean Variance Mean Variance Mean Variance
1000 1.00477 0.000550 1.00493 0.000558 0.98477 0.000770 0.98930 0.006344
500 1.00822 0.001190 1.00872 0.001201 0.99910 0.001054 1.00150 0.001113
200 1.02424 0.003561 1.01710 0.002761 1.01835 0.003410 1.01940 0.003400
100 1.04560 0.010754 1.03711 0.007026 1.03762 0.009348 1.04358 0.009627

Table 2. Means and Variances of σ̂2
1 on All Datasets.

(*) sample sizes for DS2 were in fact 1024, 512 , 256 , 128

Estimator σ̂2
2

No of obs DS1 DS2(*) DS3 DS4

Mean Variance Mean Variance Mean Variance Mean Variance
1000 1.00277 0.000507 1.00252 0.000507 0.98204 0.000824 0.98690 0.006660
500 1.00333 0.001001 1.00374 0.001056 0.99440 0.000961 0.99700 0.000986
200 1.01595 0.002589 1.00725 0.002130 1.00861 0.002625 1.00910 0.002400
100 1.02938 0.007224 1.02345 0.005010 1.02854 0.007669 1.03122 0.007269

Table 3. Means and Variances of σ̂2
2 on All Datasets.

(*) sample sizes for DS2 were in fact 1024, 512 , 256 , 128

Finally we consider direct confrontation between our estimators and the
benchmark. Table 4 gives very clear indications. For relatively low frequency

data, the increase in information which is incorporated in σ̂1
2 fails to beat the

robust performance of the benchmark especially on the latter’s home territory
with data generated by IID and BB. For high frequency however the tables

are turned with a remarkable increase in precision of σ̂2
1. Over 70% of the

estimates from σ̂2
1 come closer to the true value than the benchmark.

Table 5 gives the same message as the previous one. It actually displays

the excellent performance throughout of σ̂2
2 which does better than σ̂2

1. This
in a sense was to be expected. Sampling from Brownian paths should reflect

Wiener measure. And σ̂2
2 tries to favoor parameter estimates which do exactly

that directly.



42 L. Sant

Dataset DS1 using IID
No of obs 1000 500 200 100
Probability 0.452 0.461 0.408 0.406

Dataset DS2 using BB
No of obs 1024 512 256 128
Probability 0.461 0.467 0.451 0.391

Dataset DS3 using FS
No of obs 1000 500 200 100
Probability 0.787 0.574 0.464 0.409

Dataset DS4 using EX
No of obs 1000 500 200 100
Probability 0.719 0.569 0.434 0.401

Table 4. Estimated probs of Estimator σ̂2
1 Giving Closer Estimates than σ̂2

0

Dataset DS1 using IID
No of obs 1000 500 200 100
Probability 0.486 0.512 0.451 0.481

Dataset DS2 using BB
No of obs 1024 512 256 128
Probability 0.491 0.507 0.497 0.451

Dataset DS3 using FS
No of obs 1000 500 200 100
Probability 0.799 0.631 0.516 0.475

Dataset DS4 using EX
No of obs 1000 500 200 100
Probability 0.743 0.607 0.509 0.466

Table 5. Estimated probs of Estimator σ̂2
2 Giving Closer Estimates than σ̂2

0

8 Conclusion

The aim of this paper was to study ways in which incorporating path properties
of a process, whose parameter is being estimated, improves estimator perfor-
mance. This was implemented on a simple setting involving Brownian motion.
Given the discrete structure of data available in many applications, knowledge
of what happens between actual readings is missing. But that does not mean
we do know what should happen probabilistically. The two estimators we pro-
posed incorporates features which respond to path continuity features. And
the results indicate that for high frequency data, the estimators are superior.
When the time gap between readings is longer the effect of what should happen
in between seems to relax. For empirical of analysis financial data this should
have repercussions.
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Abstract. Estimation of Lévy processes with the use of the characteristic function
has lately shifted much of its attention to nonparametric settings. However the para-
metric context still offers scope for study. The nature of neighbourhoods of the min-
ima sought for by the integrated square error estimator (ISEE), and its variants, could
be meaningfully related to a number of useful properties possessed by the estimator.
Furthermore the numerical problems associated with the actual computation of pa-
rameter estimates have not been given exhaustive attention. In this paper through
a slight reformulation of the ISEE formula, local geometric features of the optimal
solution used in ISEE are studied. This formulation is subsequently proposed within
a stochastic programming framework. The latter provides a powerful, productive
methodology and an alternative theoretical framework which are entertained within
this study. Results are presented and discussed.
Keywords: Lévy Processes, Characteristic Function, Stochastic Programming.

1 Introduction

In recent decades, there has been a sharp rise of interest in the study of Lévy
processes. Evidence of this is given by the extensive amount of literature which
has been focused not only on the application of Lévy processes in various fields
− most prominently in finance − but also on parameter estimation problems.
Some of the methods of estimation found in literature minimize some form of
distance function that involves the characteristic function of a Lévy process
and its empirical counterpart. As discussed in Sant and Caruana [9], the use
of the empirical characteristic function in the parameter estimation problem
causes a number of computational issues triggered by oscillatory integrands.
Weight functions are usually used to control these oscillations thus reducing
computational problems. However, there is no link between the choice of the
weight function and the characteristic function. In response to this problem,
the stochastic programming framework will allow the use of some properties
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of the characteristic function of continuous probability distributions to address
the above mentioned computational issues. Throughout this paper we shall be
using only continuous probability distributions.

2 Context

Given Lévy process (Zs)s∈R+
, with independent and identically distributed

increments which we denote by Xj , j = 1 . . . , n, we define the corresponding
characteristic function ρ(t,θ(s)) = E[exp(itZs)], where for each s, θ(s) ∈ Rd is
the vector of parameters which the process inherits from the infinitely divisible
distribution corresponding to random variable Zs. Usually, little time is spent
to consider the shape that this vector of parameters can take. We note that
ρ(t,θ(ns/m)) = E

[
exp(itZns/m)

]
= ρ(t,θ(s))n/m from the infinite divisibility

property forces ρ(t,θ(s)) = ρ(t,θ(1))s.
This functional equation is of the Pixeder type and does not allow any type of
parametrization. In fact, the Lévy-Khintcine and Lévy-Itô formulas propose
their own parametrizations related to specific measure-theoretic and functional
relationships. We address ourselves more to the parametrizations which are in
common use and which in many cases have to obey certain structures before
the corresponding family of distributions can be declared infinitely divisible (eg.
the gamma distribution has to have its second parameter constant to achieve
infinite divisibility). Using the polar representation we can write:

ρ(t,θ(s)) = R(t,θ(1))s exp[isϑ(t,θ(1))] = ρR(t,θ(s)) + iρI(t,θ(s))

and we see that R(t,θ(s)) = R(t,θ(1))s and sϑ(t,θ(s)) = sϑ(t,θ(1)).
In fact inspecting the usual parametrizations for the common distributions, sta-
ble distributions, extreme value distributions and mixtures the relationships for
the components of θ are of the form: θj(s) = as or θj(s) = a.
In what follows we shall work with ρ(t,θ(∆s)) where ∆s is a fixed time incre-
ment separating increments Xj obtained from readings of a Lévy process with
corresponding characteristic function which we shall denote from now onwards
as ρ(t,θ). Furthermore it makes sense that as a minimal assumption we take
continuity of ρ with respect to θ on some compact subset K ⊆ Rd whereon θ is
allowed to vary. In effect estimations over unbounded subsets are in practice,
not only hypothetical, but also impractical.
Next, we look at the problem of parameter estimation through the use of the
characteristic function but with an unusual choice of objective function for min-
imization. In fact the corresponding problem can be reframed as a stochastic
programming one.

3 Applying the Stochastic Programming Framework

A stochastic program can be written in the form

arg min
θ
{f(θ) = E[F (θ, X)]}, (1)
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and we shall formulate the location of the true parameter θ0 from Xj in this
way.
For t ∈ R, θ ∈ K dropping the suffix for a general Xj we have the random
functions:

F (t,θ, ω) = |eitX(ω) − ρ(t,θ)|2 − 1

= ρ2R(t,θ) + ρ2I(t,θ)− 2 cos(tX(ω))ρR(t,θ)− 2 sin(X(ω))ρI(t,θ)

with corresponding bounded functional f for bounded distribution functions
W over R+ defined as follows:

f(θ) =

∫ ∞

0

E[F (t, θ)]dW (t) = E
[∫ ∞

0

F (t,θ)dW (t)

]
=

∫ ∞

0

{ρ2R(t,θ) + ρ2I(t,θ)− 2ρR(t,θ0)ρR(t,θ)− 2ρI(t,θ0)ρI(t,θ)}dW (t)

The above expectation can be approximated by making use of the set of pre-
viously defined increments Xj , which give rise to the following sequence of
random elements with values in C(K) :

Fn(θ, ω) =
1

n

n∑
j=1

∫ ∞

0

(∣∣∣eitXj(ω) − ρ(t, (θ))
∣∣∣2 − 1

)
dW (t) (2)

=
1

n

n∑
j=1

Gj(ω,θ) (3)

We assume that ρ(t,θ), and hence all functions F , f , Fn, are continuous with
respect to θ as it varies on a compact, metrizable set K ⊆ Rd. Hence, all
functions can be considered as elements of C(K), the space of continuous func-
tions on K, which we recover as a separable Banach space under the supremum
norm, which we denote by ‖ • ‖, where ‖F‖ = supθ∈K |F (θ)|.
Next, we determine the asymptotic behavior of Fn in the following theorem.
Later we shall see that Fn can be used to approximate the stochastic program-
ming problem defined in (1).

Theorem 1. The sequence of random elements Fn(θ, ω) converges P a.s. and
in Lp to f(θ). Furthermore under the condition that there exist constants C1,
C2 such that for all θ1 θ2 ∈ K:

|ρR(t,θ2)− ρR(t,θ1)| ≤ C1‖θ2 − θ1)‖
|ρI(t,θ2)− ρI(t,θ1)| ≤ C2‖θ2 − θ1)‖

the sequence Fn(θ, ω) obeys the CLT:
√
n[Fn(θ, ω)− f(θ)] converges in distri-

bution to a Gaussian random element.

Proof.
The inequality ‖Gj(ω, •)‖ = supθ

∫∞
0
{| exp(itXj(ω) − ρ(t,θ))|2 − 1}dW (t) ≤

supθ

∫∞
0

3dW (t) = 3. This ensures that ∀j, E[‖Gj‖p] < ∞, ∀p ≥ 0. By the
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Strong Law of Large numbers for iid random variables with values in Banach
spaces, the P a.s. limit of Fn(θ, ω) is the expectation of each Gj which is f(θ).
Using the Dominated Convergence theorem we can deduce that convergence
occurs also in Lp for p ≥ 1 where we use results first obtained by Fortet and
Mourier [1] and proved in detail in Ledoux and Talagrand [6], Corollary 7.10.
We need distributional results and something about rates of convergence. These
are usually supplied by the CLT. However, the CLT does not hold for Banach
space-valued random elements with only the iid and finite variance assump-
tions. For C(K)-valued random variables the CLT is assured under special
conditions. Broadly speaking the condition that guarantees convergence of the
CLT type is that the corresponding measures can be supported on a Hilbert
subspace. We adapt them for our circumstances by using a Lipshcitz type con-
dition which needs only concern the characteristic function under study.
The random function θ →

∫∞
0
F (t,θ, ω)dW (t) is bounded in L2(K) and it is

Lipschitz continuous:
|F (t,θ2, ω) − F (t,θ1, ω) ≤ 2|ρR(t,θ2) − ρR(t,θ1)| + 2|ρI(t,θ2) − ρI(t,θ1)| +
|ρ2R(t,θ2)− ρ2R(t,θ1)|+ |ρ2I(t,θ2)− ρ2I(t,θ1)| ≤ 4(C1 + C2)‖θ2 − θ1‖.
The Gj(ω,θ)’s are independent copies of the random element above. Results
for the CLT in Banach spaces as given in Jain and Marcus [3] allow us to
conclude that suitably scaled and centered, the averaged random sequence of
functions

√
n [Fn(θ)− f(θ)] converges in distribution to a random element of

C(K). More precisely we have weak convergence to a Gaussian probability
measure in the space of Borel probability measures on C(K). Furthermore the
corresponding variance is

Var

[∫ ∞

0

{
|exp(itX)− ρ(t,θ)|2 − 1

}
dW (t)

]
.

�
Since Fn(θ, ω) converges P almost surely to f(θ) then it makes sense to solve
the following program:

arg min
θ

Fn(θ, ω) =
1

n

n∑
j=1

∫ ∞

0

{|exp(itxj)− ρ(t,θ)|2 − 1}dW (t)

 (4)

as an approximation to (1) and use corresponding methods to approach the
required solution. The link is provided by the functional ψ(g) = infθ∈K g(θ). ψ
shares some geometrical properties with the norm, but clearly it is not linear. It
is in fact the minimum of linear functionals, all of whom are elements ofM(K),
the dual of C(K), which is the space of all Radon measures on K. Furthermore,
ψ is concave and hence is Hadamard differentiable at any g ∈ C(K).
Although we know that Fn(θ, ω) converges P a.s. to f(θ), we still need to show

that as the number of increments increases then θ̂ = arg minθ(Fn(θ, ω)) will
approach the true value θ0 = arg minθ(f(θ)). This result is proven in theorem
2.

Theorem 2. The sequence of random variables ψ(Fn(θ, ω)) = infθ∈K Fn(θ, ω)
converges in probability to the constant f(θ0) =

∫∞
0
|ρ(t,θ0)|2dW (t).
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Furthermore ψ(Fn(θ, ω)) − f(θ0) = oP(1) and limn→∞ arg minθ Fn((θ), ω) =
θ0.

Proof.
For a fixed ω, the function F (t,θ, ω), being quadratic in ρR and ρI , achieves its
minimum value when ρR = cos(tX(ω)) and ρI = sin(tX(ω)) which in general
may have no solution or more than one. On the other hand, E[F (t, θ)] being
quadratic in ρR and ρI , achieves its minimum value when θ = θ0. Unicity of
characteristic functions assures uniqueness of this minimum F (t,θ0). It follows
that for f(θ) we have:

inf
θ∈K(F )

∫ ∞

0

E[F (t,θ)]dW (t) = f(θ0).

We are interested in the subdifferential ∂ψ at our special function f . In effect
for g ∈ C(K), ∂ψ(g) is a set of elements ofM(K), which following proposition
4.5.18 in Gasinski and Papageorgiou [2] we proceed to describe. It is the set of
all positive Radon measures of total mass 1 concentrated on the points where
g attains its minima:
∂ψ(g) = {µ ∈ M(K) : µ ≥ 0 & 〈µ, 1〉 = 1 & supp(µ) ⊆ {θ ∈ K : ψ(g) =
g(θ)}}
Evaluated at our special function f , this subdifferential becomes: 〈∂ψ(f), h〉 =
infθ∈K(f) h(θ).
Thus ∂ψ(f), operating on h, returns the minimum of h restricted to the points
where f achieves its minimum. In our case this happens at the single point θ0.
Using the Delta Method theorem for normed spaces, discussed in van der Vaart
[10], with the Hadamard differentiable map ψ operating on the convergent series
of random elements Fn(θ, ω) we get the convergence in probability results. The
last limit follows from unicity of all minima involved.

�
This theorem assures us that, as the sample size increases, locating the value
of θ which minimizes the sample value Fn(θ, ω) will get us closer to θ0 =
arg minθ∈K f(θ). This brings us securely to stochastic programming territory.
In fact, the problem minθ Fn(θ, ω) can be considered as a two-stage stochastic
program.
In the following section we discuss a method by which this stochastic program
can be solved.

4 Solving the Stochastic Program

A number of different methods can be used to solve two-stage or multi-stage
stochastic programs. Shapiro [8] solves multi-sage stochastic programs with a
linear objective function and linear constraints by making use of the Stochastic
Dual Dynamic Programming Algorithm (SDDP) which in turn was introduced
by Pinto and Pereira [7]. Shapiro argues that the backward step of the SDDP
is the standard cutting plane algorithm and applied it to the problem he was
studying. However Kelly’s [5] cutting plane algorithm was designed on the
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assumption that the objective function is convex over the feasible region. The
objective function Fn(θ, ω) is not convex in general and hence Kelly’s cutting
plane algorithm cannot be used. The way forward is to replace the cutting
plane algorithm with another method which can handle non-convex objective
functions. The algorithm proposed by Karmitsa et. al. [4] still makes use of
cutting planes and furthermore can be used for non-convex and non-smooth
objective functions. The original minimization problem is first converted into
a program with a linear objective function while the non-linearity and non-
convexity of the original problem are moved to the constraint as shown below:

arg min
θ,z
{z|Fn(θ, ω)− z ≤ 0} (5)

Next, a sequence of auxiliary linear problems is built where the constraint in (5)
is approximated by a number of cutting planes. During each iteration a search
direction for the auxiliary problem is computed using the Feasible Direction
Interior Point Method (FDIPM).
In the following section the performance of the method of estimation discussed
in this paper is compared with that of other methods of estimation found in
literature.

5 Simulation Results

Increments of three distinct Lévy processes were simulated using three differ-
ent probability distributions. Using these increments, the parameters of the
characteristic function of each distribution were estimated using not only the
stochastic programming framework discussed above (which from now on we
denote by SPM) but also other commonly used methods such as the method of
maximum likelihood (MLE) and the Integrated squared error estimator (ISEE).

When the integrand in (4), i.e.
{

1
n

∑n
j=1 |exp(itxj)− ρ(t,θ)|2 − 1

}
is com-

pared with the integrand in the ISEE, i.e.
∣∣∣ 1n ∑n

j=1 [exp(itxj)]− ρ(t,θ)
∣∣∣2, one

can easily show that for continuous distributions, the former goes to zero as
t → ±∞, while the latter does not and keeps on oscillating within a band as
t→ ±∞. This indicates why our estimator behaves more smoothly.
The probability distributions chosen for these simulations are: the Stable dis-
tribution with parameters (α = 0.4, β = 0.5, σ = 1, µ = 3), the gamma distri-
bution with parameters (α = 2, β = 3) and an extreme value distribution: the
Gumbel distribution with parameters (µ = 7, β = 0.05). The results obtained
for the stable distribution using SPM were compared with the ISEE. Table 1
contains the simulation results of the parameter estimates for the stable dis-
tribution. The weight function which is necessary in ISEE was chosen to be
exp(−t2). The limits of integration in the SPM and ISEE are taken from 0 to
some constant T . In particular, two different values of T were chosen, namely,
10 and 20.

It is evident from table 1, that for both values of T , the estimates obtained
from SPM have less bias and less variance than the estimates obtained from
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T α̂ β̂ σ̂ µ̂ α̂ β̂ σ̂ µ̂

Estimates using SPM Estimated Variance

10 0.41296 0.50995 0.96899 3.05113 6.589E-05 0.01278 0.00044 0.00100
20 0.40541 0.50131 1.00343 3.03293 2.640E-05 0.01284 0.00013 0.00023

Estimates using ISEE Estimated Variance

10 0.29874 0.49235 0.92826 3.14041 0.01793 0.00900 0.022675 0.02989
20 0.29923 0.49821 0.93229 3.13334 0.01630 0.01525 0.021106 0.02888

Table 1. Estimates for the Lévy Stable process.

ISEE.
Next we compare the results obtained for the Gumbel and Gamma distribu-
tions. In this case the estimates are compared with the simulations results
obtained by using the method of maximum likelihood.

Gamma (2, 3) Gumbel (7, 0.5)

SPM Estimates Variance Estimates Variance

10 2.00259 2.99445 0.00044 0.001443 6.99779 0.04955 2.284E-07 9.05E-08

20 2.00052 2.99996 0.00035 0.001221 6.99924 0.04977 1.670E-07 8.63E-08

Estimates Variance Estimates Variance

MLE 2.00103 2.99498 0.00039 0.00142 6.99993 0.049926 1.455E-06 6.96E-07

Table 2. Estimates for the Gamma and Gumbel distribution.

It appears from table 2 that the results obtained from the method of maximum
likelihood are comparable with the results obtained from the SPM method. In
some cases, in particular when T = 20, the estimates obtained by the SPM for
the Gamma distribution appear to be slightly better than the results obtained
by the MLE. Furthermore the SPM estimates for the Gumbel distribution ap-
pear to have less variance.

6 Conclusion

The aim of this paper was to propose a method of parameter estimation that
makes use of the stochastic programming framework as well as the properties
of the real and imaginary parts of the characteristic function. These features
reduce the computation problems triggered by the oscillatory nature of the
empirical characteristic function. This enabled us to work with integrands
whose behaviour was controlled nicely for numerical procedures to converge
conformably. It was shown that as n → ∞ the optimal solution of the pro-
posed stochastic program approaches P a.s. the true vector of parameters.
Furthermore, when compared with other methods of estimation, such as ISEE
and MLE, the SPM was found to give better results when compared to former
and gave comparable results to the latter. However, contrary to the MLE,
the SPM is particularly useful when dealing with probability distributions, like
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most infinitely divisible distributions or most stable distributions, whose den-
sity function is not known in closed form.
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Bratislava, Slovakia
(E-mail: Jozef.Komornik@fm.uniba.sk)

2 Faculty of Civil Engineering, Slovak University of Technology, Radlinského 11,
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Abstract. In this paper, we extend our investigations of a special class of pertur-
bations of copulas introduced in [6] as a partial generalization of Farlie – Gumbel
– Morgenstern (FGM) class of copulas (for non–negative values of perturbation pa-
rameters). We construct an extension of such generalization for negative values of
perturbation parameters and show that this kind of perturbations does not change
the value of tail dependence of the original copulas. Subsequently we apply the stud-
ied class of perturbed copulas to modelling relations between returns of a investments
in a selected important REIT indexes. We show that the optimal models for different
pairs of indexes can be found in form of perturbations corresponding to both positive
or negative values of perturbation parameters.
Keywords: Copula, Perturbation of copula, Tail dependence, Real Estate Invest-
ment Trust (REIT) index, Returns of REIT indexes.

1 Introduction

The notion of copula was first introduced by Abe Sklar (1959) [9] in a mathema-
tical (statistical) sense. Sklar proved the theorem (Sklar’s theorem) describing
the copula function which build a multivariate distribution function from the
marginal distribution functions. Since the introduction of copulas, they have
gained a lot of popularity in several applied fields - like economy, finance, in-
surance, engineering, medicine, sociology.

Fitting of an appropriate copula to real data is one of major tasks in ap-
plication of copulas. For this purpose, a large buffer of potential copulas has
been designed (mainly parametric families) of copulas. Once we know approx-
imately a copula C appropriate to model the observed data, we look for a
minor perturbation of C which fit better then C itself. This is, e.g., the case
of Farlie–Gumbel–Morgenstern (FGM) class of copulas, all of them being a
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perturbation of the independence copula Π, Π(u, v) = u v. Recall that FGM
family

(
CFGMα

)
α∈[−1,1] of copulas is given by

CFGMα (u, v) = u v + αu (1− u) v (1− v), α ∈ [−1, 1].

We continued the attempt to generalize the FGM perturbations to any co-
pula C as described below by relations (7) – (9).

We have shown that for this class of perturbations, the values of the coef-
ficients of tail dependence are the same as their values for the original copula
C.

The paper is organized as follows. The second section is devoted to a brief
overview of the theory of copulas. In the third section we discuss perturbations
of bivariate copulas. The fourth section is bringing an overview of the tail
dependence coefficients and contains the main theoretical result of this paper.
In the fifth section we present the utilized methodology of copula fitting to
two–dimensional time series. The sixth section contains application to real
data modelling. Finally, some conclusions are presented.

2 Copulas

Copula represents a multivariate distribution that capture the dependence
structure among random variables. It is a great tool for building flexible mul-
tivariate stochastic models. Copula offers the choice of an appropriate model
for the dependence between random variables independently from the selection
of marginal distributions. This concept was introduced in the early 50’s and
became popular in several fields beyond statistics and probability theory, such
as finance, actuarial science, fuzzy set theory, hydrology, civil engineering, etc.

Definition 1. A function C : [0, 1]2 → [0, 1] is called a (bivariate) copula
whenever it is

i) 2–increasing, i.e.,

VC ([u1, u2]× [v1, v2]) = C(u1, v1) + C(u2, v2)− C(u1, v2)− C(u2, v1) ≥ 0

for all 0 ≤ u1 ≤ u2 ≤ 1, 0 ≤ v1 ≤ v2 ≤ 1 (recall that VC ([u1, u2]× [v1, v2])
is the C–volume of the rectangle [u1, u2]× [v1, v2]);

ii) grounded, i.e., C(u, 0) = C(0, v) = 0 for all u, v ∈ [0, 1];
iii) it has a neutral element e = 1, i.e., C(u, 1) = u and C(1, v) = v for all

u, v ∈ [0, 1].

For more details we recommend monographs Joe(1997) [4] and Nelsen(2006)
[7]. The Table 1 provides a summary of some selected basic facts that are
related to some classes of Archimedean copulas that we utilize in our analyses.

We follow the approach of Patton [8] and consider a so–called survival copula
derived from a given copula C(u, v) corresponding to the couple (X,Y ) by

Ĉ(u, v) = u+ v − 1 + C(1− u, 1− v) (1)

which is the copula related to the couple (−X,−Y ) with the marginal distri-
bution functions

F−X(x) = 1− FX(−x+) and F−Y (y) = 1− FY (−y+). (2)
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Family of Parameter Bivariate copula
copulas C(u, v)

Gumbel θ ≥ 1 e−[(−ln(u))θ+(−ln(v))θ ]
1
θ

Clayton (strict) θ > 0 (u−θ + v−θ − 1)−
1
θ

Frank θ ∈ < − 1
θ ln(1 +

(e−θu−1) (e−θv−1)

(e−θ−1)
)

Joe θ ∈ [1,∞) 1−
(
(1− u)θ + (1− v)θ − (1− u)θ(1− v)θ

)1/θ

Ali-Mikhail-Haq θ ∈ [−1, 1] uv
1−θ(1−u)(1−v)

Table 1. Some Archimedean copulas

3 Pertubation of bivariate copulas

Now, we will consider those bivariate copulas CH that can be expressed in the
form

CH(u, v) = C(u, v) +H(u, v) (3)

where C is a fixed copula and H : [0, 1]
2 → [0, 1] is a continuous function.

Function H is called perturbation factor and copula CH is called perturbation
of C by means of H. We recall, that for f(u) = u (1 − u), g(v) = v (1 −
v), Hθ(u, v) = θ f(u)g(v) is FMG family of copulas based on perturbation of
the copula Π(u, v)

Cθ(u, v) = uv +Hθ(u, v), θ ∈ [−1, 1] . (4)

Note that for θ ∈ [0, 1] is Hθ(u, v) ≥ 0 and thus Cθ(u, v) ≥ C(u, v) while for
θ ∈ [−1, 0] is Hθ(u, v) ≤ 0 and Cθ(u, v) ≤ C(u, v) .

Another family of copulas based on perturbation was introduced in [1]:

Cf,g(u, v) = C(u, v) + f(u ∨ v)g(u ∧ v), (5)

where f, g : [0, 1]→ < are two non-zero continuous functions such that

sup {u ∈ [0, 1] : f(u) 6= 0} = 1 and inf {u ∈ [0, 1] : f(u) 6= 0} = 0

(and similarly for g), with u ∨ v = max(u, v) and u ∧ v = min(u, v). In
other words, Cf,g given by (5) is a perturbation of C by means of H(u, v) =
f(u ∨ v)g(u ∧ v).

In [6], the following a perturbation of bivariate copulas was introduced. It
has the form

CH(u, v) = max (0, C(u, v) +H(u, v)) , (6)

where the noise H : [0, 1]2 → <, H(u, 0) ≤ 0 and H(0, v) ≤ 0 for all u, v ∈ [0, 1].
It is clearly that e = 1 is a neutral element of CH only if H(u, 1) = H(1, v) = 0
for all u, v ∈ [0, 1].

In [6] the next perturbation method (valid for any copula C ) was introduced.

Theorem 1. Let C : [0, 1]2 → [0, 1] be a copula and define HC
α : [0, 1]2 →

[0, 1], α ∈ [0, 1] by

HC
α (u, v) = α (u− C(u, v)) (v − C(u, v)). (7)
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Then CHCα : [0, 1]2 → [0, 1] given by

CHCα = C(u, v) +HC
α (u, v) (8)

is a copula for each α ∈ [0, 1] and any copula C.

Note again that CHCα ≥ C(u, v) for α ∈ [0, 1].
Now we extend the definition CHCα (u, v) for α ∈ [−1, 0] such that CHCα (u, v) ≤

C(u, v).

Theorem 2. Let C : [0, 1]2 → [0, 1] be a copula and define HC
α [0, 1]2 →

[0, 1], α ∈ [−1, 0] by

HC
α (u, v) = αC(u, v) (C(u, v)− (u+ v − 1)) . (9)

Then CHCα : [0, 1]2 → [0, 1] given by (8) is a copula for each α ∈ [−1, 0] and
any copula C.

The proof can be performed in a similar way as the proof of Theorem 1 in [6].
In the next section we will investigate tail dependencies for a given per-

turbed copulas.

4 Tail dependence of perturbed copulas

For a better specifications of the tail of a distributions, Joe [4] introduced the
lower and upper tail dependence coefficients λL and λU . The tail dependence
coefficients are rank-invariant and they can be calculated from the copula C of
random variables X,Y .

Definition 2. Let X and Y be continuous random variables with distribu-
tions functions FX and FY and with copula C, then the lower tail dependence
coefficient is defined by

λL = limu→0+P
(
Y ≤ F−1Y (u) | X ≤ F−1X (u)

)
= limu→0+

C(u, u)

u
, (10)

and the upper tail dependence coefficient by

λU = limu→1−P
(
Y > F−1Y (u) | X > F−1X (u)

)
= limu→1−

1− 2u+ C(u, u)

1− u
.

(11)
(provided that the above limits exist).

We can rewritten (11) in the form

λU = limv→0+
2v − 1 + C(1− v, 1− v)

v
. (12)

It is well known (see [4,7]) that the Gumbel copula CGθ , Clayton copula CClθ ,
Joe copula CJθ , Frank copula CFθ and Ali–Mikhail–Haq copula CAMH

θ (see [5])
satisfy the relation

λL(CGθ ) = 2− 2
1
θ , λU (CGθ ) = 0,
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λL(CClθ ) = 0, λU (CClθ ) = 2−
1
θ ,

λL(CJθ ) = 2− 2
1
θ , λU (CJθ ) = 0,

λL(CFθ ) = 0, λU (CFθ ) = 0,

λL(CAMH
θ ) =

{
0.5 if θ = 1
0 if − 1 ≤ θ < 1

, λU (CAMH
θ ) = 0.

From (11) and (12) we directly obtain the following well known result.

Proposition 1. The upper and lower tail dependence coefficients for a mixture
of two copulas C = αC1 + (1− α)C2 are given in the next form

λU (C) = αλU (C1) + (1− α)λU (C2)

and

λL(C) = αλL(C1) + (1− α)λL(C2).

Similarly, combining (11) and (12) with (1) we get the next familiar identity.

Proposition 2. Let Ĉ is survival copula of C. Then λU (C) = λL(Ĉ) and

λL(C) = λU (Ĉ).

C is said to have lower (upper) tail dependence if and only if λL 6= 0 (λU 6=
0). As it can be seen from Definition 2, the tail dependence coefficients are
connected with the diagonal section of the bivariate copula C, which is defined
by the function

δC : [0, 1]→ [0, 1] , δC(u) = C(u, u). (13)

Combining (13) with (1) we obtain

δĈ(u) = 2u− 1 + δC(1− u, 1− u)

δC(u) = 2u− 1 + δĈ(1− u, 1− u) (14)

(because of
̂̂
C = C).

Coefficients of tail dependence can be expressed by means of formulas

λL(C) = δ
′

C(0+) (15)

and (using (12))

λU (C) = 2− δ
′

C(1−). (16)

It was shown in [1] that for any copula of type (5), the upper and lower coeffi-
cients of tail dependence are given by the formulas

λU (Cf,g) = λU (C)− f
′
(1−)g(1),

and

λL(Cf,g) = λL(C)− f(0)g
′
(0+).
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Example 1. We will consider FGM family of copulas given by (4). We have

δ(u) = u2 [1 + θ (1− u)2] for θ ∈ (−1, 1).

Obviously, δ
′
(0+) = 0 and δ

′
(1−) = 2. Hence λU (Cθ) = λL(Cθ) = 0.

Theorem 3. Let CHCα be a copula given by (8) and (7). Then

λL(CHCα ) = λL(C) (17)

and
λU (CHCα ) = λU (C). (18)

Proof. From (7) – (9) we get

|δCHCα − δC | ≤ |α| · u
2,

thus
λL
(
CHCα

)
= δ′CHCα

(0+) = δ′C(0+) = λL(C).

From (1), (7) – (9) we conclude that the survival copula to the perturbation

CHCα is identical to the perturbation of the survival copula Ĉ (with the identical
value of α) and thus

λU
(
CHCα

)
= λL(Ĉ) = λU (C).

ut

5 Fitting of copulas

In practical fitting of the data we have utilized the maximum pseudolikeli-
hood method (MPL) of parameter estimation with initial parameters estimates
received by the minimalization of the mean square distance to the empirical
copula Cn presented e.g. in Genest and Favre [3]

Cn(u, v) =
1

n

n∑
i=1

1

(
Ri
n+ 1

≤ u, Si
n+ 1

≤ v
)

where n is the sample size, Ri stands for the rank of Xi among X1, . . . , Xn,
Si stands for the rank of Yi among Y1, . . . , Yn and 1(Ω) denoting the indicator
function of set Ω. It requires that the copula Cθ(u, v) is absolutely continuous

with density cθ(u, v) = ∂2

∂u ∂vCθ(u, v). This method (described e.g. in Genest
and Favre [3]) involves maximizing a rank-based log-likelihood of the form

L(θ) =

n∑
i=1

ln

(
cθ

(
Ri
n+ 1

;
Si

n+ 1

))
,

where θ is vector of parameters in the model. Note that arguments Ri
n+1 ,

Si
n+1

equal to the corresponding values of the empirical marginal distributional func-
tions of random variables X and Y.
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For selecting the optimal models we applied the Kolmogorov – Smirnov
– Anderson – Darling (KSAD, for which we use the abbreviation AD) test
statistic defined e.g. in Berg and Bakken [2]

AD(θ) =
√
n max |

Cn

(
Ri
n+1 ,

Si
n+1

)
− Cθ

(
Ri
n+1 ,

Si
n+1

)
Cθ

(
Ri
n+1 ,

Si
n+1

)
∗ (1− Cθ

(
Ri
n+1 ,

Si
n+1

)
)
| (19)

for which we also constructed a GoF simulation based test, when comparing
models with their submodels and different families of models.

6 Application to real data modeling

A REIT (Real Estate Investment Trust) is a company that mainly owns,
and in most cases, operates income–producing real estate such as apartments,
shopping centers, offices, hotels and warehouses. Some REITs also engage in
financing real estate. The shares of many REITs are traded on major stock
exchanges.

REIT Index Series is designed to present investors with a comprehensive
family of REIT performance indexes that spans the commercial real estate
space across the economy of the country. The index series provides investors
with exposure to all investment and property sectors. In addition, the more
narrowly focused property sector and sub–sector indexes provide the facility to
concentrate commercial real estate exposure in more selected markets.

We have investigated the relations between 4 selected countries’ (USA, Aus-
tralia, Japan and UK) daily returns of the REIT (Real Estate Investment Trust)
indexes (from the period January 2000 – August 2012) in different time periods,
determined by the recent global financial markets crises (July 1, 2008 – April
30, 2009) that can be also clearly identified from next Figure 1, presenting the
parallel development of the considered REIT indexes.

Fig. 1. Real Estate Investment Trust indexes in different time periods (USA = red,
Australia = blue, Japan = green, UK = cyan)

We have performed filtering of the returns of all individual REIT indexes (in
order to avoid a possible violation of the i.i.d. property) by ARMA–GARCH
models (separately for the individual considered time sub-periods).
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For all three time sub-periods and all couples of (filtered) returns of the
REIT indexes we have performed the non–parametric correlation analyses based
on the Kendall coefficients (see Table 2, 3 and 4). We have observed that the
values of the correlation coefficients have dropped substantially between the
first and the second considered time sub-periods and even more dramatically
for the third sub-period.

before crisis USA Australia Japan UK

USA 1 0.994 0.731 0.737

Australia 0.994 1 0.727 0.738

Japan 0.731 0.727 1 0.609

UK 0.737 0.738 0.609 1

Table 2. The values of the Kendall’s correlation coefficient τ for the pre–crisis period

during crisis USA Australia Japan UK

USA 1 0.301 0.267 0.306

Australia 0.301 1 0.535 0.397

Japan 0.267 0.535 1 0.378

UK 0.306 0.397 0.378 1

Table 3. The values of the Kendall’s correlation coefficient τ for the crisis period

after crisis USA Australia Japan UK

USA 1 0.111 0.061 0.221

Australia 0.111 1 0.222 0.087

Japan 0.061 0.222 1 0.073

UK 0.221 0.087 0.073 1

Table 4. The values of the Kendall’s correlation coefficient τ for the post–crisis period

We have applied the fitting by copulas to the residuals of ARMA–GARCH
filters. We considered models from strict Archimedean copulas (Joe CJ , Frank
CF , Clayton CCl and Gumbel CG) families and their mixtures with correspond-
ing survival copulas Ĉ as well as their perturbations given by (8). We also tried
the Farlie–Gumbel–Morgenstern (FGM) and Ali–Mikhail–Haq (AMH) copulas,
but these had the greatest values of the AD for all the pairs and time periods.

For estimation of parameters for each type of models we have used the
maximum pseudo–likelihood method. For selecting the optimal models we have
applied the Kolmogorov – Smirnov – Anderson – Darling (for which we have
used the abbreviation AD) test statistic (19). For all of them, the simulation
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based GoF test yielded p–value > 0.1. Overview of optimal types of copulas
for all couples and all time sub–periods of the filtered returns of REIT indexes
is in Table 5, Table 6 and Table 7 (where ∆AD represents the absolute value
of the reduction of the AD statistics for the optimal model for the considered
couple of countries in comparison with the value of the AD for the optimal
non–perturbed model of the same type).

Couple Type of copula α ∆AD θ λL λU

USA & Japan 0.5 ∗ (CCl + ĈCl) +H
0.5∗(CCl+ĈCl)
α 0.98 0.16 1.71 0.33 0.33

USA & Australia 0.5 ∗ (CG + ĈG) +H
0.5∗(CG+ĈG)
α 0.97 0.11 6.64 0.44 0.44

USA & U.K. 0.5 ∗ (CG + ĈG) +H
0.5∗(CG+ĈG)
α -0.09 0.04 2.70 0.32 0.32

Japan & Australia 0.5 ∗ (CG + ĈG) +H
0.5∗(CG+ĈG)
α 0.89 0.23 1.91 0.28 0.28

Japan & U.K. 0.5 ∗ (CG + ĈG) +H
0.5∗(CG+ĈG)
α -0.05 0.17 1.84 0.26 0.26

U.K & Australia 0.5 ∗ (CG + ĈG) +H
0.5∗(CG+ĈG)
α -0.10 0.21 2.82 0.32 0.32

Table 5. The overview of best types of copulas for all couples of the (filtered) returns
of REIT indexes before crisis

Couple Type of copula α ∆AD θ λL λU

USA & Japan 0.5 ∗ (CG + ĈG) +H
0.5∗(CG+ĈG)
α -0.07 0.04 1.40 0.17 0.17

USA & Australia 0.5 ∗ (CG + ĈG) +H
0.5∗(CG+ĈG)
α -0.31 0.20 1.95 0.20 0.20

USA & U.K. CCl +HCCl

α -0.26 0.03 1.43 0.45 0.00

Japan & Australia 0.5 ∗ (CG + ĈG) +H
0.5∗(CG+ĈG)
α 0.44 0.03 2.01 0.29 0.29

Japan & U.K. 0.5 ∗ (CG + ĈG) +H
0.5∗(CG+ĈG)
α 0.48 0.51 1.49 0.21 0.21

U.K & Australia 0.5 ∗ (CG + ĈG) +H
0.5∗(CG+ĈG)
α 0.17 0.04 1.62 0.23 0.23

Table 6. The overview of best types of copulas for all couples of the (filtered) returns
of REIT indexes during crisis

We can observe that most values of the coefficients of tail dependencies for
the optimal copula models (with few exceptions) change between individual
considered time periods in a similar way as the values of the Kendall correlation
coefficients. They also have prevailingly dropped between the first and the
second period and continued to fall between the second and the third period.

The most interesting observation is that the subclass of perturbations with
negative values of α is strongly represented among the optimal models for all
three periods (and prevailing in the third period).
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Couple Type of copula α ∆AD θ λL λU

USA & Japan CCl +HCCl

α -0.22 0.69 0.29 0.07 0.00

USA & Australia CCl +HCCl

α -0.02 0.05 0.23 0.05 0.00

USA & U.K. 0.5 ∗ (CCl + ĈCl) +H
0.5∗(CCl+ĈCl)
α -0.13 0.05 0.76 0.17 0.17

Japan & Australia 0.5 ∗ (CJ + ĈJ) +H
0.5∗(CJ+ĈJ )
α -0.14 0.02 1.69 0.21 0.21

Japan & U.K. 0.5 ∗ (CG + ĈG) +H
0.5∗(CG+ĈG)
α -0.57 0.43 1.42 0.08 0.08

U.K & Australia CCl +HCCl

α 0.24 0.58 0.08 0.009 0.00

Table 7. The overview of best types of copulas for all couples of the (filtered) returns
of REIT indexes after crisis

7 Concluding remarks

In the theoretical part of the paper, we derived an important result for the
special type of perturbed copulas, where the perturbations do not change the
values of tail dependencies. In the practical part, we observed strongly decreas-
ing trends (between the subsequent considered time periods) for the values of
the Kendall correlation coefficients and similar trends for the values of tail
dependence coefficients for the optimal copula models (for most considered
couples of filtered returns of REIT indexes).

Despite the theoretical fact that the considered class of perturbations does
not change the tail dependence coefficients of the considered copulas, their use
yielded (often considerable) reductions of the values of AD statistics.

The most interesting result of this paper is the demonstration of practi-
cal modeling applicability of newly introduced subclass of perturbations with
negative perturbation parameters.
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Abstract 

In the present paper, we study the movement of patients through hospital 
care where each patient spends an amount of time in hospital, referred to 
as length of stay (LOS). In terms of semi-Markov modelling we can 
regard each patient pathway as a state of the semi-Markov model, 
therefore the holding time distribution of the ith state of the semi-
Markov process is equivalent to the LOS distribution for the 
corresponding patient pathway. By assuming a closed system we 
envisage a situation where the hospital system is running at capacity, so 
any discharges are immediately replaced by new admissions to hospital. 
In the present paper a method is applied according to which we can 
describe first and second moments of numbers in each semi Markov 
patient pathway at any time via Markov modelling. Such values are 
useful for future capacity planning of patient demand on stretched 
hospital resources. The above results are illustrated numerically with 
healthcare data.   
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1  The semi Markov system via Markov modelling 

Semi Markov models (Iosifescu-Manu (1972), Howard (1971), McClean 

(1980, 1986), Janssen (1986), Mehlman(1979),  Bartholomew et 

al.(1991), Vassiliou and Papadopoulou (1992) were introduced as 

stochastic tools, which can provide a general framework that can 

accommodate a great variety of applied probability models.  A semi-

Markov approach provides more generality than may be required to 

describe the complex semantics of the models. However, the complexity 

of analysis in semi Markov models discourages its application to real life 

problems and leads to the simpler choice of a Markov model which most 

of the time provides inaccurate results. In the present paper a method is 

applied according to which we can describe the expected population 

structure of an open semi Markov system in discrete time with fixed size 

via Markov modeling. 

So, let us now consider a population which is stratified into a set of states 

according to various characteristics and S={1,2,...,k}. The expected 

population structure of the system at any given time is described by the 

vector         ',...,, 21 tNtNtNt kN   where  tNi  is the expected population 

in state i at time t. Also we assume that the individual transitions 

between the states occur according to a homogeneous semi Markov 

chain. In this respect let us denote by P the transition probability matrix 

of the embedded Markov chain and )(mH the matrix of holding time 

probabilities.  

Let us now suppose that when an individual is in state i at time t and 

entered state i at time t-d (i.e. at its last transition) then the individual is 

in duration state (i,d) at time t. The transition probabilities between the 

duration states are of two types: the actual transitions (i.e. transitions 

from state (i,d) to ( j,0) for every i and j) and the virtual transitions (i.e. 

transitions from state (i,d) to (i,d+1) for every i). The definition of the 

duration states and the calculation of the transition probabilities between 

them provides the tool to form an equivalent Markov model containing 

all the information from the semi Markov system (Papadopoulou and 

Vassiliou (2011)). Thus the new state space is S*={(1,0), (1,1),…(1,b1-

1),… (i,d),…,(k,0), (k,1),…(k,bk-1)}, where bi is the maximum possible 

duration in the original state i and the corresponding transition 

probability matrix is of the form 
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where  ibb  while the ii,S diagonal matrices have as super-diagonal 

elements the transition probabilities for the virtual transitions and as first 

column elements the probability of re-entry to that state and ji,T matrices 

have as first column elements the transition probabilities for the actual 

transitions between states. We therefore define: 
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where the first column of Si, i represents probability of re-entry to state i 

having left one of the duration states of i, for i=1, …di, and the first 

column of Ti, j represents probability of re-entry to state j having left one 

of the duration states of i, for j=1,…k and i=1, …di. The super-diagonal 

elements of Si, i represents probability of transition from (new) state (i,d) 

to (i,d+1) for every i. πi
 
is the probability of entry to (old) state i and ax

(i)
 

is the probability of remaining in pathway i for at least one more unit of 

time given that the current holding time is x. Hence, 1-ax
(i)

 is the 

probability of discharge from pathway i given that the current holding 

time is x.  

 All of the above matrices are defined as functions of the basic 

parameters of the semi Markov system. So, now we can define the 

expected population structure for the new model. Let  
    N ))(()),...,(()),...,(()),...,(()),...,(()),((* 1,0,,1,11,10,1 1
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where  tn di,  is the population in state (i,d) at time t. It is obvious that  
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By applying well known properties of variances and covariances we get 

that 
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It is known from (Bartholomew, 1982) that the variances and 

covariances of nz(t), nr(t) of a Markov system are described by 
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with initial conditions 0))0(),0(( rz nnCov . 

Hence, from (2),(3) we get that the variances and covariances of ni(t), 

nj(t) of the old (semi Markov) system can be described as follows: 
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where in the sums  
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 the counters ),( 3dm , ),( 4dq take all 

the possible values for every m=1,2,…,k and 3d =0,1,..., 1mb , 

q=1,2,…,k and 4d =0,1,…, 1qb .   

The initial conditions are 0))0(),0(( ),(),( qrdm nnCov . 

From (4) and for i=j we get the variance of ni(t). 

     

 
Figure 1 

 

 

In Figure 1, we present the original semi Markov system while Figure 2 

shows the same system transformed into a Markov system, as described 

above. 

 

 

2. The Healthcare Application 

As an example of the use of this approach in a healthcare environment, 

we consider the movement of patients through hospital care where each 

patient spends an amount of time in hospital, referred to as length of stay 

(LOS). In particular, we consider stroke patients where we regard stroke 

as a good paradigm example, affecting large numbers of patients with a 

resulting heavy burden on society. 
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Figure 2 

 

 

For example, in the UK it is estimated that Stroke disease costs over £7 

billion a year, including community and social services, and costs to the 

labour force, as well as direct costs for hospital care. 

We have previously defined stroke patient pathways (McClean et al., 

2011) through hospital care, on the basis of diagnosis, gender, age and 

outcome, using log-rank tests to assess equality of survival distributions 

of LOS in hospital. Cox proportional hazards models were also 

employed to assess the effect of relevant covariates. On the basis of these 

tests we have defined 27 groups, each relating to a different patient 

pathway with respect to their LOS distribution. So patients in different 

pathways have different LOS distributions. Such pathways are 

characterised by the available covariates. Thus in the case of Stroke 

disease, examples of pathways are female, older patients, diagnosed with 

a haemorrhagic stroke and discharged to a  

private nursing home or male, younger  patients with a transitory 

ischaemic attack, who were discharged to their own home. We note that, 

although we have discussed this framework specifically with respect to 

Stroke disease and the corresponding data available in our previous 

study, the concept is easily generalisable to other diseases and 

conditions, with different possible covariates. 

In terms of the semi-Markov model discussed in the previous section, we 

regard each patient pathway as a state of the semi-Markov model, where 

pathway i is follow with probability πi for i-1,…,k. The holding time 

distribution of the ith state of the semi-Markov process is therefore 
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equivalent to the LOS distribution for the corresponding patient 

pathway. 

 By assuming a fixed size system we envisage a situation where the 

hospital system is running at capacity, so any discharges are immediately 

replaced by new admissions to the hospital.  

Thus we can use the theory of the previous section to determine the 

distribution of population structure, in particular first and second 

moments of numbers in each patient pathway at any time. Such values 

are useful for future capacity planning of patient demand on stretched 

hospital resources. 

Finally we discuss how to obtain the parameter estimates of our Markov 

representation of the original semi-Markov model. For each state of the 

Markov model (i, j) we define αij as the probability of transition into state 

Si, j+1 given that the individual has already been in pathway i for duration 

tj, for i=1,…,k and j=1,…bi-1. Then βij = 1-αij is the probability of 

discharge from state Si,j given that the individual has already been in 

pathway i for duration tj, for i=1,…,k and j=1,… bi-1.  

As estimators for αij and βij, we employ Kaplan-Maier type non-

parametric maximum likelihood estimators (NPLMEs) (Bartholomew et 

al., 1991), as follows: 

ij̂ = the number of pathway i patients who progress to another day in 

hospital divided by the number of patients that have stayed in hospital 

for tj days. Also,   

ij̂ 1- ij̂ , for i=1,…,k and j=1,… b-1. 
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Abstract. The Bayesian modelling approach provides a natural framework to use
for the solution of ill-posed inverse problems. In this paper the focus is on the recon-
struction of the subsurface electrical conductivity distribution from surface voltage
measurements — a commonly used geophysical technique which allows the earth’s
internal structure to be investigated indirectly. The key components of the Bayesian
framework are the prior distribution and the likelihood which jointly quantify knowl-
edge of the process being described. These components play equal roles in the pos-
terior distribution — which is the basis for estimation. The likelihood is usually
well defined from physical considerations, but the choice of prior distribution is more
subjective. This paper compares different prior model descriptions using posterior
estimation using a Markov chain Monte Carlo algorithm.
Keywords: Bayesian modelling, Inverse problems, MCMC, Posterior estimation,
Regularization.

1 Introduction

Geophysical surveys are used to investigate the earth’s subsurface structure
from a few metres below the surface to as deep as several hundreds of kilome-
tres. Surface data can be collected using many geophysical techniques, such
as electromagnetic, gravimetric or seismic, and provide a cheap, safe and fast
approach, but give indirect information about the subsurface. Here, the sub-
surface electrical conductivity distribution is estimated from surface electrical
voltage measurements — see Hidalgo-Silva and Gómez-Treviño (2013b).

In this paper a Bayesian modelling approach is adopted which defines the
error model as a likelihood and regularization in terms of prior distributions
with the resulting posterior distribution being the focus for estimation — see
for example Besag et al. (1995) and Gilks et al. (1995) — this is in contrast
to the use of deterministic algorithms as in Hidalgo-Silva and Gómez-Treviño
(2013a). Estimation of unknowns is performed using a Markov chain Monte
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Carlo (MCMC) algorithm which also allows uncertainties to be quantified, as
well as conductivity distributions to be estimated. Section 2 discusses mod-
elling, Section 3 describes MCMC estimation and Section 4 shows numerical
results. Finally, some discussion and conclusions are given in Section 5.

2 Bayesian modeling

2.1 General

The aim of a generic inverse problem is to estimate an unknown function,
x(s), s ∈ Ω, within some region, from a finite set of measurements y = {yi :
i = 1, . . . , n} taken outside the region. In many examples the region will be
partitioned into pixels and the function correspondingly discretized to give
unknowns x = {xj : j = 1, . . . ,m}. The data, y, depend on x though a deter-
ministic relationship, and noise. Often the relationship is linear and the noise
is well modelled by a Gaussian distribution leading to the likelihood

f(y|x) =
1

(2πσ2)n/2
exp

{
− 1

2σ2
||y −Gx||2

}
, σ > 0.

In the geosounding application considered here, although the exact relationship
is nonlinear, it will be assumed that a linear approximation is adequate – the
calculation of the corresponding kernel matrix G is described in Hidalgo-Silva
and Gómez-Treviño (2013b) and references therein.

For estimation, evidence from the data and from prior beliefs are brought
together by combining the likelihood and a prior distribution, denoted p(x),
using Bayes theorem, to form the posterior distribution, defined as

p(x|y) = f(y|x)p(x)/f(y).

The denominator can be dropped, as it contains no information about the
unknown x and hence is not needed for estimation, leading to the key equation

p(x|y) ∝ f(y|x)p(x).

This highlights the equal importance of the likelihood and prior distribution.
In classical statistics the likelihood alone would be the basis for estimation and
a point estimate found using maximum likelihood. In the Bayesian approach
the equivalent is to calculate a point estimate using the value maximizing the
posterior distribution, x̂MAP = argmaxx p(x|y), which is called the maximum a
posteriori (MAP) estimate. An example of a Bayesian analysis of archaeological
survey data can be found in Aykroyd et al. (2001).

2.2 Pixel-based prior models

The prior distribution describes detailed expert knowledge or general beliefs
about the unknown function by quantifying the relative plausibility of different
values of x. Two common families of prior distribution are
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p1(x) =
κ(q)

λm
exp

− m∑
j=1

∣∣∣xj
λ

∣∣∣q
 , q ≥ 0, λ > 0, (1)

which gives higher probability to values close to zero, and

p2(x) =
κ(q)

λm
exp

− m∑
j=1

∣∣∣xj − x̄N(j)

λ

∣∣∣q
 , q ≥ 0, λ > 0, (2)

which gives higher probability to smoother spatial patterns. In each the sum
is over all pixels, the parameter λ controls the variability in the pixel values,
and x̄N(j) is the mean of the neighbours of pixel j. It is important to note that
Equation (2) is an improper density, in that it has an infinite integral. This
can easily be seen by realising that any constant added to all the x values will
yield an identical density value. However, the posterior density will be proper
as the data provides ample information about the mean value, hence posterior
estimation is well defined.

When used as a prior distribution, Equation (1) will shrink values towards
zero and Equation (2) will shrink differences towards zero. Although using
0 ≤ q ≤ 1 will lead to small values being thresholded to zero, for 0 ≤ q < 1 the
distribution is non-differentiable at zero which can cause problems for estima-
tion algorithms. The q = 1 case gives the Laplace distribution whereas q = 2
gives the Gaussian distribution. It is interesting to note links with other ap-
proaches. The first prior distribution, with q = 2, has Tikhonov regularization
as a special case and the second, with q = 1, has total variation as a special
case.

2.3 Extensions to the standard prior models

Now suppose that the local variability is allowed to vary with an individual
prior parameter, λj , for each pixel. This converts homogeneous models into in-
homogeneous models. Rather than allowing these to change in an uncontrolled
manner, knowledge of the spatial structure will be used. In particular, it will
be assumed that the prior parameter changes with depth and the form

λj = λ× eκdj

will be considered where dj is the depth of pixel j below the surface. The
parameter κ controls the direction and rate of change of variability as the depth
changes. If κ < 0 then the variability decreases with depth, if κ > 0, (the case
considered later) then it increases with depth, and when κ = 0 the variability is
independent of depth (the standard homogeneous case). The inhomogeneous
prior model corresponding to the homogeneous smoothing prior of Equation
(2) can then be defined as

p3(x) =
κ(q, α)

λm
exp

−
m∑
j=1

e−κdj
∣∣∣xj − x̄N(j)

λ

∣∣∣q
 , q ≥ 0, λ > 0. (3)
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As before the parameter λ controls the amount of local variation. This is
another example of an improper prior.

Now consider another situation, this time where there is a dictionary of
likely pixel values, µ = (µ1, . . .), then consider the prior

p4(x) =
κ(q)

λm
exp

−
m∑
j=1

min
k

{∣∣∣xj − µk
λ

∣∣∣q}
 , q ≥ 0, λ > 0. (4)

This prior gives higher probability to values close to any of the dictionary
values, with λ controlling the variation around these values. Note that if µ ≡
(0), then this reduces to Equation (1).

2.4 Hybrid prior models

The prior distributions defined in Equations (1)-(3) lead to methods which are
equivalent to approaches used in regression. A good review is given in Hastie
et al. (2009), who also go on to discuss generalizations. Two such generaliza-
tions, which are interesting for use as prior distributions in image reconstruc-
tion, are the elastic net which corresponds to the distribution

p5(x) =
κ(α)

λm
exp

−α
m∑
j=1

∣∣∣xj
λ

∣∣∣− (1− α)

m∑
j=1

(xj
λ

)2 , λ > 0, (5)

0 ≤ α ≤ 1,

which shrinks values in a similar way to Equation (1) with q ≤ 1, but it is
differentiable at zero, and the fused lasso with corresponding distribution

p6(x) =
κ(α)

λm
exp

−α
m∑
j=1

∣∣∣xj
λ

∣∣∣− (1− α)

m∑
j=1

∣∣∣xj − x̄N(j)

λ

∣∣∣
 , λ > 0, (6)

0 ≤ α ≤ 1,

which is capable of both shrinkage towards zero and spatial smoothing. In
particular, there is a tendency to shrink blocks of neighbouring values.

3 Estimation and the MCMC algorithm

The aim of the analysis is to estimate the value of the unknown parameters, x,
from the data using the posterior distribution. It is common in such reconstruc-
tion problems for the unknown parameter vector to be high dimensional and
the posterior distribution to be complex making analytic solution impossible
and even numerical algorithms require careful design and must be implemented
efficiently. Here the Markov chain Monte Carlo (MCMC) method is used to
produce a correlated sample from the target posterior distribution – for theo-
retical details see Gamerman and Lopes (2006) and Brooks et al. (2011), and
for practical examples see Gilks et al. (1995).
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Set an initial value for x, call this x0

Repeat the following steps for k = 1, . . . ,K
Repeat the following steps for i = 1, . . . ,m

Generate ε from a Gaussian distribution N(0, τ2)

Generate a proposed new value x∗i = xki + ε
Evaluate

α = min

{
1,
p(xk1 , . . . , x

k
i−1, x

∗
i , x

k−1
i+1 , . . . , x

k−1
m |y)

p(xk1 , . . . , x
k
i−1, x

k−1
i , xk−1

i+1 , . . . , x
k−1
m |y)

}
Generate u from a uniform distribution, U(0, 1)

If α > u then accept the proposal and set xki = x∗i , otherwise xki = xk−1
i

End repeat
End repeat
Discard initial values and use remainder to make inference.

Fig. 1. A simple random walk Metropolis-Hastings algorithm.

One of the simplest schemes is the random walk Metropolis-Hastings al-
gorithm – details of the algorithm are shown in Figure 1. From an arbitrary
starting point, x0, the sample path of a discrete time Markov process is sim-
ulated to produce values x1, . . . ,xK . In particular, at each step only a single
variable is proposed and further the proposal is a Gaussian perturbation of the
previous value. To have the required posterior distribution as its equilibrium
distribution then detailed balance must hold requiring each proposal to be ac-
cepted with a carefully specified probability. Initial values will depend on the
starting point but the remaining sample will have the same statistical prop-
erties as a sample obtained directly from the posterior distribution and hence
are used for estimation. Once the sample has been generated from the poste-
rior distribution, a number of possible estimators are available, but the most
usually calculated are the posterior mean and the posterior variance which are
given by the mean and variance of the posterior sample.

Clearly, key issues are how many iterations to discard, how big a sample to
collect and the value of the proposal variance, τ2. When choosing a value for the
proposal variance, it is important to realise that both low and high values lead
to long transient periods and highly correlated samples and hence unreliable
estimation. A reasonable proposal variance can be chosen adaptively during the
early burn-in period, and it has been proven theoretically that for a wide variety
of high dimensional problems an acceptance rate of 23.4% (Roberts et al., 1997)
is optimal. It is wise to also check Markov chain paths and to calculate sample
autocorrelation functions. For good estimation the paths should look “random”
and autocorrelation functions be close to zero for all except small lags. A variety
of more formal convergence diagnostics are available, see for example Raftery
and Banfield (1991) and Cowles and Carlin (1996).

This procedure can easily be converted into a simulated annealing algo-
rithm (Geman and Geman, 1984), to allow the maximum a posteriori (MAP)
estimate to be found, by changing the acceptance probability to α1/Tk where
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a temperature, Tk, is included which decreases as the iterations progress, with
Tk = 2 log(1 + k) being one choice of annealing schedule. The MAP estimate
is taken as the final iteration. This approach should not get caught in local
optima and requires only function evaluations.

4 Results

4.1 General

In this section a range of posterior summaries are presented using a synthetic
data example motivated by field data from Las Auras, a potential water reser-
voir site near the city of Tecate, México (Hidalgo-Silva and Gómez-Treviño,
2013b). Figure 2 shows the true conductivity distribution used to generate
synthetic data where each pixel represents a 40m×40m area. The study region
contains two high conducting regions within a low conducting background. In
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Fig. 2. Conductivity distribution used to generate synthetic data.

practice, to collect real measurements, an alternating current in a transmit-
ter coil is generated, creating an alternating magnetic field in the surrounding
area which, in turn, produces an electromotive force in receiver coils spread
across the study site. Importantly, the measured voltages depend on the exact
subsurface conductivity distribution. Although the relationship between the
subsurface conductivity and the surface measurements is nonlinear, it can be
well approximated by a linear model (Pérez-Flores et al., 2001) as mentioned in
Section 2. Here 5 sets of measurements are used incorporating low-level Gaus-
sian noise, based on different configurations, and for each 34 measurements are
taken at equal intervals between -170m and 160m from a central reference point
mid-way between the high conductivity regions.

4.2 Pixel-based prior models

Figure 3 shows the MAP estimate using a Laplace prior distribution with λ =
0.5, that is using Equation (1) with q = 1. As can be seen from the figure, both
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high conductivity regions are clearly visible. In particular, the top edges and
sides are well defined and correctly positioned. The bottom edges, however,
are poorly resolved which means that the vertical extent would be judged to
be too small. The expected shrinkage towards zero can be seen clearly in the
background, but also it has occurred in the high conductivity regions where
the estimated conductivity is lower than the true value. Although the contrast
against the background is good, the piecewise constant conductivity is not
evident.

This reconstruction highlights the non-uniform sensitivity which is typical of
such limited access data collection problems. That is, the surface measurements
contain little information about the deeper locations which leaves the prior
model to have greater influence. In this case, without data information, the
prior is more likely to shrink values at deeper locations to zero.
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Fig. 3. Reconstruction using L1 shrinkage prior where λ = 0.5.

The MAP estimate using a Gaussian smoothing prior with λ = 0.2, that
is Equation (2) with q = 2, is shown in Figure 4. Again, the top edge and
upper parts of the sides are well defined, there is improved uniformity within
the regions and the estimated conductivity is closer to the true value. However,
again the prior is allowed to dominate at greater depths due the lack of relevant
information from the data. This prior distribution should have the effect of
shrinking the differences towards zero, that is smoothing. This effect is clearly
seen at the bottom edge of the regions where excessive smoothing has extended
the estimated regions well below the true boundaries. This gives extremely
biased estimates of vertical extent and hence is unacceptable.

4.3 Extensions to the standard prior models

To reduce the effect of the dominance of the prior at greater depth, the in-
homogeneous prior, Equation (3), is proposed. The resulting reconstruction is
shown in Figure 5 where q = 2, λ = 0.2 and κ = 0.5. Note that the values for q
and λ have been fixed at the values corresponding to the Gaussian smoothing
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Fig. 4. Reconstruction using L2 smoothing prior where λ = 0.2.
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Fig. 5. Reconstruction using L2 smoothing prior with depth-related adjustment
where λ = 0.2 and κ = 0.5.

prior. Hence Figure 5 can be compared directly with Figure 4 — which can
be considered as the case κ = 0. There is a clear improvement over the stan-
dard Gaussian smoothing prior. There are now reasonably well-defined lower
edges allowing the extents to be well estimated. The resolution of the sides
of the right-hand feature is also much improved. This reconstruction would
be considered acceptable in contrast to the unacceptable appearance of the
homogeneous Gaussian reconstruction in Figure 4.

Next consider the reconstruction in Figure 6. This uses dictionary values
µ = (0, 0.15, 0.45) and λ = 0.05. This prior distribution should have the effect
of shrinking the estimates towards one of the dictionary values. Indeed the
estimates are closer to the true values with well defined extents and reasonable
piecewise constant value. Note that the prior parameter value has been chosen
much smaller than used to produce Figure 3 where such a small value would
have caused the estimates to be unacceptably shrunk towards zero. Clearly,
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Fig. 6. Reconstruction using clustering prior with λ = 0.05 and µ = (0, 0.15, 0.45).

accurately specified dictionary values are not always available and hence such
accuracy may not be reproducible in practice. Instead some automatic proce-
dure would be needed to estimate these values. It is worth noting, however,
that in a reconstruction (not shown here) using a reduced dictionary without
the center value, that is with µ = (0, 0.45) and keeping λ = 0.02, the left-
hand feature is still reasonably reconstructed. This means there is substantial
robustness to miss-specification.

4.4 Hybrid prior models

Figure 7 shows the MAP estimate using a hybrid prior, Equation (5), with
shrinking Laplace prior and smoothing Gaussian prior with λ = 0.1 and α =
0.48. This choice of parameters has given the two types of shrinkage prior
almost equal weight. For the Laplace shrinkage component the effective vari-
ability parameter λ/α ≈ 0.2 which is lower than when used on its own, and
for the Gaussian shrinkage component, λ/(1 − α) ≈ 0.2. From Figure 7 the
constant regions are smoother than in Figure 3, and there is slightly better reso-
lution of the bottom edges, hence in combination there is a useful improvement
in accuracy. There has been no attempt to optimise the accuracy of estimation
in the choice of these parameters, only to produce an illustrative example, and
hence there is substantial scope for developing a procedure to automatically
select suitable parameter values.

Figure 8 shows the MAP estimate (top) and the posterior standard devi-
ation (bottom) for the hybrid prior, Equation (6), with parameters λ = 0.1
and α = 0.05. This value of α means that almost all the contribution is
from the Laplace smoothing component with effective variability parameter
λ/(1− α) ≈ 10 and very little on the Laplace shrinkage with λ/α ≈ 0.5.

From Figure 8(a) there is good contrast between the high conductivity
regions and the background and better uniform conductivity within the regions,
but again in each the vertical extent is not reproduced well. Again, no attempt
has been made to optimise the choice of parameters and hence it may well
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Fig. 7. Reconstruction using the elastic net prior distribution with hybrid L1 shrink-
ing and L2 shrinkage using λ = 0.1 and α = 0.48.

be possible to produce further improvement. The variability as measured by
the posterior standard deviation, Figure 8(b), is lower near the surface and
increases with depth. This reinforces the difficulty of estimation far from the
surface — a characteristic of problems such as geosounding.

5 Discussion

This paper describes the Bayesian approach to image reconstruction and the
MCMC estimation algorithm, and applies them to the problem of reconstruct-
ing the subsurface conductivity from surface data. This approach makes ex-
plicit use of statistical descriptions and probability models and encourages nat-
ural description and intuitive interpretation without any need to follow a math-
ematically or computationally convenient path.

The standard regularized least-squared approach has a straightforward in-
terpretation within a probabilistic setting, and the widely used Tikhanov and
total variation regularization are special cases of broad classes of prior distri-
butions. This interpretation of regularization as a probability function imme-
diately allows the option of using other probability functions. The examples
considered here are only a start and there is a need to fully investigate the
benefits of each type of model. A key part of such an investigation will be
objective and automatic choice of the model parameters, q, λ and α.

There is also substantial scope to extend the modelling, for example by
including data from multiple sources – Aykroyd and Al-Gezeri (2014) consider
combining surface and borehole data. Also, other styles of modelling can be
considered, for example Hidalgo et al. (1998) consider the use of piecewise
constant functions. A great benefit of the statistical approach when linked with
MCMC estimation is the great flexibility over the choice of prior distributions
and output summaries. The resulting statistical analysis is based around a
probability distribution and so a wide range of possible summaries are available
which are far beyond a single point estimate.
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(a) MAP estimate.
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(b) Posterior standard deviation.
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Fig. 8. Reconstruction using the fused lasso prior distribution with hybrid L1 shrink-
age and L1 smoothing where λ = 0.1 and α = 0.05.
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Abstract. The multivariate skew normal distribution is very useful for modeling
asymmetric data in many practical applications, and in particular in Statistical Qua-
lity Control for monitoring several quality characteristics. In this study in order to
monitor the covariance matrix of a multivariate skew normal process, we consider a
control chart based on the Statis methodology. More precisely, the chart is based on
a similarity measure between two data tables, the RV coefficient. The performance
of this chart is evaluated for several skew-normal processes.

Keywords: Control chart, Monte Carlo simulation, Multivariate skew normal dis-
tribution, Process monitoring, RV coefficient, STATIS, Statistical Quality Control.

1 Introduction

In Statistical Quality Control it is crucial to monitor simultaneously several
quality characteristics. Often these characteristics are correlated and thus,
multivariate techniques of quality control are more appropriate than univari-
ate methods for monitoring the individual characteristics. Many multivariate
techniques of quality control have been proposed in the literature, in particular
many control charts have appeared for monitoring processes.
Control charts are the tools most used for process monitoring in Statistical
Quality Control (SQC) and were introduced by Shewhart at Bell Laboratories
in 1924. Control charts help us to decide if the process that is being monitored
is in-control or out-of-control. When a control chart triggers an out-of-control
signal, which may be eventually a false alarm, it is important to investigate
what are the causes responsible for the emission of such signal, so that appro-
priate actions may be taken.

Several multivariate schemes have been proposed for monitoring the mean
vector or the covariance matrix of a multivariate process. In particular, control
charts based on the Hotelling T 2 statistic, among others, have been imple-
mented for monitoring the mean vector, and control charts based on the gene-
ralised variance (Alt, 1985) and based on the maximum of the sample variances
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or on the maximum of the ranges (Costa and Machado, 2008a, 2008b), among
other charts have been proposed for monitoring the covariance matrix.
Additionally, several control schemes have appeared in the literature to monitor
simultaneously the mean vector and the covariance matrix of a process (Chen
et al., 2005, Zhang and Chang, 2008, etc).

Figueiredo and Figueiredo (2014) proposed a control scheme for controlling
the variability of a multivariate process based on Statis methodology. More
precisely, this scheme is based on a similarity measure between two positive
semi-definite matrices, the RV coefficient proposed by Escoufier (1973).
In this study we consider the previous control scheme for monitoring the co-
variance matrix of a multivariate skew normal process.

The STATIS (Structuration des Tableaux a Trois Indices de la Statistique)
methodology was introduced by L′Hermier des Plantes (1976) and later deve-
loped by Lavit (1988) and Lavit et al. (1994). This methodology enables us to
analyse simultaneously several data tables measured on the same individuals
or variables for different circumstances or time instants.
We’ll use this methodology for comparing several data tables. More precisely,
we’ll compare the relations between the variables along the data tables through
the covariance matrices and we’ll determine the compromise covariance matrix.
Statis methodology has been applied in Statistical Quality Control to monitor
batch processes (see for instance, Scepi, 2002, Gourvénec et al., 2005 and Niang
et al., 2009).

The multivariate skew normal distribution was proposed by Azzalini and
Dalla Valle (1996), and further discussed by Azzalini and Capitanio (1999) and
others. This distribution is an extension of the univariate skew normal distri-
bution, such that the marginal densities are scalar skew-normal. It also extends
the multivariate normal distribution, by the addition of a shape parameter.

In Section 2 we briefly refer the multivariate skew normal distribution, in
Section 3 we describe the control chart based on RV coefficient between the
compromise covariance matrix obtained from a set of reference samples and the
covariance matrix of a new sample. In Section 4 we evaluate the performance
of the chart for monitoring the covariance matrix of a multivariate skew normal
process.

2 The multivariate skew normal distribution

A k-dimensional random variable Z is said to have a multivariate skew normal
distribution if it has density function

f(z) = 2 φk(z ; Ωz) Φ (α′z) , z ∈ Rk, (1)

where φk(z; Ωz) is k-dimensional normal density with zero mean and correlation
matrix Ωz, Φ (.) is the N(0, 1) distribution function and α is a k-dimensional
vector.

When α = 0, density (1) reduces to the multivariate normal distribution
Nk(0,Ωz) density. The parameter α is then referred as a shape parameter.
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Next, we introduce location and scale parameters, which are not allowed in
density (1). Let

Y = ξ + ω z,

where ξ = (ξ1, ..., ξk)
′

and ω = diag (w1, ..., wk) are location and scale parame-
ters respectively, being wi > 0, i = 1, ..., k. The density function of Y is

g(y) = 2 φk(y − ξ; Ω) Φ
(
α′ω−1 (y − ξ)

)
, y ∈ Rk, (2)

where Ω = ω Ωz ω is a covariance matrix. We will use the notation Y∼SNk (ξ,Ω,α)
to indicate that Y has density function (2).
For more details about this distribution, see Azzalini and Dalla Valle (1996)
and Azzalini and Capitanio (1999).

3 Control chart for monitoring the covariance matrix

We consider K reference samples of size n measured on p variables taken in K
different time instants, when the process is in the in-control state, and we repre-
sent these matrices by their covariance matrices Vk

′s. See the following scheme.

K reference samples
p variables p variables p variables

1 1 1
... X1

... X2 · · ·
... XK

n n n
⇓ ⇓ ⇓

1 · · · p 1 · · · p 1 · · · p
1 1 1
... V1

... V2 · · ·
... VK

p p p

We determine the compromise covariance matrix, V , as defined in the Statis
methodology, a weighted mean of the K covariance matrices Vk

′s:

V =

K∑
k=1

αkVk,

where the weights αk represent the agreement between the K tables and the
compromise, and are obtained from the RV coefficients.
The RV coefficient (Escoufier, 1973) between Vk and Vk′ is defined by

RV (Vk, Vk′) =
Tr(VkQVk′Q)√

Tr (VkQ)
2
Tr (Vk′Q)

2
,

where Tr denotes the trace operator of a matrix and Q is the metric in the
individuals space, defined by the identity matrix or by a diagonal matrix whose
main elements are equal to the reciprocal of the variances of the variables. The
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RV coefficient varies between 0 and 1. The closer the RV coefficient is to 1,
the more similar the two covariance matrices Vk and Vk′ are.
More precisely, the weights αk are the elements of the eigenvector associated
with the largest eigenvalue of the following matrix Z containing the RV coef-
ficients between the Vk

′s:

Z =


1 RV (V1, V2) · · · RV (V1, VK)

RV (V2, V1) 1 · · · RV (V2, VK)
...

...
. . .

...
RV (VK , V1) RV (VK , V2) · · · 1


The control chart, which we denote RV -chart, is implemented as follows.

For a new time instant k + 1, we compare its covariance matrix Vk+1 with the
compromise covariance matrix V through the RV coefficient. Denoting CL the
control limit of the chart, we consider the following decision criterion:

• If RV (V, Vk+1) ≥ CL we consider that the process is in-control.
• Otherwise, we decide that the process is out-of-control. In this case it is

important to identify which variables are responsible for this situation.

The exact distribution of the RV coefficient is unknown, and thus we fix CL
at an empirical percentile of the sampling distribution of the RV coefficient.

4 Performance of the control chart for a skew normal
process

For evaluating the efficiency of the RV -chart, we computed by simulation the
Average Run Length (ARL), the most commonly used measure of performance
of control charts.
We generated multivariate skew normal processes SNp (ξ,Ω,α), for p=2,3 as-
suming different structures for the covariance matrices when the process is
in-control and out-of-control and different shape parameters. In each case, we
obtained the compromise covariance matrix based on 4 reference samples ge-
nerated when the process is in-control. For a false alarm rate α=0.005, we
determined the control limit of the chart, i.e., the percentile 0.5% of the dis-
tribution of the RV coefficient, obtained through a Monte Carlo simulation
experiment of size 100000 and we calculated the in-control and out-of-control
ARL values through 10000 replicates for different shape parameters and struc-
tures of the covariance matrix.
More precisely, we generated samples from a bivariate skew normal distribu-
tion SN2 (ξ,Ω,α) with location vector ξ = (0, 0)

′
, covariance matrix Ω =(

1 σ12
σ12 1

)
and shape parameter α. Note that we could consider another lo-

cation vector because we will work with centered data. The unit variances in
Ω imply that the covariance is equal to the linear correlation coefficient. Some
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obtained results are presented in Tables 1, 2 and 3. We also generated samples
from a multivariate skew normal distribution SN3 (ξ,Ω,α) with location vec-

tor ξ = (0, 0, 0)
′
, covariance matrix Ω =

 1 σ12 σ13
σ12 1 σ23
σ13 σ23 1

 and shape parameter

α. As previously we could use another location vector and the unit variances
imply covariances equal to the correlation coefficients. Some obtained results
are indicated in Tables 4 and 5.

σ12= 0 in-control

α′ (0,0) (2,2) (6,6) (-2,-2) (-6,-6) (0,0) (2,2) (6,6) (-2,-2) (-6,-6)

n 5 15
CL 0.359 0.331 0.324 0.333 0.323 0.696 0.704 0.707 0.698 0.708
σ12 ARL ARL
0 198.1 206.2 201.8 193.4 203.3 196.3 186.2 204.1 209.3 197.4

0.4 89.0 60.4 54.1 58.3 54.5 39.5 12.3 11.3 13.0 10.9
0.75 69.8 15.2 12.9 15.0 13.0 6.2 1.7 1.6 1.8 1.6
0.95 32.1 4.3 3.5 4.3 3.5 2.5 1.0 1.0 1.0 1.0

Table 1. Control limit and ARL for several shape parameters α and n=5,15, being
σ12= 0 when the process is in-control. The in-control ARL values are in bold.

σ12= 0 in-control

α′ (0,0) (-2,6) (2,-6) (0,2) (0,-2) (0,0) (-2,6) (2,-6) (0,2) (0,-2)

n 5 15
CL 0.359 0.325 0.323 0.337 0.340 0.696 0.705 0.705 0.698 0.696
σ12 ARL ARL
0 198.1 198.4 205.6 205.2 196.3 196.3 201.9 204.1 193.1 201.5

-0.4 143.7 84.7 88.8 181.1 170.7 40.2 22.7 23.1 7.9 82.0
-0.75 69.1 29.7 29.6 114.9 109.4 6.1 2.7 2.7 11.2 11.5
-0.95 32.3 9.3 9.5 57.2 53.7 2.5 1.1 1.1 2.3 2.3

Table 2. Control limit and ARL for several shape parameters α and n=5,15, being
σ12= 0 when the process is in-control. The in-control ARL values are in bold.

The control limit and the ARL depend on the sample size (see Tables 1-3)
and in general, depend on the shape parameter and on the structure of covari-
ance of covariance matrix. See Tables 1-5.
From these tables, we observe that the in-control ARL is large and approxi-
mately equal to the expected value 200. When the process is out-of-control,
the ARL quickly decreases as the sample size increases.
For a bivariate process with correlation matrix equal to the identity matrix,
the chart detects easily a positive correlation when both components of the
shape vector are null or have the same sign (positive or negative). Moreover,
the detection is as fast as larger is the value of the correlation. See Table 1.
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σ12= 0.9 in-control

α′ (0,0) (2,2) (6,6) (-2,-2) (-6,-6) (0,0) (2,2) (6,6) (-2,-2) (-6,-6)

n 5 15
CL 0.596 0.357 0.328 0.368 0.336 0.949 0.855 0.836 0.855 0.835
σ12 ARL ARL
0.9 191.6 202.6 208.5 184.1 189.2 204.2 201.9 190.6 201.0 197.9
0.75 32.0 36.3 37.9 32.7 35.2 9.6 7.6 7.3 7.4 7.5
0.5 8.5 10.2 10.8 8 10.5 1.9 1.7 1.7 1.7 1.7
0 2.4 3.1 3.3 2.9 3.1 1.0 1.0 1.0 1.0 1.0

-0.9 1.0 1.1 1.1 1.1 1.1 1.0 1.0 1.0 1.0 1.0

Table 3. Control limit and ARL for several shape parameters α and n=5,15, being
σ12= 0.9 when the process is in-control. The in-control ARL values are in bold.

σij= 0, i 6= j, in-control

α′ (0,0,0) (2,2,2) (6,6,6) (-2,-2,-2) (-6,-6,-6)

CL 0.671 0.676 0.678 0.676 0.678

σ12, σ13, σ23 ARL

0,0,0 201.4 201.2 195.8 195.8 194.1
0.4,0.4,0.4 13.9 10.4 10.1 10.6 9.8

0.75,0.75,0.75 1.9 1.3 1.3 1.3 1.3
0.95,0.95,0.95 1.2 1.0 1.0 1.0 1.0

0.5,0.2,0.9 3.5 1.8 1.7 1.8 1.7
0.9,0.75,0.9 1.4 1.0 1.0 1.0 1.0

Table 4. Control limit and ARL for several shape parameters α and n=15, being
σij= 0, i 6= j when the process is in-control. The in-control ARL values are in bold.

σij= 0.9, i 6= j, in-control

α′ (0,0,0) (2,2,2) (6,6,6) (-2,-2,-2) (-6,-6,-6)

CL 0.951 0.845 0.833 0.844 0.834

σ12, σ13, σ23 ARL

0.9,0.9,0.9 200.0 201.1 202.4 202.7 196.6
0.75,0.75,0.75 6.7 5.8 5.9 6.0 5.9

0.5,0.5,0.5 1.4 1.3 1.3 1.3 1.3
0,0,0 1.0 1.0 1.0 1.0 1.0

0.9,0.5,0.1 1.2 1.2 1.2 1.2 1.2
0.1,0.5,0.3 1.0 1.0 1.0 1.0 1.0

Table 5. Control limit and ARL for several shape parameters α and n=15, being
σij= 0.9, i 6= j when the process is in-control. The in-control ARL values are in bold.

If the process is normal (α = 0) or when one component of the shape vector
is positive and the other is negative, the chart easily detects a negative corre-
lation, being more sensitive to large negative correlations. See Table 2.
In a 3-dimensional framework with data from a normal or a skew normal process
with a shape parameter, having all components positive or negative and when
the correlation matrix is equal to the identity matrix or has all off-diagonal
elements equal to 0.9, the chart detects changes in the correlations as fast as
we move away from the in-control correlation structure. See Tables 4 and 5.
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To conclude, the analysed cases suggest that the RV -control chart enables us
to detect easily changes in the correlations between variables when the process
has a normal or a skew normal multivariate distribution, being therefore a very
useful monitoring tool in a large variety of industrial applications.
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9. S. Gourvénec, I. Stanimirova and O.A. Saby. Monitoring batch process with the
STATIS approach. Journal of Chemometrics, 19, 288–300, 2005.

10. D. M. Hawkins and E. M. Maboudou-Tchao. Multivariate exponentially weighted
moving covariance matrix. Technometrics, 50, 155–166, 2008.

11. H. Hotelling. Multivariate quality control, illustrated by the air testing of sample
bombsights. Techniques of Statistical Analysis, McGraw Hill, New York, pp. 111-
184, 1947.

12. C. Lavit. Analyse Conjointe de Tableaux Quantitatives. Collection
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Abstract. The asymptotic distribution of the LW estimator may be a poor approx-
imation of the exact one in small sample sizes or even with larger samples when the
memory parameter is larger than 0.75. In other situations the asymptotic distribution
is unknown, as for example in a noninvertible context or in some nonlinear transfor-
mations of long memory processes, where only consistency has been obtained. For all
these cases a bootstrap strategy based on resampling the standardized periodogram
is proposed.

Keywords: Bootstrap, Long memory, Local Whittle.

1 Introduction

Long memory is a common feature of many time series. It means that ob-
servations which are far apart maintain a significant relationship such that the
autocorrelations are not summable. This implies that the spectral density func-
tion f(λ) diverges at the origin. In fact, the most common definition of long
memory is established by the behaviour of the spectral density function around
the origin such that it satisfies

f(λ) ∼ Cλ−2d as λ→ 0 (1)

for a finite positive constant C, where a ∼ b means that a/b→ 1. The memory
parameter d governs the persistence of the series. If d = 0 the series has short
memory, whereas a value of d > 0 implies long memory or strong dependence
such that f(λ) diverges at λ = 0. Finally the antipersistent case d < 0 en-
tails a zero in the spectral density function at the origin, usually caused by
overdifferencing.

Parametric estimation methods such as (quasi) maximum likelihood or the
Whittle approximation entail a risk of inconsistency if the model is misspeci-
fied. In order to avoid that risk, semiparametric or local techniques have been
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proposed to estimate d, which only restrict the behaviour of the spectral den-
sity around the pole as in (1). One of the most popular is the Local Whittle
estimation (LW), which is the estimator with which we are concerned in this
paper. It was first proposed by Künsch[16] but it was not until Robinson[21]
that its nice asymptotic properties were proved in the stationary and invert-
ible case −1/2 < d < 1/2. In particular Robinson showed consistency, pivotal
asymptotic normal distribution and higher efficiency than other rival techniques
(such as the log periodogram regression) under very mild conditions, allowing
for non Gaussian series. Velasco[26], Phillips and Shimotsu[19] and Shao and
Wu[22] extended the asymptotic properties of the LW estimator to the non-
stationary case, obtaining consistency for d ≤ 1 and asymptotic normality for
d < 3/4. For larger values of d the asymptotic distribution is non normal and
the estimator is inconsistent for d > 1.

The standard asymptotic distribution of the LW estimator and its pivotal
characteristic (at least for d < 3/4) makes it very simple to implement asymp-
totic inference. However the asymptotic approximation may not be satisfactory
in moderate samples or even in large samples if d ∈ (0.75, 1](see Phillips and
Shimotsu[19]). In other situations the LW is known to be consistent but the
asymptotic distribution is not known, as for example in noninvertible fraction-
ally integrated processes where the LW estimator may even be inconsistent if
the bandwidth is too large (Shimotsu and Phillips[24]), and in some nonlinear
transformations of long memory series (Dalla et al.[5]). In all these cases the
bootstrap can be useful to get reliable approximations of the exact distribution
of the LW estimator.

The bootstrap was originally designed for samples of independent observa-
tions, but some refinements have been proposed to deal with dependent data. In
this context there are basically two approaches. One is based on describing the
dependence through a parametric model with independent disturbances. The
sieve bootstrap follows this spirit but instead of identifying the correct model,
an AR model of sufficiently high order is estimated to capture the relevant
dependence of the series such that the residuals are close to being independent.
The second approach does not rely on any model but attempts to retain the
structure of dependence by resampling overlapping or nonoverlapping blocks of
observations. This is the block bootstrap designed to maintain the dependence
inside the block while assuming independence between blocks.

The applicability of these methods to long memory series is influenced by
the strong persistence of the series. However, in order to get bootstrap approx-
imations to the distribution of the Local Whittle estimator there is no need
to obtain bootstrap samples of the original series: only resampling of the peri-
odogram is necessary. This means that the problems originated by the strong
dependence of the data are partially avoided, since the transformation that
leads to the periodogram implies a significant modification in the structure of
dependence. For example, the periodogram ordinates of weak dependent series
are asymptotically independent. But periodogram ordinates of long memory
series are not asymptotically independent around the spectral pole and they
show a marked structure that should be replicated by the bootstrap samples.
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Paparoditis and Politis[18] adapt a local bootstrap suggestion introduced
by Shi[23] and set out to resample near periodogram ordinates locally, thus re-
taining the global structure of the periodogram. Thus, a local strategy seems to
be more adequate under long memory where the periodogram shows a marked
structure. But this structure compels the use of a very narrow interval around
the frequency of interest, which affects the performance of the bootstrap. In
fact, Silva et al.[25] propose resampling within a neighbourhood of only one or
two frequencies. Franke and Härdle[8] and Dahlhaus and Janas[6], dealing with
weak dependent series, propose instead resampling Studentized periodogram
ordinates obtained by dividing the periodogram by an estimate of the spec-
tral density function. In this context, the main challenge with long memory
series is to obtain an estimator of the spectral density that is consistent over
the whole band of frequencies used in the resampling scheme. Traditional es-
timators (based on kernels) have been shown to be inconsistent at frequencies
close to the spectral pole (Velasco[27]) and some other option seems necessary
to Studentize the periodogram. Taking into account these considerations we
propose two different bootstrap strategies:

• Use the spectral density estimator proposed by Hidalgo and Yajima[9] to
standardize the periodogram. Then apply a global Efron’s bootstrap to the
Studentized periodogram.

• Estimating the spectral density can be avoided by resampling a locally stan-
dardized periodogram where the pole is damped by scaling with a function

that is proportional to the spectral density around the origin, namely λ−2d̂j

for d̂ a consistent estimator of d (e.g. the local Whittle estimator). Global
resampling does not succeed to retain the remaining structure of the peri-
odogram , so the local bootstrap is used instead to obtain bootstrap samples
of the locally standardized periodogram.

2 Estimation method

In what follows we consider long memory series xt with a spectral density
function satisfying

f(λ) = |λ|−2dg(λ) λ ∈ [−π, π] (2)

where d is the memory parameter and g(λ) controls the weak dependence of
the series and is assumed to be positive and bounded over all the frequencies
λ ∈ [−π, π].

The LW estimator is obtained by minimizing a local version of the Whittle
function around the origin, which is the region where the specification of the
spectral density function in (2) plays its part. For a series of n observations

xt, t = 1, 2, ..., n, with spectral density satisfying (2), the LW estimate d̂ is
obtained by minimizing

R(d) = log

 1

m

m∑
j=1

λ2dj Ij

− 2d

m

m∑
j=1

log λj (3)
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where Ij is the periodogram of xt, t = 1, 2, ..., n, at Fourier frequency λj =
2πj/n defined as

Ij = I(λj) =
1

2πn

∣∣∣∣∣
n∑
t=1

xt exp(−iλjt)

∣∣∣∣∣
2

and m is the bandwidth that represents the number of frequencies used in
the estimation. Robinson[21] analyzes the LW estimator in a stationary and
invertible context implying |d| < 1/2 and shows its consistency and asymptotic
distribution

√
m(d̂− d)

d→ N

(
0,

1

4

)
. (4)

However the distribution in (4) can be a bad approximation of the exact
one in finite samples. One source of inaccuracy lies in the fact that the finite
sample variance tends to exceed the asymptotic variance in (4). To palliate
this problem Hurvich and Chen[10] and Arteche[2] proposed that instead of
the asymptotic variance 1/4m a Hessian based approximation should be used,
defined as

v̂ar(d̂) =

4

m∑
j=1

(
log λj −

1

m

m∑
k=1

log λk

)2
−1 , (5)

which gives much better results in terms of coverage of confidence intervals.
Velasco[26] and Phillips and Shimotsu[19] extended the asymptotic prop-

erties of the LW estimator to the nonstationary case, allowing for d ≥ 1/2.
Switching from a stationary to a nonstationary context brings about the prob-
lem of initial values. Both papers use alternative definitions of nonstationary
long memory, which differ in the assumptions imposed in the initialization of
the process. Phillips and Shimotsu[19] consider the so called type II long mem-

ory process. In this context Phillips and Shimotsu[19] proved that d̂
p→ d as

n → ∞ for d ∈ (1/2, 1] but d̂
p→ 1 for d > 1. With respect to the asymptotic

distribution, (4) remains valid for d ∈ (1/2, 3/4). However the asymptotic
distribution changes for larger values of d as follows:

√
m(d̂− d)

d→ 1

2
U1 + J(d)U2

2 if d =
3

4
,

m2−2d(d̂− d)
d→ J(d)U2

2 if d ∈ (3/4, 1), (6)

√
m(d̂− d)

d→ −U1 +
√

2U2U3

2(1 + U2
3 )

, if d = 1

where Ui, i = 1, 2, 3 are mutually independent standard normal random vari-
ables and J(d) = (2π)2d−2Γ (d)−2(2d− 1)−3(1− d).

Velasco[26] proposes instead what is known as a type I long memory process.
In this context Velasco[26] shows the consistency of the LW estimator for values
of d < 1 and the asymptotic normality in (4) for d < 3/4. Shao and Wu[22]
extend the analysis for larger values of d obtaining the same asymptotic results
as in Phillips and Shimotsu[19] for type II long memory with the only change
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of a different function J(d) in (6). Special mention must be made of the case
d ∈ (3/4, 1). The asymptotic distribution of the LW estimator implies a positive
bias and skewness, which are not evident in finite samples as noted in the
simulations by Phillips and Shimotsu[19] for sample sizes as large as 500. As
a consequence, inference based on the asymptotic distribution might lead to
unreliable conclusions and some refinement seems necessary.

In other situations the LW estimator is known to be consistent but the
asymptotic distribution is unknown. This is the case in a noninvertible an-
tipersistent situation with d < −1/2. A similar situation arises for nonlinear
transformations of long memory processes. One common transformation is
taking squares, which are often used as approximations to the volatility of
the series. Consistency of the LW estimator in nonlinear time series has been
shown by Dalla et al.[5] but the asymptotic distribution remains unknown and
the central limit theorem leading to (4) might no longer hold.

3 Bootstrap proposals

The bootstrap was originally proposed for i.i.d. series, but its applicability has
been extended to time series where the data obey a dependence structure. Gen-
erating bootstrap samples that replicate the strong persistence of the series is
not a simple task, and a blind use of traditional bootstrap techniques may lead
to distorting results. In general, model based bootstraps have been proposed
for that purpose such that finally resampling is executed among residuals that
are close to being independent (see Poskitt[20], Kapetanios and Papailias[12],
Kreiss et al.[15]). These procedures depend heavily on a prior estimation of
the model that must be correctly specified. Model free bootstrap strategies,
such as the block bootstrap, avoid this problem but their application to get
bootstrap samples replicating the structure of dependence of the original long
memory series is not trouble free (see Lahiri[17], or Kim and Nordman[13]).

However, in order to approximate the distribution of the LW estimator there
is no need to obtain bootstrap replications of the original data: only the be-
haviour of the periodogram needs to be mimicked. For that purpose, frequency
domain bootstrap strategies are valuable tools because they are designed to
resample the periodogram and, although they may not have the ability to pro-
duce bootstrap replicates of the time series, they have the additional advantage
of not requiring parametric assumptions. Among the initial proposals, Franke
and Härdle[8] and Dahlhaus and Janas[6] apply Efron’s bootstrap method to
the periodogram Studentized by an estimate of the spectral density function,
showing its validity for kernel spectral density estimates and ratio statistics.
Its applicability has been proven valid for weakly dependent series but no re-
sults are available for long memory series where the asymptotic independence
of periodogram ordinates does not hold at frequencies close to the spectral pole.
Moreover, Studentizing the periodogram requires an estimator of the spectral
density function that has to be uniformly consistent over the frequency band
(0, π] and the kernel estimator proposed by the authors has been shown to be
consistent only at frequencies far from the spectral pole (Velasco[27]), which
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limits its applicability in long memory series characterized by a concentration
of spectral power around the origin.

A different alternative for mimicking the structure of the periodogram, the
local bootstrap, was proposed by Paparoditis and Politis[18] and applied in
long memory series by Silva et al.[25] and Arteche and Orbe[4]. However,
the marked structure of the periodogram around the origin forces the use of
a very narrow neighbourhood around the frequency of interest, which affects
the performance of the bootstrap. This limitation can be avoided by adapting
the idea of Franke and Härdle[8] and Dahlhaus and Janas[6] of resampling
standardized periodograms with a less marked structure than the original one.

With all these considerations we propose two different bootstrap approaches
based on different strategies to standardize the periodogram:

• Use a consistent estimator of the spectral density function to Studentize
the periodogram. This is a natural extension of the proposal by Franke and
Härdle[8] and Dahlhaus and Janas[6], but, as pointed out by Kim and Nord-
man[14], the problem of obtaining a nonparametric estimator of the spec-
tral density uniformly consistent over the whole band of Fourier frequencies
arises in long memory series. It is only very recently that Arteche[3] has
proved the consistency of the proposal by Hidalgo and Yajima[9], improving
on other more traditional techniques that lack consistency at frequencies
close to the spectral pole. This estimator is defined as

f̂j = f̂(λj) =
|λj |−2d̂

2m∗ + 1j>m∗

m∗∑
k=−m∗,6=−j

|λj + λk|2d̂I(λj + λk) (7)

for j = 1, ..., [n/2] where d̂ is the LW estimator and m∗ is a bandwidth

number. The Studentized periodogram, defined as v̂
(0)
j = Ij/f̂j , is then

resampled over the whole band of Fourier frequencies in a global bootstrap
strategy.

• Use a local standardization of the periodogram by dividing the periodogram
ordinates by an expression that is proportional to the spectral density func-
tion around the origin as defined in (1). This avoids estimating the spectral

density and gets the locally standardized periodogram defined as v̂
(1)
j = Ijλ

2d̂
j

for j = 1, ..., [n/2]. To replicate the remaining structure in the locally stan-

dardized periodogram, a global resampling such as that proposed for v̂
(0)
j

is not adequate. We therefore propose instead to apply a local bootstrap

to v̂
(1)
j .

Thus, the bootstrap strategies that we propose for the LW estimator consist
of the following steps:

1. Obtain v̂
(i)
j , i = 0, 1, for j = 1, ..., [n/2] with a bandwidth m for the LW

estimate d̂, and m∗ for f̂j (only needed for v̂
(0)
j ).

2. Let kn = [n/2] for v̂
(0)
j and select a resampling width kn ∈ N , kn ≤ [n/2] if

v̂
(1)
j is used.
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3. Define i.i.d. discrete random variables S1, ..., Sm taking values in the set
{0,±1, , ...,±kn} with equal probability 1/(2kn + 1).

4. Generate B bootstrap series v̂
∗(i)
bj = v̂

(i)
|j+Sj | if |j + Sj | > 0, v̂

∗(i)
bj = v̂

(i)
1 if

j + Sj = 0 for b = 1, 2, ..., B and j = 1, ...,m.

5. GenerateB bootstrap samples for the periodogram I
∗(1)
bj = λ−2d̂j v̂

∗(1)
bj , I

∗(0)
bj =

f̂j v̂
∗(0)
bj for b = 1, 2, ..., B and j = 1, ...,m.

6. Obtain the B bootstrap LW estimates d̂
∗(i)
b , b = 1, ..., B by minimizing R(d)

in (3) with the periodogram Ij replaced by I
∗(i)
bj .

Remark 1: The bandwidth for Local Whittle estimation m remains fixed
during the entire procedure.

Remark 2: Even though m is kept fixed, the procedure is not fully automatic
because it requires the intervention of the user in the selection of kn for the
local bootstrap or m∗ for the estimation of the spectral density function in
the global bootstrap strategy. But both quantities can be chosen on a data
driven basis. The resampling width kn can be selected based on the form of

v̂
(1)
j , the higher the structure the lower kn should be chosen to keep the global

structure of v̂
(1)
j in the bootstrap samples v̂

∗(1)
bj . The bandwidth m∗ can be

chosen similarly because f̂j is based on a moving average of neighbour v̂
(1)
k s

and thus it can be selected using the same criteria.

4 Simulation study

In this section the performance of our proposals is compared with the asymp-
totic distribution (when an analytical expression exists).

4.1 Stationary and invertible case −1/2 < d < 1/2

The asymptotic distribution of the LW estimator in (4) is very convenient for
asymptotic inference thanks to its standard distribution with fully specified
asymptotic variance. However, the asymptotic distribution may not be a good
approximation of the exact one. For example, the variance in the asymptotic
distribution in (4) has been shown to be a poor approximation of the true
variance in finite samples. Hurvich and Chen[10] and Arteche[2] propose in-
stead the Hessian based approximation of the variance described in (5) and
find that it leads to much better results than the asymptotic variance in terms
of coverage frequencies of confidence intervals. We compare all these proposals
with the bootstrap strategies defined in the previous section. The comparison
is based first on confidence intervals, analysing the coverage of the intervals
obtained with the following strategies:

Option 1. The asymptotic distribution in (4), that is

CI11−α =
(
d̂− 0.5m−1/2z1−α2 ; d̂− 0.5m−1/2zα

2

)
where zα indicates the 100 · αth percentile of the asymptotic distribution
(N(0, 1) in the stationary and invertible case).
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Option 2. As in Option 1 but using the Hessian based approximation of the
variance in (5)

CI21−α =

(
d̂−

√
ˆvar(d̂)z1−α2 ; d̂−

√
ˆvar(d̂)zα

2

)
.

Option 3(m∗). Using the global bootstrap strategy based on the Studentized

periodogram v̂
(0)
j for different bandwidths m∗. In this case the confidence

intervals are as follows:

CI31−α(m∗) =

(
d̂
∗(0)
((B+1)(α2 ))

; d̂
∗(0)
((B+1)(1−α2 ))

)
,

where the d̂
∗(0)
(j) denotes the jth ordered value of the bootstrap estimates of

d. The α/2 percentile is thus estimated by the (B+ 1)(α2 ) ordered value of

d̂∗(0). We choose a B value such that (B + 1)(α2 ) is an integer.
Option 4(kn). CI41−α(kn) is calculated similarly but using the local boot-

strap strategy based on the locally standardized periodogram v̂
(1)
j for dif-

ferent resampling widths kn. The confidence intervals are obtained as in

Option 4 but with d̂
∗(1)
(j) .

The performance of all these options is analysed in ARFIMA models defined
as

(1− φL)(1− L)dXt = εt, t = 1, 2, ..., n,

for n = 128 and εt ∼ NID(0, 1). Two values of d are considered, d = 0 and
0.4, corresponding to short memory and stationary long memory. Two values
of φ are also examined, φ = 0.3 and 0.8, the latter inducing a significant bias in
the estimation of d if a large m is used. In this Monte Carlo analysis the values
m = 5, 10, 20 are used. 1000 replications of these models are generated to
compare the performance of the previous strategies for constructing confidence
intervals. For options 3 and 4 the number of bootstrap samples is B = 999.
Instead of choosing a single m∗ (kn) the sensitivity of the bootstrap proposals
is assessed by considering different values m∗ = 3, 5, 7 and kn = 2, 5, 10, 20.
The set of values considered for m∗ are chosen in a sensible region taking
into account the form of the spectral density of the AR(1) weak dependent
component. Larger values would lead to an estimate of f(λ) that is too smooth
around frequency zero. The values of kn are selected similarly based on the

form of the locally standardized periodogram v̂
(1)
j , where larger values of kn

lead to worse results.
Tables 1 and 2 show the coverage frequencies in percentages (top number

in each cell) and the average length (bottom number) of confidence intervals
for a 95% nominal confidence level over 1000 Monte Carlo replications. The
following conclusions can be drawn:

• The variance correction in CI21−α results in a significant improvement in
coverage frequencies, with an unavoidable enlargement of the length of the
intervals, though they still tend to undercover.
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• Both bootstrap strategies in options 3 and 4 tend to lead to coverage closer
to nominal, even with narrower intervals in some cases.

• The global bootstrap based on the Studentized periodogram is less sensitive
to changes in m∗ than the local bootstrap based on the local standardized
periodogram is to the choice of kn. Large values of kn tend to lead to
overcoverage with too wide intervals. Large values of m∗ also tend to lead
to an increase in coverage but overcoverage is less evident.

• The choice of m has a significant impact on the performance of all the
techniques, especially when φ = 0.8. In that case a large m induces a high
bias in the estimation of d that significantly affects the coverage of all the
CIs, but in every case the bootstrap strategies proposed here outperform
the other techniques.

Table 1. Coverage for ARFIMA(1, d, 0) with φ = 0.3 (n = 128)

d=0 d=0.4

m=5 m=10 m=20 m=5 m=10 m=20

CI10.95 0.662 0.811 0.823 0.678 0.795 0.815
0.877 0.620 0.438 0.877 0.620 0.438

CI20.95 0.894 0.925 0.912 0.887 0.917 0.905
1.542 0.891 0.553 1.542 0.891 0.553

CI30.95(m∗ = 3) 0.940 0.936 0.932 0.942 0.917 0.926
1.713 0.935 0.549 1.750 0.929 0.546

CI30.95(m∗ = 5) 0.967 0.950 0.937 0.960 0.948 0.943
1.771 0.963 0.564 1.800 0.958 0.561

CI30.95(m∗ = 7) 0.962 0.969 0.953 0.957 0.965 0.948
1.787 0.977 0.574 1.817 0.970 0.570

CI40.95(kn = 2) 0.847 0.873 0.852 0.846 0.841 0.836
1.316 0.804 0.501 1.327 0.802 0.501

CI40.95(kn = 5) 0.946 0.924 0.904 0.947 0.929 0.899
1.543 0.891 0.546 1.564 0.894 0.546

CI40.95(kn = 10) 0.982 0.964 0.941 0.977 0.956 0.934
1.775 0.929 0.562 1.807 0.934 0.562

CI40.95(kn = 20) 1.000 0.975 0.957 1.000 0.966 0.958
1.958 1.013 0.573 2.001 1.013 0.575

The top number in each cell is the coverage frequency. The bottom number is the length of the

CI.

In practice, m∗ (kn) needs to be selected prior to the application of the

bootstrap. This choice can be based on the smoothness of v̂
(1)
j as explained in

Remark 2 above. The lack of significant structure in v̂
(1)
j indicates that a large

m∗ and kn should be used.

4.2 Nonstationary case 1/2 ≤ d ≤ 1

In a nonstationary context the situation varies with the value of d according to
the intervals where the asymptotic distribution in (6) is defined. When d < 3/4
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Table 2. Coverage for ARFIMA(1, d, 0) with φ = 0.8 (n = 128)

d=0 d=0.4

m=5 m=10 m=20 m=5 m=10 m=20

CI10.95 0.627 0.402 0.022 0.606 0.419 0.021
0.877 0.620 0.438 0.876 0.620 0.438

CI20.95 0.900 0.623 0.043 0.873 0.641 0.057
1.542 0.891 0.553 1.542 0.891 0.553

CI30.95(m∗ = 3) 0.977 0.764 0.068 0.965 0.775 0.076
1.751 0.935 0.557 1.722 0.912 0.543

CI30.95(m∗ = 5) 0.981 0.772 0.058 0.979 0.775 0.072
1.809 0.965 0.572 1.766 0.940 0.556

CI30.95(m∗ = 7) 0.975 0.762 0.051 0.968 0.757 0.065
1.828 0.978 0.580 1.785 0.953 0.564

CI40.95(kn = 2) 0.788 0.557 0.067 0.797 0.550 0.091
1.323 0.835 0.545 1.321 0.827 0.536

CI40.95(kn = 5) 0.906 0.646 0.081 0.903 0.628 0.100
1.581 0.927 0.591 1.574 0.915 0.580

CI40.95(kn = 10) 0.951 0.666 0.053 0.953 0.671 0.069
1.876 0.972 0.592 1.863 0.957 0.581

CI40.95(kn = 20) 0.977 0.749 0.046 0.981 0.746 0.056
2.193 1.088 0.602 2.163 1.063 0.590

The top number in each cell is the coverage frequency. The bottom number is the length of the

CI.

all the results are similar to those discussed in the stationary case. For other
values of d the asymptotic distribution changes, which affects the way in which
it approximates the exact distribution.

We focus here on the interval 3/4 < d < 1, where, as noted by Phillips
and Shimotsu[19] the discrepancies between the asymptotic distribution and
the finite sample distribution are most apparent. In this case no refinements to
improve the approximation of the distribution have been proposed. As a result,
we compare the asymptotic expression in Option 1 (with the corresponding
asymptotic distribution) with the bootstrap strategies in Options 3(m∗) and
4(kn).

1000 replications of a type II long memory process as defined in Philips and
Shimotsu[19] are generated with x0 = 0, d = 0.8 and ut standard normal for
n = 512. A larger sample size is chosen here to show that even in that case the
asymptotic distribution is a poor approximation of the real one, whereas the
bootstrap approximation gives much more reliable results. The values of m, m∗

and kn analysed here are m = 20, 40, 70, m∗ = 5, 10, 20 and kn = 5, 20, 40, 70.
Table 3 shows coverage frequencies and the lengths of the confidence intervals
for a 95% nominal confidence. CI10.95 clearly undercovers evidencing that the
asymptotic distribution is far from the exact one. All the intervals based on
the bootstrap strategies proposed in this paper offer much better coverage even
with shorter intervals.



Estimating the exact distribution of the Local Whittle estimator 105

Table 3. CI coverage in ARFIMA(0, 0.8, 0)

m=20 m=40 m=70

CI10.95 0.549 0.577 0.557
0.496 0.376 0.300

CI30.95(m∗ = 5) 0.929 0.907 0.907
0.560 0.353 0.251

CI30.95(m∗ = 10) 0.954 0.921 0.921
0.575 0.361 0.257

CI30.95(m∗ = 20) 0.974 0.952 0.924
0.584 0.367 0.261

CI40.95(kn = 5) 0.902 0.892 0.888
0.523 0.335 0.240

CI40.95(kn = 20) 0.962 0.931 0.916
0.558 0.356 0.254

CI40.95(kn = 40) 0.958 0.960 0.942
0.589 0.361 0.259

CI40.95(kn = 70) 0.968 0.951 0.954
0.604 0.370 0.260

The top number in each cell is the coverage frequency. The bottom number is the length of the

CI.

4.3 Unknown asymptotic distribution

In this subsection we analyse the performance of the techniques proposed in two
situations where the LW estimator is consistent but its asymptotic distribution
is unknown: noninvertible ARFIMA and nonlinear transformations of long
memory series. In particular we generate 1000 replications of series generated
as:

• ARFIMA(0,−0.7, 0), (1− L)−0.7Xt = εt for εt standard normal.
• Xt = Y 2

t for (1− 0.3L)(1− L)0.4Xt = εt and εt standard normal.

The sample size and bandwidth parameters are those considered in Section
4.1. Note that the second model is just the squares of one the stationary
ARFIMA models analysed previously.

Table 4 shows the coverage frequencies for both cases. The noninvertible
case shows no significant differences with respect to the invertible case, with
good coverage close to the exact ones. The results for the squared transfor-
mation are also satisfactory, but a comparison with the results obtained for
the untransformed ARFIMA shows that a lower bandwidth m seems to be
necessary here to get better results.

5 Conclusion

We propose two bootstrap strategies for estimating the exact distribution of
the LW estimator that significantly outperform the approximation offered by
the asymptotic distribution in a wide range of situations. The proposals are
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Table 4. Coverage for ARFIMA(0,−0.7, 0) and squared ARFIMA(1, 0.4, 0) (n =
128)

ARFIMA (0,−0.7, 0) squared ARFIMA (1, 0.4, 0)

m=5 m=10 m=20 m=5 m=10 m=20

CI30.95(m∗ = 3) 0.972 0.947 0.916 0.925 0.844 0.789
1.409 0.883 0.538 1.697 0.892 0.525

CI30.95(m∗ = 5) 0.995 0.959 0.929 0.952 0.892 0.812
1.487 0.917 0.555 1.751 0.923 0.542

CI30.95(m∗ = 7) 0.992 0.964 0.937 0.954 0.918 0.838
1.514 0.934 0.564 1.775 0.939 0.551

CI40.95(kn = 2) 0.806 0.820 0.782 0.845 0.770 0.716
1.163 0.748 0.476 1.221 0.739 0.462

CI40.95(kn = 5) 0.948 0.909 0.853 0.932 0.853 0.773
1.341 0.841 0.524 1.455 0.833 0.511

CI40.95(kn = 10) 0.988 0.955 0.901 0.972 0.910 0.823
1.535 0.886 0.548 1.722 0.877 0.532

CI40.95(kn = 20) 1.000 0.970 0.936 0.998 0.930 0.870
1.685 0.959 0.563 1.931 0.975 0.548

The top number in each cell is the coverage frequency. The bottom number is the length of the

CI.

based on resampling two different standardized periodograms in order to ob-
tain bootstrap replicates of the original periodogram. As a result the potential
applications of these techniques are far more general than shown here: they
can be used to obtain bootstrap replicates of the periodogram in similar esti-
mation strategies based on a Whittle criterion, as for example the modified LW
estimator of Hurvich et al.[11] and the local polynomial Whittle estimators of
Andrews and Sun[1] and Frederiksen et al.[7].
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Abstract. In this paper the distribution of random variables skewness measure is
modeled. Firstly we present some results of matrix algebra useful in multivariate sta-
tistical analyses. Then we apply the central limit theorem on modeling of multivariate
skewness measure distribution. That skewness measure is introduced in [6].
Keywords: Central limit theorem, Multivariate skewness measure, Skewness mea-
sure distribution.

1 Introduction and basic notations

In the firs section we introduce some notations used in the paper. The k-
dimensional zero vector is denoted as 0k. The transposed matrix A is denoted
as A′.

Let us have random vectors Xi = (Xi1,Xi2, . . . ,Xik)′ where index i =
1, 2, ..., n is for observations and k denotes number of variables. These random
vectors are independent and identically distributed copies (each copy for one
observations) of a random k-vector X. Let

x =
1

n

n∑
i=1

Xi

and

S =
1

n− 1

n∑
i=1

(Xi − x)(Xi − x)′

be the estimators of the sample mean E(X) = µ and the covariance matrix
D(X) = Σ respectively.

Now we present matrix operations used in this paper. One of the widely
used matrix operation in multivariate statistics is Kronecker product (or tensor
product) A ⊗ B of matrices A : m × n and B : p × q which is defined as a
partitioned matrix

A⊗B = [aijB], i = 1, 2, . . . ,m; j = 1, 2, . . . , n.
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By means of Kronecker product we can present the third and the fourth order
moments of vector X :

m3(X) = E(X⊗X′ ⊗X)

and
m4(X) = E(X⊗X′ ⊗X⊗X′).

The corresponding central moments

m3(X) = E{(X− µ)⊗ (X− µ)′ ⊗ (X− µ)}

and
m4(X) = E{(X− µ)⊗ (X− µ)′ ⊗ (X− µ)⊗ (X− µ)′}.

The third order moment of random vector X is k2 × k-matrix and its fourth
order moment is k2 × k2-matrix.

The operation vec(X) denotes a mn-vector obtained from m×n-matrix by
stacking its columns one under another in natural order. For the properties
of Kronecker product and vec-operator the interested reader is referred to [2]
or [4]. In the next section skewness measure will be defined be means of the
star-product of the matrices. The star-product was introduced in [7] where
some basic properties of the operation were presented and proved.

Definition 1. Let us have matrix A : m × n and a partitioned matrix
B : ×ns consisting of r × s-blocks Bij , i = 1, 2, . . .m; j = 1, 2, . . . n. Then the
star-product A ∗B is a r × s-matrix

A ∗B =

n∑
i=1

m∑
j=1

aijBij .

The star product is inverse operation of Kronecker product in sense of increasing
and decreasing of matrix dimensions. One of the star-product applications is
presented in the paper [12]. Let us give an example how the star product works.

Example. Let us have matrices A : 2× 2 and partitioned matrix B : 4× 4
with 2× 2-blocks B11, ..., B22. Then

A ∗B =

(
a11 a12
a21 a22

)
∗
(
B11 B12

B21 B22

)
=

= a11B11 + ...+ a22B22.

We also use the matrix derivative defined following H. Neudecker in [10].
Definition 2. Let the elements of the matrix Y : r × s be functions of

matrix X : p× q. Assume that for all i = 1, 2, . . . p; j = 1, 2, . . . q; k = 1, 2, . . . r

and l = 1, 2, . . . s partial derivatives
∂ykl
∂xij

exist and are continuous in an open

set A. Then the matrix
dY

dX
is called matrix derivative of matrix Y : r × r by

matrix X : p× q in a set A, if

dY

dX
=

d

dvec′(X)
⊗ vec(Y)
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where
d

dvec′(X)
=
( ∂
∂x11

· · · ∂
∂xp1

· · · ∂
∂x1q

· · · ∂
∂xpq

)
.

Matrix derivative defined by Definition 2 is called Neudecker matrix derivative.
This matrix derivative has been in last 40 years a useful tool in multivariate
statistics.

2 Multivariate measures of skewness

In this section we present multivariate skewness measure by means of matrix
operation described above. A skewness measure in multivariate case was intro-
duced in Mardia [8]. Mori et al [9] have introduced a skewness measure as a
vector. B. Klar in [3] has given thorough overview of the skewness problem. In
this paper is also examined asymptotic distribution of different skewness char-
acteristics. In Kollo [6] a skewness measure vector is introduced and applied in
Independent Component Analyses (ICA).

The skewness measure in multivariate case is presented through the the
third order moments as

s(X) = E(Y ⊗Y′ ⊗Y) (1)

where

Y = Σ−1/2(X− µ).

In Kollo [6] a skewness measure based on (1) is introduced by means of the
star product:

b(X) = 1k×k ∗ s(X) (2)

where

1k×k =

 1 · · · 1
...

. . .
...

1 · · · 1

 .

In [5] the Mardia’s skewness measure is presented as through the third order
moment:

β = tr(m′3(Ym3(Y)

where operation tr denotes the trace of matrix. A sample estimate b̂(X) of the
skewness vector (2) we can present in the form:

b̂(X) = 1k×k ∗
n∑
i=1

(yi ⊗ y′i ⊗ yi) (3)

where

yi = S−1/2(xi − x)

x and S are the sample mean vector and the sample covariance matrix of the

initial sample (x1,x2, . . . ,xn). The estimator b̂(X) is random k-vector.
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3 Modeling the multivariate skewness measure
distribution

In this section we model the distribution of the random variable b̂(X) defined

by equality (3). From this equality concludes that b̂(X) is k-vector. Let us have
a sequence of independent and identically distributed random vectors {Xn}∞n=1.
Let E(Xn) = µ and D(Xn) = Σ. Then according to the central limit theorem
the distribution of the random vector

√
n(Xn − µ) converges to the normal

distribution N(0k,Σ) where 0k denotes k-dimensional zero vector.
Let us introduce k2 + k-vector

Zn =

(
x

vec(S)

)
.

Applying the central limit this random vector we get the following convergence
in distribution √

n(Zn − E(Zn)) 7→N(0k2+k,Π)

where (k2 + k)× (k2 + k)-dimensional partitioned matrix

Π =

(
Σ m3

′(X)
m3(X) Π4

)
.

The k2× k2−block Π4 = m4(X)− vec(Σ)vec′(Σ) ([11]). This convergence can
be generalized by means of the following theorem.

Theorem 1. Let {Zn}∞n=1 be a sequence of k2 + k-component random
vectors and ν be a fixed vector such that

√
n(Zn − ν) has the limiting dis-

tribution N(0k2+k,Π) as n → ∞. Let the function g : Rk
2+k → Rk have

continuous partial derivatives at zn = ν. Then the distribution of random vec-
tor
√
n(g(Zn)− g(ν)) converges to the normal distribution N(0k2+k, g

′
zn

Πgzn)
where (k2 + k)× k-matrix

gzn
=
dg(zn)

dzn

∣∣∣∣
zn=ν

is Neudecker matrix derivative at zn = ν. The proof of Theorem 1 can be found
in the book of T. W. Andreson ([1], page 132).

In our case the function

g(zn) = g

(
x

vec(S)

)
= b̂(X).

Applying Theorem 1 we get the following convergence in distribution:

√
n(b̂(X)− b(X)) 7→ N(0k,Σb).

Here the k × k-matrix

Σb = g′zn
Πgzn

∣∣∣∣
zn=(µ vec′(Σ) )

′
=
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=
(
db̂(X)
dx

db̂(X)
dS

)(
Σ m3

′(X)
m3(X) Π4

)( db̂(X)
dx

db̂(X)
dS

)∣∣∣∣
x=µ,S=Σ

=

=
db̂(X)

dx
Σ
db̂(X)

dx

′∣∣∣∣
x=µ,S=Σ

+
db̂(X)

dS
m3(X)

db̂(X)

dx

′∣∣∣∣
x=µ,S=Σ

+

+
db̂(X)

dx
m3(X)′

db̂(X)

dS

′∣∣∣∣
x=µ,S=Σ

+
db̂(X)

dS
Π
db̂(X)

dS

′∣∣∣∣
x=µ,S=Σ

.

Here
db̂(X)

dx
and

db̂(X)

dS
are k×k- and k×k2-dimensional Neudecker matrix

derivatives respectively.
Knowing the skewness measure distribution enables to estimate asymmetry

of k-dimensional data. We can find for α-confidence interval for skewness vector
b(X). The problem of asymmetry is actual on environmental data for example.
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Abstract: In this study, polyphenolic material amount in olive tree (Olea europaea) 

leaves extracted by ultrasound-assisted extraction (UAE) were investigated.  The effect 

of three parameters such as temperature (25–35–45  ), time (60–90–120 min) and                                      

pH (3–7–11) were determined by both experimental and Response Surface Methodology 
(RSM) techniques. While applying RSM to the experimental results, a computer 

simulation was written in MATLAB simulation program to see the responses for each 

parameter scenario. The experimental results were compared with those of calculated 

from RSM. The differences between experimental and calculated results were expressed 
as percentage                    (% Dif).  RSM was found to be an appropriate  method for the 

UAE of olive leaves, owing to its high accuracy.  

 

Keywords: Simulation; Process parameters; Response Surface Methodology; Modelling; 
Olive tree (Olea europaea) leaves; Ultrasound-assisted extraction. 

 

1  Introduction 
 

Experimental studies are the first chosen study type in many different science 

fields. Chemistry, chemical engineering, environmental engineering, textile 

engineering, mettalurgical and materials engineering, civil engineering, 

medicine, biology are some of these fields. The problem of determining the 

material behaviours according to various factors (temperature, concentration 

ratio, time, mixing amount, pH, purity, pressure)  is an ancient problem that is 

tried to be solved by experimental studies. Although experimental studies can 

give realistic results, they are limited by the properties of materials used. Also, 

experimental studies require  long periods of time, high cost and laboratory 

facilities. Because of these disadvantages of experiments, modelling the 

experimental studies in a simulation environment is an alternative study type. 

Alternatively, a structural element that is desired to be examined can be 

modelled in a computer environment without the aforementioned limitations. It 

must not be forgotten however that the accuracy of the computer model is 

related to material assumptions and experimental conditions on a large scale. 

mailto:selins@istanbul.edu.tr
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Computer softwares, while they do not replace experimental work yet, can offer 

ease and guide the design phase. Within this scope, in recent years, experimental 

studies have been simulated by different methods such as  optimisation method, 

regression analysis, neural networks etc.   In this paper, it is aimed to simulate 

the chemical extraction processes and optimize them as done in many studies by 

using a stochastic modelling method, response surface methodology. 

 

In this study, olive tree (Olea europaea) leaves were used as the research 

material in order to investigate the ultrasound-assisted extraction (UAE) 

parameters such as time, temperature and pH, and to observe the total phenolic 

content with different combinations of these parameters.  Response Surface 

Methodolgy (RSM), a kind of mathematical modelling was applied to the 

experiments made to find the polyphenolic content in olive leaf extracts.  This 

modelling operation can be seperated into three parts.  First of all RSM was 

applied in the mathematical direction.  Secondly, a computer simulation with 

MATLAB simulation program was constituted for the datas.   

 

2  Extraction Process 
 

An important process of chemical engineering is revealing the phenolic content 

of natural plant extracts. The more phenolic material in a plant extract, the more 

industrial value.  There are many parameters that can affect the extraction 

process.  Plant material, extraction method, preliminary preparations, solvent 

type, solid to solvent ratio, extraction temperature and pressure, extraction time 

and pH are some of these. A lot of researchers study the effects of these 

parameters on the extract. That's why, experiments with two, three, four or more 

parameters and different conditions were made. 

 

In this study, as an agricultural and industrial waste of olive oil and table oil 

productions, olive tree (Olea europaea) leaves were used as the material. The 

purpose of the study is to investigate the extraction parameters such as time (20, 

40, 60 min), temperature (25, 35, 45  ) and pH (3, 7, 11) and to observe the 

total phenolic content with different combinations of these parameters. Totaly, 

27 experiments whose results are shown in Table 1 were performed.  

 

3  Response Surface Methodology (RSM) 

 
Response Surface Method (RSM) is an experimental optimization procedure 

based on physical experiments or computer experiments (simulations) and 

experimented observations (Box et al., 1978).  In most of the experimental 

investigations, there are many parameters affecting each other besides the 

results. However, the effects of parameters to each other are ignored in many 

methods.  The effects of distinct parameter to the results are solely calculated.  

In fact, parameters usually affect each other especially in physical experiments.  

For example, if the parameters are accepted as density and temperature, 
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handling only the distinct effect cannot be enough, since temperature can also 

affect the density.  RSM is a method that aims to eliminate this lack. 

 

 

In RSM, a function is a must to be obtained for prediction.  This function’s 

general formula is 

 

              ∑      
 
   ∑        

 
   ∑      

    
     Eq. 1. 

 

where Y represents the result (or with the name in RSM – response), βi,∀i are 

regression coefficients, Xi,∀i are the independent parameters.   

 

It is very important to fomulate the effects of parameters to the result by the 

experiments, and to calculate the conditions that renders the maximum phenolic 

content in extraction processes.  In this study, three independent parameters 

were used.  Those were X1 (time, min), X2 (temperature,  ) and X3 (pH).  The 

result named response in this method is Y (mg GAE/g dried leaf). Thus, the 

function of this study containing three independent variables is expressed with 

equation below: 

 

                         
       

       
         

         

         

 

When RSM is applied to the experimental values with the help of MATLAB 

simulation program, the coefficients of this equation are calculated as below : 

 

           (          )  (          )  (         )  
        

           
  (         

 )  (            )              
          . 

 

 The results obtained by experiments and these RSM equations are summarized 

as in the table below (Table 1). 

 

3  Conclusions 

 
As an agricultural and industrial waste, olive leaves are a potential cheap, 

renewable and abundant source of polyphenols.  These valuable compounds in 

olive leaf powders and leaf extracts are responsible for many health benefits, 

and therefore there is a growing interest to utilize olive leaf powders or extracts 

in various industrial applications such as food supplements, cosmetic and 

pharmaceutical industries.  In this study olive leaves are chosen as a research 

material. The phenolic content in the leaf extracts was acquired by ultrasound-

assisted extraction through different time, temperature and pH conditions. 

Therefore,  27 experiments with different combinations of 3 time, 3 temperature 
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and 3 pH values were carried out. After chemical experimental studies were 

completed, a simulation in MATLAB program was coded for applying RSM 

method to these results. Each parameter effect was formulated. When we look at 

the result table, it can be seen that the difference percent between experimental 

results and RSM results are consistent to each other and so it can be said that 

RSM is an appropriate method for modelling chemical extraction process. 

Table 1 : The parameters, experimental and RSM results 

 
Experiment No Time(min)    T( )     pH       Experimental Result            RSM 

Result 
          1                        60        25      3       28.37525361                      28.4721 

          2                        90        25      3       30.85166135                   30.1221 

          3                        120        25      3       33.42621939                   33.9321 

          4                        60        25      7       20.22347134                   19.0197 
          5                        90        25      7       23.09649878                   20.8977 

          6                        120        25      7       24.44219842                   24.9357 

          7                        60        25     11       8.686059414                   8.5017 

          8                        90        25     11       10.36635493                   10.6077 
          9                        120        25     11       12.07093217            12.8437 

         10                         60        35      3       25.84592294                   25.9241 

         11                         90        35      3       27.0173689                   26.9141 

         12                        120        35      3       29.48776513                   30.0641 
         13                         60        35      7       18.22195617                   17.9437 

         14                         90        35      7       18.94426521                   19.1617 

         15                        120        35      7       22.11482171                   22.5397 

         16                         60        35     11       9.615632406                   9.5247 
         17                         90        35     11       10.13668612                   10.3437 

         18                        120        35     11       11.78750117                   10.7467 

         19                         60        45      3       27.22277895                   28.3961 

         20                         90        45      3       28.52836874                   28.7261 
         21                        120        45      3       30.80288682                   31.2161 

         22                         60        45      7       20.09370254                   20.4157 

         23                         90        45      7       22.09506734                   22.4457 

         24                        120        45      7       23.09952589                   23.9637 
         25                         60        45     11       14.26655863                   14.3137 

         26                         90        45     11       15.67107964                   15.0997 

         27                        120        45     11       17.23937872                   18.0457 
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Abstract. Stable population theory provides a broadly useful mathematical frame-
work for studying population’s age structure and growth that are mainly determined
by rates of fertility, mortality and migration. This work uses an Agent-Based model
to simulate the behavior of the Portuguese population under the Stable model, and
provides scenarios for the sustainability of the social security system.
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1 Introduction

The future and sustainability of social security systems is a matter of concern in
modern economies. Generally, there are two main different funding streams for
insurance within the security systems: the contributive regime relies on wage
contributions and the subsidized regime receives financing from other sources,
generally the governments. As with all social insurance programs, the provision
of old age pensions involves the actual and future population that contributes
to (and earns from) the system. Therefore, some background knowledge about
population dynamics and demography are needed in order to project the future
and the sustainability of the social security systems. Mainstream theories of
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population projections are more focused on econometrical links rather than on
the complexity underlying the variable of the problem.

Agent-based models Wooldridge[17] Ferber [5], constitute an alternative to
mainstream techniques, such as econometrical models, since they deal with the
complex interactions between the individuals in the system. In addition, sta-
ble population theory provides a broadly useful mathematical framework for
studying population’s age structure and growth that are mainly determined by
rates of fertility, mortality and migration. A stable population is a limit popu-
lation to which actual populations tend when their mortality and fertility rates
remain constant. In this work, we create an Agent-Based model to simulate
the behavior of the Portuguese population under the Stable model and provide
clues for the sustainability of the social security system.

Our work is organized as follows: in section 2 we provide an introduction
to the stable population model; in section 3, we describe the model of the
Portuguese Stable Equivalent Population and the details of the social security
System. Results and Conclusions are in sections 4 and 5, respectively.

2 The Stable population model

The long-term implications of the maintenance of constant demographic pat-
terns over a long period in a population may have important consequences in
the population´s structure. All individuals being linearly independent, they
tend toward a structure that is independent of the conditions of the past, Le-
Bras[8]. A stable population emerges when some characteristics persist over
the long term: (i) age-specific fertility rates are constant; (ii) age-specific death
rates are constant; and (iii) age-specific net migration rates are zero. The
Stable model, in its simplest continuous form is a one sex model and can be
defined by the Lotka equation - Le Bras[8] Amegandjin[1] Keyfitz[7] Pressat[11]
Tapinos[14] Schryock, Siegel et al[12] among others):

β∫
α

e−rxp(x)φ(x)dx = 1. (1)

Where φ(x)dx represents the number of female births in age interval (x, x+dx),
p(x) is the probability of female survival until age x, and (α, β) is the female
fertility interval. The solution of this equation is given by r, the intrinsic growth
rate, which an approximation can be given by ln(R0/K1), where R0 is the net
reproduction rate and K1 is the average fertility age.

After finding the value of r (the intrinsic growth rate), we can compute the
equivalent stable population for a given population at time t. The equivalent
stable population of the actual population is regarded as a transitional state.
The reverse is, however, impossible: a stable state can be reached by starting
from many actual populations There are also other theoretical concepts related
to stable populations that are not explored in this work: semi-stable popula-
tion, which is a theoretical concept, and the study of their properties being
a problem of pure mathematics; and the concept of a quasi-stable population,
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which, on the other hand, is based on experience. The properties of quasistable
populations are based on empirical data, which may be revised as a result of
further experiments [15]. In the following sections we create synthetic popula-
tions, based on simple methods of Agent-Based simulations, and compute the
stable equivalent of the population for a 30 year period.

3 Portuguese Population Base Model

In this model, each agent (a.k.a. person) is created with one gender (male or
female), and different death and birth rates.

Then, at each step (year) the population is updated by eliminating some
agents, giving birth to new ones and computing the new global death and birth
rates.

• Let l1 be the starting year for the simulation and let ai,j,k,l represent the
agent of age i ∈ {0, 1, . . . , 99}, sex j ∈ {M,F}, personal index k ∈ N
and year l ∈ N\{1, 2, ,̇l1 − 1}; ai,j,k,l = 1 if the agent is alive by year l and
ai,j,k,l = 0 if the agent is dead by the year l (if ai,j,k,ln = 0 then ai,j,k,lm = 0
for all lm > ln)

• Let pi,j,l be the number of alive agents by the end of the year l with age i
and sex j

pi,j,l =
∑
k

ai,j,k,l; (2)

• Let mrl be the male proportion in the year l

mrl =

∑
i pi,M,l∑
i,j pi,j,l

(3)

• Let di,j,l be the number of deaths that occurred in the year l of agents with
age i and sex j

di,j,l = #{ai,j,k,l = 0 ∧ ai−1,j,k,l−1 = 1}, i 6= 0, (4)

d0,j,l =
∑
in

bin,j,l − p0,j,l; (5)

• Let bi,l be the number of births of agents in the year l, given birth by
females of age i.

Then it is set:

• dri,j,l+1 =
di,j,l

di,j,l+pi,j,l
as the death rates the year l+1 of agents of age i and

sex j;
• bri,l+1 =

bi,l
di,F,l+pi,F,l

as the birth rates used for the year l + 1 of female

agents of age i.

And the following variables are created:



126 Renato Fernandes and Pedro Campos

• Xi,j,l+1 a random variable refering to dri,j,l+1 with

σdi,j,l+1 = min{0.02,
dri,j,l+1

3 ,
1−dri,j,l+1

3 } such that

Xi,j,l+1 ∼ N(0, σdi,j,l+1); (6)

• Yi,l+1 a random variable refering to bri,l+1 with

σbi,l+1 = min{0.02,
bri,l+1

3 ,
1−bri,l+1

3 } such that

Yi,l+1 ∼ N(0, σbi,j,l+1). (7)

With these distributions each agent is given:

• adi+1,j,k,l+1 which is the death probability of the agent k of age i+ 1 and
sex j for the year l + 1 and it is given by

adi+1,j,k,l+1 = dri+1,j,l+1 + xi+1,j,l+1, xi+1,j,l+1 ∈ Xi+1,j,l+1 (8)

• abi+1,F,k,l+1 which is the giving birth probability of the female agent k of
age i+ 1 for the year l + 1 and it is given by

abi+1,F,k,l+1 = bri+1,l+1 + yi+1,l+1, yi+1,l+1 ∈ Yi+1,l+1 (9)

As for the evolution process there is a cycle of updates:

Step 1. Increase the simulation year
Step 2. Age every living agents
Step 3. Give birth to new agents according to the birth rates of females, i.e.,

it is generated U1, U2 ∼ U(0, 1) and if U1 < abi,F,k,l then a new agent
is born. If U2 < mrl then the new agent is male, else it is female.

Step 4. Randomly ”kill” agents, i.e., according to U3 ∼ U(0, 1) and if U3 <
adi,j,k,l then is set ai,j,k,l = 0.

Step 5. Compute the next year birth, death and male proportion rates
bri,l+1, dri,j,l+1,mrl.

Step 6. Define each agent’s birth and death rates abi, F, k, l, adi, j, k, l for the
following year.

3.1 Model Validation

After computing several simulations for the previously presented model using
the Portuguese census information from 1981, 1991 and 2001 as starting data
[6], we gathered a very vast amount of data. Means and standard deviations
were computed for each year, age and gender for different variables. These
results were then compared with the real census data of 1991, 2001 and 2011.

Data comparison is made in the following way: relative diferences between
simulated data and real data are computed, in order to find the relative and
absolute errors.

The relative diferences are defined as (simulated− real)/real and the ab-
solute diferences are defined as simulated− real.
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Fig. 1: Relative diferences between
simulated population and real pop-
ulation
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Fig. 2: Absolute diferences between
simulated population and real pop-
ulation

Figures 1, 2 show the relative errors for the simulations started in the year
1981. Negative errors refer to situations where simulated population is lower
in number than the real population (positive values for the opposite situation).
The greatest relative errors are found mostly in the elderly ages, with errors
being close to −100% in the first 10 years and in following years shifting to
100% or higher. The other high density relative errors are found in the younger
ages rounding a 50% relative error, meaning that the simulated population is
50% larger than the real one in younger ages. The latter errors can be easily
explained due to the fact that birth rates are decreasing in those years. Despite
the stochasticity of this model, it maintains the same average birth rate in the
first year through all over the simulation period. We can state that errors in
the older ages are not very high, since they refer to a very small amount of the
population,in absolute terms.

As for the midle age population, both relative and absolute errors are very
small, which shows that the model sounds to be suitable for those age classes,
during that period.

3.2 Population Projection

Aimimg at enhancing the model, we studied the errors in order to build confi-
dence intervals for the projections, by adapting and computing the error imple-
mentation of Michael Stoto [13]. In [13], gaps are computed for the differences
between the several periods of the simulation.

• Let ∆rj,k be the average error between all simulations for each stating year
j ∈ {1981, 1991, 2001} and for jump gap k ∈ {10, 20, 30};

• Let bj be mean of the errors for all jump gaps k for each starting year j;
• Let ej,k be

∆rj,k − bj ; (10)
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• Then the variance for ∆rj,k is given by

var(∆rj,k) = var(bj) + var(ej,k) (11)

• and σ will be called the standard deviation of ∆rj,k.
• To incorporate the errors in our projections, we added and subtracted 2σ

to the means of all projections.

From figure 6 to 11 it can be seen that there is a tendency for the population
to reduce, even considering the error confidence interval, so most likely that
is what will happen in the future. The amount of decrease is yet unknown as
there is a very large variation in the possible scenarios.

As for each age, in the lowest and highest ages there is a tendency for the
population to decrease right from the start (young ages). For midle ages, it
seems that there will be an increase of population for some years, before it
starts to decrease like in every other age. In addition, this decrease appears to
be more intense in female population.

3.3 Stable Equivalent Population

As it was previously introduced in section 2, the Stable Equivalent Population
is a model of population dynamics appropriate for particular situations, such
as the actual Portuguese population, of nearly constant natality and mortality
rates and nearly null migration rate.

We have computed the Stable Equivalent Population based on the projected
population for each year from 2011 to 2041 and then we have computed the
relative diferences between the projected population and its Stable Equivalente
as (projected− stable)/stable

Fig. 3: Relative diferences for
2021

Fig. 4: Relative diferences for
2031

From figures 3,4,5 we can state that in the age of 50 and higher, the realtive
error in 2021 is always very close to 0 and in the previous ages it increases in
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Fig. 5: Relative diferences for 2041

inverse proportion to the age till 0.03% for the male population and 0.01% for
the female population. This tendency remains the same in the years of 2031
and 2041 with the only diference being that for each year, the relative diference
is facing a small reduction.

It is possible to deduce that Portuguese population is tending to its Stable
Equivalent, based on actual slow fertility, mortality and migration trends.

4 Social Security Model

The Social Security Model is an expansion of the previously presented Popula-
tion Model. We use the Population Model for an evolutive overview and include
the Social Security parameters in the model: activity, employment, retirement,
schooling, job qualification, and remuneration.

• Let aci,j,k,l be the parameter for economic activity of the agent k of age
i of sex j in the year l; aci,j,k,l = 1 means that the agent is active and
aci,j,k,l = 0 means that the agent is inactive (retired, pensionist, student,
etc.). Obviously death agents are inactive;

• Let cri,j,l be the activity rates of agents of age i and sex j in the year l and
they are computed as

cri,j,l =

∑
k aci,j,k,l∑
k ai,j,k,l

(12)

• Let ci,j be the proportion of the population of age i and sex j that is active.
This proportions are given to the model based on 2011 Portuguese rates
[6];

• Let ε be threshold parameter with ε ∈ [0, 1];

• Let aei,j,k,l be the parameter for employment status of the agent k of age
i of sex j in the year l; aei,j,k,l = 1 means that the agent is employed
and aei,j,k,l = 0 means that the agent is unemployed. Obviously, inactive
agents are unemployed;
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• Let eri,j,l be the employment rates of agents of age i and sex j in the year
l and they are computed as

eri,j,l =

∑
k aei,j,k,l∑
k aci,j,k,l

(13)

• Let ei,j be the proportion of the population of age i and sex j that is em-
ployed. This proportions are given to the model based on 2011 Portuguese
rates [6];

• Let ari,j,k,l be the parameter for retirement status of the agent k of age
i of sex j in the year l; ari,j,k,l = 1 means that the agent is retired and
ari,j,k,l = 0 means that the agent is not retired. If ir is defined as the
minimum age for retirement, then i < ir ⇒ ari,j,k,l = 0 and i > ir + 10⇒
ari,j,k,l = 1. If the agent gets retired at some point, that status can never
be changed back. Obviously, if an agent is retired then it is also inactive.

• Let rri,j,l be the retirement rates of agents of age i and sex j in the year l
and they are computed as

rri,j,l =

∑
k ari,j,k,l∑
k ai,j,k,l

(14)

• Let ri,j be the proportion of the population of age i and sex j that is retired.
These proportions are given to the model based on 2011 Portuguese rates
[6];

• Let asi,j,k,l be the schooling level of the agent k in the year l. asi,j,k,l ∈
{1, 2, 3, 4, 5, 6} where 1 refers to a schooling level under 4th grade, 2 refers
to 4th grade, 3 refers to 6th grade, 4 refers to 9th grade, 5 refers to high
school and 6 refers to superior education;

• Let si,j be the schooling level rates of persons of age i and sex j of the
Portuguese population in 2011 [6];

• Let aqi,j,k,l be the job qualification of the agent k in the year l. asi,j,k,l ∈
{1, 2, 3, 4, 5, 6} where 1 refers to a qualification of not qualified professional,
2 refers to semi-qualified professional, 3 refers to qualified professional, 4
refers to highly qualified professional, 5 refers to team leader and 6 refers
to member of administration board;
• Let qi,j be the job qualification rates of agents of age i and sex j of the

Portuguese population in 2011 [10];
• Let awi,j,k,l,s,q be the wage of the agent k in the year l with schooling level
s and work qualification q.

• Let wj,s,q be the wage of persons of sex j, schooling leve s and work quali-
fication q based on data from Portugal in 2011 [6],[10].

Now we can explain how these parameters are updated. As with population
parameters, these are updated every year, depending on previous year.

Step 1. Update the activity of the agents in the current year lc. If |cri,j,lc −
ci,j | > ε then we generate U4 ∼ U(0, 1) for each agent of age i and
sex j and if U4 < aci,j,k,l then agent k is set as active else it is set as
inactive;



The Portuguese Stable Equivalent Population 131

Step 2. Update the employment status of the agents. We generate U5 ∼
U(0, 1) and if U5 < aei,j,k,l then agent k is set as employed else it is
set as unemployed;

Step 3. Update retirement status of the agents. If ir ≤ i ≤ ir + 10 and
aci,j,k,l = 0 then it is generated U6 ∼ U(0, 1) and if U6 < ari,j,k,l then
agent k is set as retired. When an agent gets retired, its retirement
pension is defined and it remains the same till agent’s death. Let
api,j,k,l be the retirement pension of agent k and y its total working
years then

api,j,k,l = y ∗ 0.002 ∗
∑
last 5

working years

awi,j,k,l,s,q ∗ 14

5
(15)

The multiplication by 14 refers to the fact that in Portugal a employee
earns 12+2=14 salaries per year.

Step 4. Update schooling and work qualification. When an agent gets em-
ployed for the first time these parameters are defined. They are
decided randomly using the Inversion Method [3] of U7, U8 ∼ U(0, 1)
using the rates of the schooling/work qualification for the age of the
agent. On the following years these parameters are updated using the
same mecanism with a small exception: they are always increasing.

Step 5. Update wages. The wage of an employed agent is defined as awi,j,k,l,s,q =
Wj,s,q.

Step 6. Pay taxes. Every agent contributes to the Social Security capital with
a determined contribution tax C of its wage. As We will be modeling
the Social Security system itself and not the tax payers, We will
assume that C is the joint contribution from both the employee and
employer. Let TCl be the total contribution on the year l then

TCl = C ∗
∑

awi,j,k,l,s,q ∗ ai,j,k,l (16)

Step 7. Pay retirement pensions. Every living retired agent receives its re-
tirement pension which is subtracted from the Social Security capital,
Tpl, i.e. the total retirement pensions paid that year,

Tpl =
∑

api,j,k,l ∗ ai,j,k,l (17)

Step 8. Update the Social Security capital SSl. The Social Security capital
for the year l is set as

SSl = SSl−1 + TCl − Tpl (18)

4.1 Results

Taking the average of simulations and including a confidence interval based
on two standard deviations, figures 12, 13, 14 were produced for the cases of
minimun retirement age 55, 65, 75 and to contribution tax 32.7%, 40%, 45%
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It is fairly easy to uderstand that both increasing contribution tax or in-
creasing the minimum age for retirement leads to an increase in the Social
Security capital and a decrease in the tendency to reach a point of decrease
of the capital. In Portugal, the current minimum age of retirement is 66, so
with this model one should expect an eventual decrease on the Social Security
capital in the following years, according to these simulations.

In addition, one can see that the increase of the minimum age of retirement
influences much more the increase of the Social Security capital than an increase
in the contribution tax. So evaluating the current tendency one could say that
delaying the retirement age is one of the best course of action.

So, considering these results, we can see that Social Security is currently
unsustainable but with some increases in the parameters of the model, this
outcome may change.

It is worth to note that this model is simplified as it only takes into account
the revenues from the contributions of tax payers and the expenses from the
retirement pensions. However, there are also other expenses like the maintenace
of public schools and hospitals, subsidies for the unemployed and many other
types of pensions.
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Fig. 6: Projection of the male population of age 0 to 9 for 30 years
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Fig. 11: Projection of the female population of age 90 to 99 for 30 years
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1  Introduction 
 

An important issue of the Kalman filtering [1] is construction of algorithms for 

the class of systems with unknown additive perturbations. Such systems are 

used as the models of real physical systems, as the models of objects with 

unknown errors, and in control problems for economic systems. The known 

methods to calculate estimates of a state vector are based on the algorithms of 

estimation of an unknown perturbation [2-9].  
 

In this paper, for discrete systems with unknown perturbations the two-stage 

optimal filtering with use of nonparametric estimators for unknown input are 

proposed. Examples are given to illustrate the properties of the proposed 

procedures in comparison with the known algorithms. 

 

2  The problem statement  
 

Consider the mathematical model of the linear discrete-time stochastic system 

with unknown input in the form: 
 

                                      0( 1) ( ) ( ) ( ), (0)x k Ax k Br k q k x x     ,                 (1) 
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                                               ( ) ( ) ( )y k Hx k v k  ,                                             (2) 

where x(k) is the state of the object, r(k) is an unknown input, y(k) is the 

measurement, A, B, and H are matrices of the appropriate dimensions. It is 

assumed random perturbations q(k) and the noise measurements v(k) are not 

correlated between themselves and are subject to the Gaussian distribution with 

zero mean and the corresponding covariance: E[ ( ) ( ) ] ( , )q k q k Q k t   , 

E[ ( ) ( ) ] ( , ),v k v k V k t    where δ(k,t) is the Kronecker symbol, i.e., δ(k,t) = 1 if 

k = t, and δ(k,t) = 0 when k  t. It is also proposed that the vector of initial 

conditions is uncorrelated with values q(k) and v(k). This vector is defined by 

the following characteristics: 
 

                               0E[ (0)]x x , 
0 0 0E[( (0) )( (0) ) ]x x x x P   .                          

 

3  The estimation algorithm of an unknown input and state 

space vector 
 

In this paper, the optimal filter is defined by the following full-order Kalman 

filter. Filter equations have the form: 
 

  ˆ ˆ ˆ ˆ ˆ( 1) ( ) ( ) ( )[ ( 1) ( ( ) ( ))]x k Ax k Br k K k y k H Ax k Br k       , 0
ˆ(0)x x ,   (3) 

 

                                      ( 1/ ) ( )P k k AP k A Q   ,                                         (4) 
 

                           1( ) ( 1/ ) [ ( ) ]K k P k k H HP k H V     ,                                (5) 
 

                      ( 1) ( ( ) ) ( 1/ )P k I K k H P k k    , 0(0)P P ,                           (6) 

where ˆ( )x k  and ˆ( )r k are estimators, ˆ ˆ( ) E[( ( ) ( ))( ( ) ( )) ]P k x k x k x k x k    . 
 

However, formulas (3)(6) can not be applied immediately because ˆ( )r k  is 

unknown. Obtain estimator ˆ( )r k  by making use of the following criteria: 
 

                              
2 2

1

( ( 1)) E ( ) ( 1)
k

C D
i

J r k u i r i


 
    

 
 ,                              (7) 

 

where ˆ( ) ( ) ( )u i y i Hx i   is the innovation process, 
2

C
  is the Euclidian norm, 

C and D are symmetric positive definite weight matrices. 
 

Optimal estimator of the unknown input at moment 1k   is found by 

minimization of the criteria: 
 

                       
2 2

(0)
ˆ( (0)) min E (1) (1) (0)

C Dr
J r y Hx r   

 
.                              (8) 

 

Substituting ˆ ˆ(1) (0) (0)x Ax Br   into (8), we have 
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2 2

(0)
ˆ( (0)) min E (1) (0) (0) (0)

C Dr
J r y HAx HBr r    

 
.                (9) 

 

Transform the norms in (9) and obtain 
 

    
2

0
(0)

ˆ( (1)) min E 2 (0) ( (1) (0)) (0)
B H CHB Dr

J r r B H V y HAx r  

  


     
 

.  (10) 

 

Here, the parameter 0  does not depend on (0)r . First, differentiate (10) w.r.t. 

(0)r , and then find the optimal estimator of the unknown input from the 

equation 
 

         
( (0))

ˆ2( ) (0) 2 E[ (1) (0)]=0
(0)

dJ r
B H CHB D r B H C y HAx

dr

       .      (11) 

 

So, at the moment k = 1, we obtain the optimal estimator of the unknown input: 
 

                                           ˆ ˆ(0) E[ (1) (0)]r S y HAx  ,                                     (12) 
 

where  
 

                                        1( )S B H CHB D B H C      .                               (13) 
 

Analogously, at the moment k = 2, the optimal estimator of the unknown input 

is found from the following criteria: 
 

             
2 2

(1)
ˆ ˆ( (1)) min E (2) (2) (1) ( (0))

C Dr
J r y Hx r J r    

 
.                      (14) 

 

Taking into account (14) and the expression ˆ ˆ(2) (1) (1)x Ax Br   at the moment 

k = 2, we have 
 

             
2 2

(1)
ˆ( (1)) min E (2) (1) (1) (1)

C Dr
J r y HAx HBr r    

 
+ ˆ( (0))J r .                

 

As in the case of (10) 
 

   
2

1
(1)

ˆ( (1)) min E 2 (1) ( (2) (1)) (1)
B H CHB Dr

J r r B H C y HAx r  

  


     
 

,    (15) 

 

where the value 1  does not depend on r(1). Differentiating (15) w.r.t. r(1), as 

in the first step, we obtain the optimal estimator: 
 

                                           ˆ ˆ(1) E[ (2) (1)]r S y HAx  .                                     (16) 
 

Using the mathematical induction, for the next steps  
 

                                                 ˆ( ) E[ ( )]r k S w k .                                             (17) 
 

Here, the matrix S is given by the formula (13), and ˆ( ) ( ) ( 1)w k y k HAx k   . 
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Now, let us calculate value E[ ( )]w k  using nonparametric estimators [10]. 

Applying the well known kernel estimates, we obtain 
 

                                                   ˆ ˆ( ) ( )npr k Sw k ,                                             (18) 
 

where the j component of the vector takes the form: 
 

                                    
1 ,

,

1 ,

1
( )

ˆ ( )
1

k

j j

i i j

np j
k

j

i i j

k i
w i K

h
w k

k i
K

h





  
  
 


  
  
 





.                                (19) 

 

In formula (19), ( )jK   is a kernel function, ,i jh  is a bandwidth parameter. We 

use the Gaussian kernels, and the bandwidths calculated by the cross-validation 

method [11]. 

 

4. Simulations 
 

Apply the filtering algorithm using nonparametric estimates, i.e., (3)(6) and (18), 

to the model of the second order (1) and to the observations (2) with the 

parameters: 
 

               
0 1

0.05 0.9
A

 
  
 

, 
1.0 0

0 1.0
B

 
  
 

, 
5

2
r

 
  
 

, 
0.01 0

0 0.02
Q

 
  
 

,                  

                      
0.8 0

0 1.2
V

 
  
 

, 
1.0 0

0 1.0
H

 
  
 

, 0

1.0 0

0 1.0
P

 
  
 

,                             

                                
1.0 0

0 1.0
C

 
  
 

, 
0 0

0 0
D

 
  
 

, 0

5

2
x

 
  
 

.                                      

 

By the simulations, the proposed algorithms are compared with the algorithms 

using the LSM estimates from [3, 4]. These comparisons are given in 

Figures 14: 
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Fig. 1. The dependence on the components of state vectors and the 

nonparametric estimates of these components (3)(6), (18) 

      
 

Fig. 2. The estimation of the unknown inputs by  

nonparametric algorithms (3)(6), (18)  

 

     
 

Fig. 3. The dependence on the components of state vectors and the LSM 

estimates of these components from the papers [3, 4] 

 

     
 

Fig. 4. The estimation of the unknown inputs by the LSM estimates 

from the papers [3, 4] 
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In Tables 1 and 2, the standard errors of estimation  

2

1
,

ˆ( ( ) ( ))

1

N

i ik
x i

x k x k

N




 



,  

2

1
,

ˆ( ( ) ( ))

1

N

i ik
r i

r k r k

N




 



, 1, 2i  , 

are given for two filtering algorithms (N = 200) by averaging 50 

realizations.  
 

Table 1. Standart Errors for Filtering Algorithm with Using Nonparametric 

Estimates 

 

,1x  ,2x  
,1r  ,2r  

0.885 0.945 0.751 0.449 

 

Table 2. Standart Errors for Filtering Algorithms with Using the LSM-estimates 

 

,1x  ,2x  ,1r  ,2r  

1.348 1.514 2.014 2.082 

 

5  Conclusion 
 

In this paper, we deal with two-step algorithm of the Kalman filtering for 

systems with unknown input. The proposed method has been verified by the 

simulations study. Figures show that the filtering procedures, using 

nonparametric estimates, have the advantages in the accuracy in comparison 

with the known algorithms using LSM-estimates (cf. Fig. 1 and 3, Fig. 2 and 4, 

Table 1 and 2).  
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Estimating Multi-Factor Discretely Observed
Vasicek Term Structure Models with

non-Gaussian Innovations

Takayuki Shiohama

Department of Management Science, Faculty of Engineering, Tokyo University of
Science, Tokyo, Japan
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Abstract. In this paper, we propose a multi-factor model in which discretely ob-
served short-term interest rates follow a non-Gaussian and dependent process. The
state-space formulation has the advantage of taking into account the cross-sectional as
well as time-series restrictions on data and measurement errors in the observed yield
curve. We clarify the non-Gaussian and dependent processes of short-term interest
rate dynamics and show that these features are important to capture the dynamics
of the observed yield curve.
Keywords: Asymptotic expansion, state-space model, term structure model, Vasicek
model.

1 Introduction

The term structure of interest rates describes the relationship between the yield
on a zero-coupon bond and its maturity. Understanding the dynamics of bond
yields plays a critical role in monetary policy, derivative pricing and forecasting,
and risk-management analysis. We need to accurately understand the term
structure of interest rates to evaluate the prices of interest rate derivatives.
A number of theoretical term structure models have been proposed in the
literature. The early models that are still widely used include the ones proposed
by Vasicek[10] and Cox et al.[4].

Although single-factor Vasicek models have been widely used in the theo-
retical literature, empirical research has shown that they fail to appropriately
capture the behavior of short-term interest rates. The aim of this paper is to
develop a closed-form valuation for pricing the zero-coupon bonds of multi-
factor Vasicek term structure models wherein innovations of the underlying
short-term interest rates follow non-Gaussian and dependent processes. Honda
et al.[7] and Shiohama and Tamaki[9] consider the higher-order asymptotic val-
uation and European call options for zero-coupon bonds by using single-factor
discretely observed Vasicek models with a non-Gaussian and dependent error
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structure. Miura et al.[8] develop a closed-form valuation for pricing default-
able bonds incorporating a stochastic risk-free interest rate and defaultable
intensity having non-Gaussian and dependent processes.

This paper is organized as follows: Section 2 describes the multi-factor
term structure model based on the discretely sampled Vasicek model with non-
Gaussian innovation and presents the analytic expression for the approximate
zero-coupon bond prices. Section 3 discusses the state-space formulation of
the model and the estimation procedures. Section 4 presents the data used
and illustrates the empirical results of the proposed models. Finally, some
conclusions are offered in Section 5.

2 Multi-Factor Models

The model used for analysis is the discretely sampled short-term interest rates
model with interval ∆. We assume that the spot interest rate is the sum of K
state variables Xj,t,

rt =

K∑
j=1

Xj,t,

and that the state variables are driven by non-Gaussian and dependent inno-
vations. Such models are considered in Honda et al.[7], Shiohama and Tamaki
[9], and Miura et al.[8]. Each factor Xj,t is of the form

Xj,t −Xj,t−1 = κj(µj −Xj,t−1)∆+∆1/2Zj,t, j = 1, . . . ,K, (1)

where Zj,t is independent such that E[Zi,tZj,t] = 0 for i 6= j, µj is the long-
term mean of Xj,t, and κj represents the mean of reversion parameters. The
innovations {Zj,t} are fourth-order stationary in the following sense.

Assumption 1 For j ∈ {1, 2, . . . ,K}, the process {Z = (Z1,t, . . . , ZK,t)
′} is

fourth-order stationary in the sense that

1. E[Zj,t] = 0,
2. cum(Zj,t, Zj,t+u) = cZj (u),
3. cum(Zj,t, Zj,t+u1

, Zj,t+u2
) = cZj

(u1, u2),
4. cum(Zj,t, Zj,t+u1

, Zj,t+u2
, Zj,t+u3

) = cZj
(u1, u2, u3).

Assumption 2 The k-th order cumulants cZj
(u1, . . . , uk−1) of Zj,t, j = 1, . . . ,K,

for k = 2, 3, 4 satisfy

∞∑
u1,··· ,uk−1=−∞

|cZj (u1, . . . , uk−1)| <∞.

Assumptions 1 and 2 are satisfied by a wide class of time-series models con-
taining univariate autoregressive-moving-average (ARMA) and generalized au-
toregressive conditional heteroskedastic (GARCH) processes.
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Hereafter, we assume that the current time is set at t = 0 and that the
initial factors Xj,0 are observable and fixed. Then, rt is discretely sampled at
times 0, ∆, 2∆, . . . , n∆(≡ T ) over [0, T ]. For notational convenience, we use
the following notation. Assume that

Aj,u = µj(u∆−Bj,u), Bj,u =
1

2κj
(1 + υj)(1− υuj ),

aj,u =
2

κj∆

{
1− 1

2
υu−1j (1 + υj)

}
,

where υj = 1 − κj∆ for j = 1, . . . ,K and u = 1, . . . , n. Then, from Honda et
al.[7], it follows that

P (0, T ) = EQ0

[
exp

(
−
∫ T

0

rtdt

)]
= EQ0

exp

− K∑
j=1

∫ T

0

Xj,tdt


=

K∏
j=1

EQt

[
exp

(∫ T

0

Xj,tdt

)]
≈

K∏
j=1

EQ̃0

[
exp

{
−∆

(
1

2
r0 +

n−1∑
u=1

ru +
1

2
rn

)}]

=

K∏
j=1

exp(−Aj,n −Bj,nr0)AFj,n

where EQ̃0 represents the expectation under an asymptotic risk-neutral measure,
which is discussed in Miura et al.[8], and

AFj,n = EQ̃0

[
exp

(
−∆

3/2

2

n∑
u=1

aj,uZj,n−u+1

)]
. (2)

Assume further that

Yj,n = ∆1/2
n∑
u=1

bj,uZj,n−u+1 and bj,u =
∆

2
ai,j =

1

κj

{
1− 1

2
υu−1j (1 + υj)

}
.

(3)

From process {Yj,n}, we express the product of the AFj,n terms as

K∏
j=1

AFj,n = EQ̃0

exp

− K∑
j=1

Yj,n

 .
We give an analytic approximation of the zero-coupon bond prices for multi-
factor discretely observed Vasicek term structure models with non-Gaussian
and dependent innovations by the Edgeworth expansion of the joint density
function of Yn = (Y1,n, . . . , YK,n)′. It is clear that the processes {Yj,n}, j =
1, . . . ,K are fourth-order stationary with Var(Yj,n) = σ2

j,n; the third- and
fourth-order cumulants are denoted respectively as

cum(Yj,n, Yj,n, Yj,n) = n−1/2C
(3)
Yj

and cum(Yj,n, Yj,n, Yj,n, Yj,n) = n−1C
(4)
Yj
.

Now, we have the following assumption.
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Assumption 3 The J-th order (J ≥ 5) cumulants of {Yj,n}, j = 1, . . . ,K are
of the order O(n−J/2+1).

Since this model is calibrated to the market interest rates, we need to include
the risk premium before pricing the zero-coupon bonds. We assume that the
j-th factor’s market price of risk λj is constant, and we and define µ̄j = µj −
λiσXj

/κj .
From the asymptotic expansion of the defaultable bond price of Miura et

al.[8], we derive the following formula for the nominal price of a pure discount
bond with face value 1 maturing at time T .

Theorem 1 From Assumptions 1–3, we express the current bond price of the
K-factor discretely observed Vasicek term structure model as

P (0, T ) = exp

A(T )−
K∑
j=1

Bj,nXj,0

D(T ) (4)

where

A(T ) =

K∑
j=1

Aj,n =

K∑
j=1

[
−µ̄j(n∆−Bj,n) +

1

2
σ2
j,n

]
,

D(T ) =

K∏
j=1

exp

(
− 1

6
√
n
C

(3)
Yj

+
1

24n
C

(4)
Yj

)
,

Bj,n =
1

2κj
(2− κj∆)(1− (1− κj∆)n).

We omit the proof of Theorem 1 since it is analogous to the results obtained
in Honda et al.[7] and Miura et al.[8].

The analytic expressions given in Theorem 1 for the bond price and yield
are based on the discrete time models with non-Gaussian and dependent inno-
vations. From these expressions, the linkage between continuous and discrete
schemes for short-term interest rate models is apparent. If Zj,ts have a stan-
dard normal distribution, since ∆ → 0, the bond price tends toward standard
multi-factor Vasicek term structures.

3 State-Space Representation and Estimation

The application of Kalman filtering methods in the estimation of term structure
models using cross-sectional and time-series data has been investigated by Duan
and Simonate[5], Chen and Schott[3], and Babbs and Nowman[1,2].

We estimate the model by using the state-space representation of term
structure models with non-Gaussian innovations. Our proposed model is a
discrete scheme with non-Gaussian innovations and hence the corresponding
state-space model is also non-Gaussian, although Kalman filtering can still be
applied to obtain the approximate moments of the model and the resulting
filter is quasi-optimal.
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Let Rt(τ) denote a continuously compounded yield on a zero-coupon bond
of maturity τ with corresponding discrete sample size τ/∆ = n. The state-space
formulation of the model consists of measurement and transition equations. To
construct a measurement equation, we need N zero-coupon rates and use the
following relationship between zero-coupon yield and the price of zero-coupon
bonds:

Rt(τ) = − lnP (0, τ)

τ
= −1

τ

(
(A(τ) + lnD(τ))−

K∑
i=1

Bj,nXj,n

)
.

Then, the measurement equation has the following form with K = 3
Rt(τ1)
Rt(τ2)

...
Rt(τN )

 =


−A(τ1)−lnD(τ1)

τ1

−A(τ2)−lnD(τ2)
τ2
...

−A(τN )−lnD(τN )
τN

+


B1,n1

τ1

B2,n1

τ1

B3,n1

τ1
B1,n2

τ2

B2,n2

τ2

B3,n2

τ2
...

...
...

B1,nN

τN

B2,nN

τN

B3,nN

τN


X1,t

X2,t

X3,t

+


εt,1
εt,2

...
εt,N

 ,
or

Rt = A(Ψ) +H(Ψ)Xt + εt,

where Ψ denotes the unknown parameter vectors to be estimated and εt ∼
N(0,Vε) with Vε = diag(h21, . . . , h

2
N ).

To obtain the transition equation for the state-space model, we need the
conditional mean and variance of the state variable process. From the recursive
substitution in (1) and because vj = 1− κj∆, Xj,n can be represented as

Xj,n = (1− vnj )µ̄j + vnj Xj,0 +∆1/2
n∑
u=1

vu−1j Zj,n−u+1.

For simplicity, we assume that sequence {Zj,n} is i.i.d. with zero mean and
finite variance σ2

Zj
. Then, the variance of Xj,n becomes

σ2
Xj

= σ2
Zj

[
1− v2(n−1)j

2κj − κ2j∆

]
. (5)

The exact discrete-time model is a VAR(1), and the transition system is as
follows:X1,t

X2,t

X3,t

 =

 µ̄1κ1∆
µ̄2κ2∆
µ̄3κ3∆

+

1− κ1∆ 0 0
0 1− κ2∆ 0
0 0 1− κ3∆

X1,t−1
X2,t−1
X3,t−1

+

 ηt,1ηt,2
ηt,3

 ,
or

Xt = C(Ψ) + F (Ψ)Xt−1 + ηt(Ψ)

where ηt ∼ N(0,Vη) with Vη = diag(σ2
X1
, σ2
X2
, σ2
X3

).
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Since our models are in state-space form, we can construct Kalman filtering
for the three-factor model in which we want to minimize the mean squared
error between Rt(τi) and R̂t(τi).

Example Assume that {Zj,t} follows a GARCH(1,1) process

Zj,t = h
1/2
t,j εj,t, hj,t = ωj + αjZ

2
j,t−1 + βjhj,t−1,

where {εt,j} follows a sequence of i.i.d. standard normal random variables.
The parameter values must satisfy ωj > 0, αj , βj ≥ 0, αj + βj < 1, and
1− 2α2

j − (αj + βj)
2 > 0. Thus, σ2

Xj
in (5) would become

σ2
Xj

=
ωj

1− αj − βj

[
1− v2(n−1)j

2κj − κ2j∆

]
.

Furthermore, C
(3)
Yj

and C
(4)
Yj

in the definition of D(T ) in Theorem 1 would
become

C
(3)
Yj

= 0,

C
(4)
Yj

=
3

n

∫ π

−π
|Bj,2(λ)2|fZ2

j
(λ)dλ− 2

3{(1− (αj + βj)
2)}

1− (αj + βj)2 − 2α2
j

1

n

n∑
u=1

b4j,u,

where B2(λ) =
∑n
u=1 b

2
j,ue

ijλ and

fZ2
j
(λ) =

σ2
νj

2π

1 + β2
j − 2βj cosλ

1 + (αj + βj)2 − 2(αj + βj) cosλ

with

σ2
νj =

2ω2
j (1 + αj + βj)

{1− (αj + βj)}
{

1− 2α2
j − (αj + βj)2

} .
From this parametrization in state-space representation, we can explicitly es-
timate the GARCH(1,1)-driven multi-factor term structure models.

4 Data Analysis

The data used in this study consist of zero-coupon adjusted Japanese Govern-
ment Bond (JGB) yields obtained from Bloomberg. We use weekly sampled
data that are set ∆ = 1/52. The data cover the period October 1, 1999, to De-
cember 27, 2013, with a total of T = 744 observations. The maturities included
are 1/4, 1/2, 1,2,3,4,5,6,7,8,9,10,15,20, and 30 years, that is, a total of N = 15
different maturities. We discuss the application of Kalman filtering to one-,
two-, and three-factor models with discretely observed non-Gaussian innova-
tions. For a fair comparison, we also estimate the corresponding multi-factor
Vasicek term structure models.
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Vasicek model (a) non-Gaussian model (b) Difference(%) (b)/(a)-1
K = 1 K = 2 K = 3 K = 1 K = 2 K = 3 K = 1 K = 2 K = 3

3 Month 31.84 2.94 1.88 28.83 4.11 1.67 -9.43 39.81 -11.03
6 Month 27.61 0.93 0.63 28.20 1.78 0.57 2.12 90.58 -9.76
1 Year 22.57 1.29 1.23 23.16 1.20 1.23 2.64 -6.45 -0.31
2 Year 15.35 5.25 3.48 13.67 3.37 3.10 -10.97 -35.77 -10.94
3 Year 12.13 7.48 3.59 9.34 4.71 3.40 -23.05 -37.10 -5.38
4 Year 10.49 7.87 3.33 8.35 5.72 3.21 -20.41 -27.34 -3.73
5 Year 11.03 7.64 3.15 9.74 6.25 3.10 -11.66 -18.28 -1.44
6 Year 13.34 7.87 3.77 12.73 6.12 3.65 -4.58 -22.21 -3.26
7 Year 15.17 7.56 4.79 15.22 6.06 4.66 0.29 -19.80 -2.82
8 Year 19.59 9.09 6.71 19.76 7.14 6.57 0.89 -21.39 -2.17
9 Year 19.47 7.56 5.94 19.37 6.39 5.89 -0.52 -15.39 -0.77
10 Year 18.29 6.78 5.36 17.84 6.34 5.39 -2.43 -6.43 0.52
15 Year 13.02 10.73 10.73 14.84 13.44 11.04 14.03 25.22 2.95
20 Year 20.34 12.61 6.03 20.88 14.54 6.12 2.70 15.33 1.57
30 Year 33.38 27.95 6.88 33.51 22.86 7.15 0.41 -18.22 4.05

Total 283.61 123.54 67.50 275.45 110.03 66.75 -2.88 -10.93 -1.11

Table 1. Sum of squared errors with different maturities and models

Table 1 gives the sum of the squared errors for the estimated models with
various maturities. For the bond yield with maturity τi, the entry in the cell is

SSE(τi) =

T∑
t=1

(Rt(τi)
(obs) − R̂t(τi)(model))2,

and the total mean squared error is calculated as

Total SSE =

N∑
i=1

T∑
t=1

(Rt(τi)
(obs) − R̂t(τi)(model))2.

From Table 1, it is clear that the sum of the squared errors is small for
non-Gaussian models compared with those corresponding to one-, two-, and
three-factor Vasicek models. As the number of factors increase, the calibration
errors get smaller. We also observe that non-Gaussian models perform better
for maturities not longer than 10 years whereas for longer maturities the Vasicek
term structure models perform better. This is because the distribution of
{Yj,n} tends be normal as the sample size n increases by the Central Limit
Theorem. Hence, non-Gaussian modeling is much better for short maturities
of bond yields, where the underlying short-term interest rates exhibit highly
non-Gaussian behavior.

Table 2 gives the parameter estimation results. As for the sum of long-
run mean levels, Vasicek models tend to have quite high levels, with 6.1% for
two-factor and 6.3% for three-factor models, whereas those with non-Gaussian
models have levels of -2% and 2.6% for two- and three-factor models, respec-
tively. We see that the three-factor models with non-Gaussian innovations can
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Parameter Vasicek model non-Gaussian model
1-factor 2-factor 3-factor 1-factor 2-factor 3-factor

µ1 -0.290 0.140 7.330 0.189 -0.873 -0.802
µ2 6.030 -4.370 -1.210 2.200
µ3 3.350 1.280
λ1 2.380 -2.040 -0.039 2.430 -12.000 8.120
λ2 0.909 3.010 3.720 -10.000
λ3 1.800 -0.507
κ1 0.009 0.560 0.251 0.003 0.325 0.212
κ2 0.094 0.396 0.093 0.415
κ3 0.009 0.023
σ1 0.012 0.114 0.001 0.015 0.003 0.019
σ2 0.085 0.003 0.183 0.019
σ3 4.27E-04 0.002

C
(3)
1 0.709 2.020 -0.622

C
(4)
1 -0.636 7.320 -0.103

C
(3)
2 -1.480 -0.451

C
(4)
2 0.487 3.110

C
(3)
3 0.999

C
(4)
3 2.460

Table 2. Estimates of one-, two- , and three- factor Vasicek models and non-Gaussian
models

appropriately capture the long-run interest rate levels. Most of the estimates
for the sum of risk premia are negative. This is because the risk in a bond
associate with the spot rate is generally proportional to the sensitivity of bond
prices; that is, ∂P (0, T )/∂Xj,0 < 0.

The effects of skewness on zero-coupon yields can be seen as the parameter

values of C
(3)
j ; these values vary from -1.5 to 2.0 for the one-, two-, and three-

factor models. From these values, we find that the effect of skewness of the
underlying innovation process is small. On the other hand, the effect of kurtosis
on zero-coupon yields is apparent for some factors in two- and three-factor
models.

The observed term structure of the JGB yield estimated with fitted yield
curve and various models are shown in Figure 1. We choose the JGB yield
of December 20, 2013, as our example. The figure shows a typical shape for
JGB yields under quantitative and qualitative easing policies with low interest
rate levels for short maturities. From these two figures, we find the fitting
performances of non-Gaussian models superior to those of the Vasicek term
structure models.

5 Summary and Conclusions

In this paper, we introduced multi-factor discretely observed Vasicek term
structure models and presented a method to estimate these models by us-
ing the Kalman filter. The advantage of incorporating non-Gaussian effects
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Fig. 1. Estimated and observed term structures of Japanese Government bond yields
for the non-Gaussian state-space model (left) and the Vasicek model (right) for the
one-, two-, and three-facrors.

for short-term interest rate processes becomes clear when we investigate the
JGB yield calibration. The following are possible research topics. A particle
filtering method may be used to compute the estimates of model parameters
as well as state variables. The various interest rate derivatives evaluated using
the proposed model may be investigated.
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Abstract. The aim of this work was to develop an indicator for finding differences in 
the multichannel EEG of experienced and inexperienced subjects in the states of 

meditation and rest. As such an indicator, we have chosen the difference between the 

correlation dimensions of the EEG channels reconstructed attractors and the 
corresponding EMD-filtered correlation dimensions (we denote this difference as 

DifD2). Under the EMD- filtered EEG correlation dimension here we understand the 

correlation dimension calculated from EEG signal, in which the first two modes of 

empirical decomposition (EMD) are dropped. The authors previously showed that the 
sum of the first two EMD-modes of EEG are stochastic components (both physical and 

physiological noise). Thus, the smaller the difference DifD2, the less noise in the EEG 

signals. Calculations were performed for 5 experienced and 5 inexperienced subjects in 

the states of meditation and rest. Unfiltered correlation dimensions were calculated in the 

embedding dimension equal to 5. EMD-filtered correlation dimensions are calculated in 

the embedding dimension equal to 4. Then obtained results of calculations were 

processed by standard statistical method “Repeated ANOVA”. It turned out that DifD2 in 

a state of meditation for experienced subjects was significantly lower than that of the 
inexperienced subjects. This distinction is achieved mainly due to the frontal and parietal 

channels. For experienced subjects the difference DifD2 in the meditation state turned 

out to be significantly lower than that in the rest state. This difference is achieved by the 

parietal and occipital channels. Neurophysiologic explanations of the obtained results 
will be presented in this paper. 

 

Keywords: correlation dimension, empirical mode decomposition (EMD), EMD-

filtered correlation dimensions, meditation, indicator DifD2. 
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1  Introduction 
 

In this paper we investigate the multichannel electroencephalograms (EEG) in 

an altered state of consciousness of subjects, namely, in meditation. Description 

of this state of consciousness is presented below. The main objective of the 

work is the following. Based on nonlinear dynamics methods to find sustainable 

quantitative characteristics that distinguishes the EEG in meditation and the 

normal state of the human brain (in the rest). To achieve this goal we applied 

multifractal analysis and study of the reconstructed attractors properties 

corresponding to the time series of multi-channel EEG. In particular we 

assessed and analyzed the correlation dimensions of the reconstructed attractors 

depending on the embedding dimension in the lag space. The basis of our 

method is based on calculation of the difference between the usual correlation 

dimension and the so-called filtered correlation dimension. This difference was 

considered as a quantitative indicator which allows to discriminate between 

different states of consciousness (meditation and rest). The main hypothesis of 

the study is that this indicator is robust and sensitive to the different states of 

consciousness and different experience of meditation practice of subjects. It 

should be noted that over the past 50 years, various meditative states are in the 

interests of physiologists, psychologists and clinicians. There is a considerable 

amount of work devoted to the study of meditation using EEG (see for example 

Cahn and Polich
 
[1]). At the same time, in most studies the main method for 

studying EEG in meditation is the Fourier spectral analysis, which, is known to 

be the linear method. However, it is well known that the EEG time series are 

nonlinear. Therefore, the linear method of Fourier analysis is not able to extract 

from the EEG records some complex nonlinear properties. There are only few 

amount of studies of states of meditation with the use of nonlinear dynamics, as 

the author knows, though recently such methods become increasingly popular in 

the study of EEG, for example for people suffering from epilepsy. Examples of 

works in which the nonlinear dynamics methods were used to study meditation 

are Aftanas and Golocheikine [2], Natarajan at al.[3], Goshvarpour [4]. The 

most interesting work is Goshvarpour
 
[4], where the correlation dimensions of 

the EEG series were calculated. However, unlike the present work, the resulting 

estimates are not explicitly compared for various conditions and subjects, and 

only fed to the input of a variety of classifiers. 

If we consider the classification given in Lutz at al. [10], where there are two 

main directions in meditation techniques - meditation with the focus of attention 

(focused attention, FA-meditation) and meditation free perception (open 

monitoring, OM-meditation). Technique that was used to create a database of 

EEG in the present paper can be attributed to OM-meditation. 

 

2  Description of the multifractal methods  
This section provides a brief overview of the theory of methods of nonlinear 

dynamics used in this paper. More information about the theoretical foundations 
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can be found in the books Mandelbrot [5], Bozhokin and Parshin [6], Shuster 

[7]. 

First, we give the definition of a fractal and multifractal. As fractals one call 

geometric objects: line, surface, spatial body with highly rugged shape and have 

the property of self-similarity under scaling transformation. In a broader sense, 

fractals can be understood as a set of points in Euclidean space with fractional 

Hausdorff dimension which is strictly less than the topological dimension of the 

embedding space for fractal (Mandelbrot [5]). Multifractal is a heterogeneous 

fractal that can be determined not by a single construction algorithm but by 

several successive algorithms. Each of them generates a pattern with its own 

fractal dimension.  

For discrete time series the concept of the reconstructed attractor (Shuster [7]) is 

introduced. Namely, suppose we have a time series   1

N
xt t

, which appears as 

observed realization of one of the variables describing the dynamic system. We 

construct a set of vectors,     , , ...,
1

z t x x xm t t t m 
     

, where the 

parameter   is called the lag, and m is embedding dimension. The resulting set 

of vectors will define a certain set of points in m -dimensional space, which is 

called the lag space. If the points are concentrated near some hypersurface of 

codimension 1, 2,   , m-1 then this hypersurface is called reconstructed attractor. 

An important fact in the study of the reconstructed attractor is the Takens 

theorem (Shuster [7]) which states that the real attractor in d - dimensional 

phase space of the dynamical system and the reconstructed attractor in m - 

dimensional lag space are related by reversible differentiable mapping. Thus 

both attractors are topologically equivalent and, in particular, have identical 

fractal characteristics. The Takens theorem thus allows us to study the 

properties of attractors of dynamical system even in the case where a dynamic 

system that produced the analyzed time series is unknown. 

To describe the multifractal quantitatively one usually calculates the 

multifractal spectrum (Legendre spectrum), which includes a number of fractal 

dimensions which are inherent elements of any multifractal (Bozhokin and 

Parshin [6]). To determine the correlation dimension of the multifractal 

reconstructed attractor we define coverage of studied set by m-dimensional 

cubes with edges of size  . Then, for each cube of coverage, we calculate the 

probability ( )pi  of falling multifractal points in the cube with the number i . 

Further, for any integer q  one can define the generalized Renyi dimensions by 

the following relation: 
( )

ln
1 1

lim
0 1 ln

N q
pi

i
Dq

q



 





       (1)
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Obviously, certain defined Renyi dimensions ( , )mDq   depend not only on q , 

but also on the reconstruction parameters   and m .Dimension 
2

D  is called 

correlation dimension, since it is determined by the correlation between points 

in one cell of the partition. From (1) we obtain an expression for the correlation 

dimension: 
( ) 2

ln
1

( , ) lim2 0 ln

N
pi

i
D m




 





      (2)

 

 

There are various algorithms to select the optimal lag . The simplest is the 

construction of the autocorrelation function for the time series  N

ttx
1
. Then, 

according to Shuster [7] the optimal value for   is the smallest lag 

corresponding to the first zero of the autocorrelation function. Thus, we can fix 

one parameter  and consider the dependence of ( )2D m  for the reconstructed 

attractor of the time series  N

ttx
1
. One of the methods for determining ( )2D m  

is calculation of the so-called correlation integral (sum) (Shuster [7]): 

   1
lim

2 ,
C x xi jN i jN

    


    (3)

 

where ( )   is the Heaviside theta function. 

For the correlation integral we have the following power-law behavior,  

  2
D

C  
       (4)

 

which allows practically calculate ( )2D m . Thus, we can construct dependence 

of ( )2D m on the embedding dimension m  for a particular reconstructed 

attractor. It turns out (Shuster [7]) that for a random time series and time series 

generated by a deterministic dynamical system the behavior of ( )2D m is 

significantly different. For a random series one has relation  2D m m
 
(for 

example for white noise see Fig. 1b). For the time series of deterministic 

dynamical system the correlation dimension ( )2D m starting from a certain value 

of m  saturates, i.e.  2D m const
 
(example for the harmonic oscillator and its 

solutions see on Fig. 1a) 
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Fig. 1. Examples of dependencies. The abscissa value is the embedding 

dimension, the vertical axis value is the value of the correlation dimension. Red 

color marked line is  2D m m . Black color dash line (b) shows dependence 

 2D m for white noise, blue color dash line (a) shows dependence  2D m for 

the harmonic oscillator and its solutions. 

 

3  Algorithm of Empirical Mode Decomposition (EMD) 
 

The EMD method is an iterative computational procedure in which the original 

data (continuous or discrete signal) is decomposed into empirical modes or 

internal vibrations (intrinsic mode functions, IMF). Decomposition into 

empirical modes allows to analyze local phenomena, so this method can be used 

effectively in the processing the non-stationary time series (Huang at al.[8]). 

Let X( t )  is the analyzed signal. The essence of the EMD method lies in the 

sequential calculation and empirical modes c j  and residues r r cj jj 1   

where j = 1,2,3, ..., n and r X ( t )0  . As a result, we obtain an expansion of the 

signal below  
n

X ( t ) c rnj
j 1
 


      (5) 

Here n is number of empirical modes, which are obtained during the 

calculations (Huang at al.[8]). Empirical mode c j  is a function that has the 

following properties: 
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 Number of extremes of the function (maxima and minima) and the 

number of zero crossings must not differ by more than one; 

 At any point, the mean value of the envelope function defined by the 

local maxima and local minima must be zero. 

EMD algorithm method can be realized as follows: 

1. Find the signal extremes. They should be located between every two 

successive sign changes of the time series. 

2. Construct two signal envelopes: lower (ν) and upper (μ). It is possible to use 

splines (e.g., cubic). 

3. Calculate the average value m1  and the difference h1  between the signal and 

its average value: 

X( t ) m h1 1         (6) 

If the difference obtained satisfies the definition of an empirical mode, the 

process stops. In this case, the obtained average value is an empirical fashion. 

4. Otherwise, repeat the previous steps already for this difference h1  (search 

extremes, building envelope, calculation of the mean and its subtraction): 

h m h1 11 11         (7) 

5. As a result of performing a sequence of iterations of the form 

h m h1( k 1) 1k 1k        (8) 

it is necessary to obtain the function 

c h1 1k        (9) 

which satisfies the definition of an empirical mode. Once an empirical mode, 

denoted as c1  extracted, iterations are terminated (Huang at al.[8]). 

6. Residue r X c1 1   is calculated and the whole algorithm is repeated again, 

but for the function r1 . Getting residues occurs as long as newly computed 

residue will be a monotonic function for which will be impossible to allocate 

empirical mode. 

As noted above for the EEG signals sum of the first two EMD modes is the 

noise (physical and physiological). The EMD method allows to remove the sum 

of the first two modes of the original signal: 
n

X ( t ) c rnj
j 3

f
 


      (10) 

and get a filtered from the noise signal 
f

X ( t ) . 
 

4  Description of the electroencephalograms database  
 

In the present study we investigated the database of 19-channel EEG 

(arrangement of electrodes see on Fig. 2), which was provided by the Research 
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Centre "Exyclub" and includes 2 records for 10 subjects. First record 

(hereinafter -rest) corresponds to the usual state test with eyes closed, and no 

movements. Second record (hereinafter - meditation) was preceded by 2-minute 

"instruction-guided", whose meaning lies in the fact that the subject was asked 

to minimize "wandering mind", and is not involved in the usual automatic 

cascade of semantic associations. 

 

 
Fig. 2. The channels arrangement 

 

We call the subject as “experienced meditator” if he practiced meditation in the 

past at least 500 hours. The subjects who was exposed to meditation training 

100 hours or less will be referred as "inexperienced meditators". Below are 

given some parameters EEG recordings: 

1. The sampling frequency is 500Hz; 

2. Length for a single record is 120 ÷ 140 sec (60,000 ÷ 70,000 samples);  

3. Maximum amplitude is up to 60 mV. 

 

5  Analysis of the correlation dimension 
 

Below we investigate the multifractal properties of the reconstructed attractor, 

namely dependence  2D m . The main instrument we used (the program d2 ) 

was developed by the authors on the basis of package TISEAN (Hegger at al. 

[9]). The d2 program designed to calculate the approximate correlation sum, 

correlation dimension and correlation entropy for a set of multi-dimensional 

data. The program d2 allows to pass from the value  ,
2

D m to  2
D m , 

which depends only on the embedding dimension. Such a transition is 

performed by averaging over   in the range from the value specified by “Left 

epsilon” to the value specified by “Right epsilon”. That is, values  ,
2

D m  and 

 2
D m are related as follows: 
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   ,2 2D m D m
Left

Right

  

 

 


    (11)

 

Here, the angle brackets denotes averaging over the specified interval. Accuracy 

of  2D m is defined as the standard deviation of the sample of  ,2D m  values 

with   values taken from the interval 
Left Right

     . 

Further analysis for dependencies  2
D m  was carried out for all EEG time 

series in both states of brain (rest and meditation). Empirically the range   for 

averaging over   , namely  0.6, 3  , has been established. 

In this paper, we monitor not only the dependencies  2
D m  of the original 

series, but also for the analogous dependences  2
f

D m  for EMD-filtered EEG 

time series. This difference is denoted as follows: 

2 2 2
f

DifD D D 
      (12)

 

 

Under the EMD-filtered EEG correlation dimension we understand the 

correlation dimension calculated from EEG channels from which we have 

dropped the first two modes of EMD-decomposition (see Eq.(10)). Thus, the 

smaller this difference 2DifD , the less "noise" contains in the EEG signal. 

Calculations were performed by 5 experienced and 5 inexperienced subjects in a 

state of meditation and rest. For each subject the evaluation of these differences 

was carried out on the 10 fragments of each EEG channel. Each fragment 

consisted from 10,000 samples (record to last 20 seconds). Unfiltered 

correlation dimensions have been calculated at the embedding dimension m=5. 

After dropping the first two modes, EMD-filtered correlation dimensions have 

been calculated at the embedding dimension m=4. Such choice of embedding 

dimensions m in both cases was determined by points on the axis of abscissa, at 

which the correlation dimensions began to saturate. 

 

6  Statistical analysis 
 

The main hypotheses, which statistically will be checked in the present section 

are the following. The difference between the usual and EMD-filtered 

correlation dimensions is less in the state of meditation than in the rest state. 

One can anticipate that for experienced subjects the meditation and rest states 

according to above introduced indicator 2DifD differes statistically significant. 

At the same time for inexperienced subjects the above distinction between states 

could be not significant. We would also check if there is any distinction in our 
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indicator 2DifD  for the left and the right hemisphere in the meditation and rest 

states. Remind that smaller the difference 2DifD , the less "noise" contains in 

the EEG signal. 

Standard method of multifactor analysis of variance with repeated measures 

(Repeated ANOVA) and t-test for means for dependent samples were chosen as 

methods of analysis and test of suggested hypotheses (the program 

STATISTICA has been used). 

The Figure 3 below gives the grafical and statistical results of Repeated 

ANOVA for the factors “Type” (experienced (Exper) or inexperienced (Inexp) 

subjects) and “STATE” (meditation (Dif_med) or rest (Dif_fon)). 

 

 
Fig. 3.Comparison of the average values of DifD2 

 

The Fig. 3 above leads to the following conclusion. Interaction between factor 

"Type" and the factor "STATE" is significant (p<0.01). That is DifD2 for 

experienced subjects in meditation is lower than that in the rest. For 

inexperienced subjects the tendency is the same but distinction between states is 

smaller. The following table reveals, whether these differences are significant. 
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Cell 

No.  

Scheffe test; variable DV_1 (Cordim_1тип)  

Probabilities for Post Hoc Tests  

Error: Between; Within; Pooled MS = ,05871, df = 3375,3  

Type  STATE  1  

0,65299  

2  

0,71733  

3  

0,73952  

4  

0,76412  

1  Exper  Dif_med   0,000000  0,000000  0,000000  

2  Exper  Dif_fon  0,00000   0,263439  0,000515  

3  Inexp  Dif_med  0,00000  0,263439   0,065693  

4  Inexp  Dif_fon  0,00000  0,000515  0,065693   

Table. 1.Probabilities for Post Hoc Tests 

 

 

In the Table 1 the results of post hoc test for pairewise comparison are given for 

4 pairs: experienced subjects in meditation, experienced subjects in rest, 

inexperienced subjects in meditation, inexperienced subjects in rest In the table 

cells one can find the corresponding "pairwise" p-levels. The values of p-levels 

greater than 0.05 means that distinction between averaged values of idicator 

DifD2 in the corresponding pair is not statisticslly significant. Thus, accoding to 

indiator DifD2 for experienced subjects meditation state differes from rest state 

on very high level of significance. For inexperienced subjects this is not true. In 

meditation state the distinction between experienced and ineperienced subjects 

is also highly significant. So meditation is characterized by significantly less 

noise in EEG only for experienced subjects but not for inexperienced. Another 

effect is that experienced subjects “manage to significantly reduce the noise in 

brain” during meditation in comparison with rest state. Inexperienced subjects 

do not posess such ability. One more interesting fact is that the average value of 

the difference of correlation dimensions (DifD2) over all channels in the rest 

state for experienced meditators is significantly lower than that of inexperienced 

meditators. The physiological explanation of this fact is offered in conclusions. 
 

The Figure 4 below grafically allows to see that for experienced subjects the 

distinction between meditation and rest states is achieved mainly due to the 

parietal and occipital channels. 

The Figure 5 below grafically allows to see that in meditation state the 

difference DifD2 for experienced and inexperienced subjects is achieved mainly 

due to the frontal and parietal channels 
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Fig. 4. The difference DifD2 for experienced subjects in the parietal and 

occipital channels 

 

 
Fig. 5. The difference DifD2 in meditation state in the frontal and parietal 

channels 
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Finally, we have checked if there is any distinction in our indicator DifD2 for 

the left and the right hemisphere in the meditation and rest states. It turned out 

that the experienced meditators average difference of correlation dimension 

(DifD2) in the left hemisphere is significantly smaller than for the right one. 

Here we have applied one-tailed t-test for means for dependent samples. It gave 

p < 0.001 as the significance level. At the same time for inexperienced subjects 

the difference is statistically insignificant (p = 0.33). The physiological 

explanation of this fact is offered in conclusions. 
 

Conclusions 
 

In this paper we developed a new method for discriminating between rest and 

meditation, as well as between experienced and inexperienced subjects. 

Constructed method is based on multifractal analysis and EMD decomposition 

of multichannel EEG. More specifically, in the framework of these approaches 

to the analysis of EEG, a new indicator DifD2 has been constructed. With this 

indicator main results were obtained as listed below. 

1. It turned out that the DifD2 in a state of meditation for experienced subjects is 

significantly lower than that of the inexperienced subjects. It should be noted 

that this distinction is achieved mainly due to the frontal and parietal channels.  

2. For experienced subjects the difference DifD2 in the meditation state turned 

out to be significantly lower than that in the rest state. It should be noted that 

this difference is achieved mainly by the parietal and occipital channels.  

3. It turned out that  the experienced meditators average difference of correlation 

dimension (DifD2) in the left hemisphere is significantly smaller than for the 

right one. At the same time for inexperienced subjects the difference is 

statistically insignificant. This allows us to associate this fact with the presence 

of positive emotions in the left hemisphere during meditation. 

4. The average value of the difference of correlation dimension (DifD2) over all 

channels in the rest state for experienced meditators was significantly lower than 

that of inexperienced meditators. This could be explained by the presence of the 

neuroplastic brain reorganization for experienced meditators. 

In addition it should be noted that for the above studies has been developed and 

used specialized software in the MATLAB environment. It can be used in 

further studies, for example, to identify individual differences in groups of 

subjects, both experienced and inexperienced. 
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Abstract. How can a charity ensure that only its most worthy causes are supported? One 

approach that has proven effective in the past is AHP (Analytic Hierarchy Process). Now a 

new method – based on a hybrid AHP / Evidential Reasoning (ER) adaptation - has 

become available, claiming distinct advantages over straight AHP. By contrasting the two 

procedures for a real-life dataset – we demonstrate AHP/ER‟s superiority in both 

theoretical and practical respects.  
 

Keywords: Analytic Hierarchy Process, Dummy variables, Evidential Reasoning, 

Intelligent Decision Software, Utility 

 

1     Introduction 
 

Buxton and District Lions Club (http://www.buxtonlions.com/index.html) 

belongs to the International Association of Lions Clubs. As such, each year, the 

Club runs a variety of fund-raising events (see for example Fig.1), the income 

from which is then used to resource good causes - primarily within the local area. 

  

 
 

http://www.buxtonlions.com/index.html
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Fig. 1. Participants in the BDLC‟s Ladies‟ Ruff Stuff Challenge 

On average, BDLC raises £5,000 - £6,000 in donations annually. From 

experience this is never sufficient to meet the charitable demands upon the Club - 

hence the need for applications to be systematically evaluated (by the body‟s 

charity committee) to determine which, if any of them, should be earmarked for 

BDLC support.  
 

In an effort to make the committee‟s screening process more objective and 

scientific, AHP [2] [3] was tested by Pang [1] on the thirteen grant applications 

received by BDLC in 1999. Seven criteria were considered in the application - 

four of them, quantitative and three, qualitative (binary) – as described in Table 

1.   

QUANTITATIVE ATTRIBUTES 

 “How long will the benefit last” (Duration) 

 “Numbers of people who benefit” (Numbers) 

 “How well resourced” (Resource) 

 “Impact of funding” (Impact) 

  

QUALITATIVE ATTRIBUTES 

“Any possibility of alternative funding” (Alternative funding) 

 “Direct or indirect applications” (Direct) 

 “Help with daily living” (Living) 
 

Table 1. Decision criteria 
 

Because of theoretical limitations with AHP at the time, only the quantitative 

criteria could be used in the resultant (EXCEL-based) analysis - final rankings 

from which are summarised in Table 2. However, providing strong vindication 

for the procedure, these were found to significantly correlate with actual funding 

decisions made by the Club. 
 

Alternatives Priority Overall Ranking 

Buxton Mountain Rescue Team 0.190 1 

Buxton Opportunity club 0.177 2 

Heartbeat 0.144 3 

Burbage Football Club 0.119 4 

Bereaved lady 0.061 6 

Buxton Samaritans 0.095 5 

Disabled man 0.039 8 

Disabled riders 0.040 7 

Holidays for disabled 0.037 9 

PC for disadvantage school pupil 0.032 10 

Wheelchair applicant 0.027 11 

Chapel band 0.022 12 

Nepal travel 0.017 13 
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Bold entries in the table correspond with applications that were finally funded by BDLC. 

Table 2. Original AHP Summary 
 

Building on this promising start, the data have now been re-analysed using a 

combined AHP/ER approach with the advantage that both quantitative and 

qualitative data (see Table 3) can be taken into account in the computations. 

Relevant results are detailed in the next section of the paper. Beforehand, 

background is provided on ER and the Intelligent Decision System (IDS) 

software[4] used to operationalise the analysis.   

 

  

 

YYes is scored „1‟ and No is scored „0‟ here. 

Table 3. Qualitative data details 

 

 

 

2    Evidential reasoning and IDS 
 

ER significantly extends the application of multiple criteria decision analysis 

(MCDA) methods by allowing formal belief structures to be incorporated into 

the modelling under conditions of uncertainty. 

The approach itself is very flexible enabling uncertainty to be accommodated in 

many different guises e.g. as single numerical values, probability distributions, 

subjective judgments with degrees of belief … leading to greater realism and 

reliability in the overall assessment.  

The re-analysis of the BDLC data was performed using the IDS software. As 

 
Any possibility of  

alternative funding? 

direct or indirect 

 applications? 

Help with  

daily living?  

Buxton Mountain Rescue Team 1 1 0 

Buxton Opportunity club 1 0 0 

Heartbeat 1 1 0 

Burbage Football Club 1 1 0 

Bereaved lady 0 1 1 

Buxton Samaritans 1 1 0 

Disabled man 0 1 1 

Disabled riders 1 1 1 

Holidays for disabled 1 0 0 

PC for disadvantage school pupil 1 1 0 

Wheelchair applicant 1 1 1 

Chapel band 1 1 0 

Nepal travel 1 1 0 
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well providing a systematic interface for the model formulation, IDS offers a 

range of powerful facilities – not least its ability to incorporate different risk 

outlooks into the analysis as well as an exhaustive sensitivity testing provision.  

 

Typically, four distinct stages are involved in an IDS modelling application: for 

the BDLC data these can be illustrated as follows: 

 

1. “Define the alternatives” (See Table 2) 

2. “Define the attributes” (see Table 1) 

3. “Assign attributes weights”  For this stage of the project the 

Eigenvector (AHP) IDS option was selected over the Geometric mean, and 

Mixed approach alternatives - see the values obtained in Table 4 which compare 

very closely with those based on the traditional method set out in the Appendix)  

4.  

 

 Weight 

Duration 0.424 

Number 0.201 

Resource 0.161 

Impact 0.08 

Living  0.066 

Alternative Funding 0.034 

Direct 0.033 

 
Table 4. Attribute weights generated by IDS for the 7-Criteria Model 

 

 
5. “Convert grades”. 

 

As there are two levels of attributes for the BDLC data, grades from lower level 

attributes (applications) have to be converted and aggregated into the higher-

level attributes (criteria). However, the process for handling qualitative data and 

quantitative data is different. IDS provides two different ways of aggregating 

them. One way is by rule based transformation and the other – the one used 

for the project - is utility based transformation[5] 

 

In the latter case, IDS offers two sub-options for determining managers‟ utility 

types: Visual Scoring, and Direct Assignment. Visual scoring, the choice used 

here, involves computer graphical manipulation whereas Direct Assignment 

allows managers‟ utilities to be represented by specific utility values. 
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Following on, utility scores - assuming a risk neutral attitude to risk - were 

obtained from IDS as follows: 

 

Alternatives 
IDS Utility 

score 
Ranking 

Buxton Mountain Rescue Team 0.907 1 

Buxton Opportunity club 0.776 2 

Heartbeat 0.683 3 

Burbage Football Club 0.505 4 

Bereaved lady 0.281 6 

Buxton Samaritans 0.463 5 

Disabled man 0.189 7 

Disabled riders  0.156 8 

Holidays for disabled 0.072 11 

PC for disadvantage school pupil 0.078 10 

Wheelchair applicant 0.087 9 

Chapel band 0.038 12 

Nepal travel 0.016 13 

 
Table 5. IDS Rankings (7 criteria model) Risk neutral attitude 

 

Corresponding graphical output is shown in Figure 2. 

 

Equivalent graphs for risk averse and risk welcoming attitudes are shown in 

Figures 3 and 4 respectively: 
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Fig. 2. Utility scores by alternative.  Risk neutral  attitude 
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Fig. 3. Utility scores by alternative.  Risk averse attitude 
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Fig. 4. Utility scores by alternative.  Risk welcoming attitude 
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Of interest, all three rankings here can be shown to be significantly correlated. 

This overall consistency backed up by selected sensitivity results – see e.g. Figure 

5 – suggest the ER/AHP rankings obtained for this particular dataset are 

remarkably robust.   

 

 

(7-Criteria model Risk 

averse) 

 

(7-Criteria model Risk 

neutral) 

 
 

(7-Criteria model Risk 

taking) 

Fig. 5. Sensitivity analysis re changes in weight value for “How well resourced” 

 

4    Conclusions 
 

Results from an AHP/ER analysis of a historical dataset on charity applications 

contrast markedly with those from a longstanding analysis based on set-piece 

AHP. More to the point, the new approach was found to outperform its 

predecessor in virtually every respect:  

1. Whereas AHP was able to only handle quantitative criteria in the 

modeling, AHP/ER was able to deal with both quantitative and qualitative 

criteria.   

2. IDS – the system used for the AHP/ER modeling here –substantially 

outclassed the open-ended EXCEL-based code generated for the AHP in scope 

and user-friendliness.  

3. Utility stereotypes can be automatically taken into account in an IDS 

analysis enabling decision-makers‟ preferences to be directly incorporated into 

the results.  

4. Similarly, IDS‟s sensitivity analysis capability is impressively 

comprehensive: not only does the system highlight the specific points where 

changes in data inputs cause overall rankings to change but it routinely maps out 

feasible regions associated with a given solution. 
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Irrespective of the utility type considered, the rankings for the first 8 of the 

BDLC alternatives remained the same: 1-Buxton Mountain Rescue Team, 2-

Buxton Opportunity club, 3-Heartbeat, 4-Burbage Football Club, 5- Buxton 

Samaritans, 6- Bereaved lady, 7-Disabled man, 8-Disabled riders. Similarly, the 

rankings for the last 2 alternatives were also found to be unchanged: 12- Chapel 

band, 13- Nepal travel. Not surprisingly, this translated into significant agreement 

between all three of the seven criteria rankings obtained and indeed between 

them and the old AHP-based ranking.  
 

References 
 

1. J. Freeman and H.C. Pang. Separating the Haves from Have-nots – how the 

Analytic Hierarchy Process was used to Priorities applications for charitable funding. OR 

Insight 13, 4, 14{20, 2000. 

 

2. T.L. Saaty. What is the analytic hierarchy process?  Springer Berlin Heidelberg. 

109{121, 1988. 

 

3. T.L. Saaty. How to make a decision: the analytic hierarchy process. Interfaces, 

24, 6, 19{43, 1994. 

 

4. D. L Xu and J. B Yang. Intelligent Decision System for self-assessment. Journal 

of Multi-criteria Decision Analysis, 12, 1, 43{60, 2003. 

 

5. J. B. Yang. Rule and utility based evidential reasoning approach for multi-

attribute decision analysis under uncertainties. European Journal of Operational 

Research. 131, 1, 31{61, 2001. 

 

Appendix 

 
The basis of the application comparisons that follow is the fundamental scale: 

 

Verbal judgement or preference  Numerical rating 

 

Extremely preferred    9 

Very strongly to extremely    8 

Very strongly preferred    7 

Strongly to very strongly    6 

Strongly preferred    5 

Moderately to strongly    4 

Moderately preferred    3 

Equally to moderately    2 

Equally preferred     1 

 

 

http://130.88.122.13/Applications/BetaJMCDA.pdf
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Step 1: Calculate the sum of each column. 

 Duration Number Resource Impact Living  
Alternative 

funding 
Direct  

Duration 1 4 4 5 5 8 8 

Number 0.25 1 2 4 3 5 5 

Resource 0.25 0.5 1 4 3 4 5 

Impact 0.2 0.25 0.25 1 1 4 4 

Living  0.2 0.33 0.33 1 1 2 2 

Alternative 

Funding 
0.125 0.2 0.25 0.25 0.5 1 1 

Direct 0.125 0.2 0.2 0.25 0.5 1 1 

Total 2.15 6.48 8.03 15.5 14 25 26 

 

Step 2: Normalization 

 Duration Number Resource Impact Living  
Alternative 

funding 
Direct  

Duration 0.465 0.617 0.498 0.323 0.357 0.320 0.308 

Number 0.116 0.154 0.249 0.258 0.214 0.200 0.192 

Resource 0.116 0.077 0.124 0.258 0.214 0.160 0.192 

Impact 0.093 0.039 0.031 0.065 0.071 0.160 0.154 

Living  0.093 0.051 0.041 0.065 0.071 0.080 0.077 

Alternative 

Funding 
0.058 0.031 0.031 0.016 0.036 0.040 0.038 

Direct 0.058 0.031 0.025 0.016 0.036 0.040 0.038 

Total 1 1 1 1 1 1 1 

 
Step 3: Calculate Row average 

  
Duration Number Resource Impact Living  

Alternative 

funding 
Direct  

Row 

average 

Duration 0.465 0.617 0.498 0.323 0.357 0.320 0.308 0.412 

Number 0.116 0.154 0.249 0.258 0.214 0.200 0.192 0.198 

Resource 0.116 0.077 0.124 0.258 0.214 0.160 0.192 0.163 

Impact 0.093 0.039 0.031 0.065 0.071 0.160 0.154 0.087 

Living  0.093 0.051 0.041 0.065 0.071 0.080 0.077 0.068 

Alternative 

Funding 
0.058 0.031 0.031 0.016 0.036 0.040 0.038 0.036 

Direct 0.058 0.031 0.025 0.016 0.036 0.040 0.038 0.035 

 
The row averages in the last table correspond with those summarised in Table 4 

using IDS.  The consistency index (Saaty, 1980) for the latter can be shown to be 

zero signifying the weights from this analysis are perfectly consistent. 
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Abstract. This paper study the common voting patterns in Colombian presidential
elections between 1986 to 2010. Contingency tables are building with sub-partitions
on rows and columns, where the rows correspond to the Colombian municipalities,
according to their population size and the columns correspond to the votes for can-
didates in each electoral period. Weighted Intra Blocks Correspondence Analysis
(WIBCA) with cluster analysis is develop to study voting patterns, eliminating the
variability induced by population differences and election periods. It is possible to
conclude that there is an electoral pattern, mainly in the municipalities with popula-
tion under 20.000, which is more clear before the 2002 election period.
Keywords: WIBCA, Contingency Tables, Cluster Analysis.

1 Introduction

In 1990 Bautista and Pachecho[1] made an study of Colombian presidential
election in the period of 1972 to 1990, by the implementation of Principal
Component Analysis (PCA) of a dataset that contains the results for all the
departments in every period for the Liberal, Conservador and left candidates.
They found that the Liberal and Conservador parties have a negative correlated
behavior, and that the poll for the left candidates is independent of the results of
the others candidates. This work was development before the proclamation of
the 1991 new Colombian Political Constitution and the electoral reform in the
90’s which laid the groundwork for more flexible rules that allows the entry and
exit of new political parties in Colombian. Also, before 1986 the electoral results
were reported at the departmental level and the law 136 (CNC[2]) changed the
political division of Colombia by created new departments and municipalities.

With this changes in mind, if one considerate this methodology for study the
current Colombian presidential election, is possible to find results that do not
reflect the reality, since this method does not discount the variation introduce
by the change in time caused by the entry and exit the of the new candidate
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and political parties and the differences in the electoral behaivor of the small
municipalities and the big cities.

This work study the Colombian presidential election between 1986 and 2010,
excluding the variation introduce by the change of political actors in time and
the differences of population size. For this, this paper is divided in five parts
including this introduction. In the second part the methodology is explained,
then the data and the results are displayed and finally the conclusions are
presented.

2 Methodology

2.1 Principal Components Analysis

The Principal Components Analysis (PCA) is a methodology to describe large
data sets by the generation of orthogonal variables (known as axes) to the
original variables which keeps the most variance (inertia)(UST[3]). This rep-
resentation allows the study of the relation between rows according to their
values of the columns, the relation between the columns and the reduction of
dimensionality (Pardo and Cabreras[4]).

Then, from the standardized matrix X of data, with n rows y p columns is
possible to find the row and column geometrical representation of this matrix
which correspond to the distance (or metric) M and D respectively. This com-
bination of data matrix and metric matrices can be written as ACP(X,M,D)
(Escofier and Pagès [5]).

It is possible to demonstrate that the orthogonal axes that maximize the
projected inertia corresponds to the eigenvectors associate to the higher eigen-
value of the correlation matrix (Lebart et al.[6]).

Then, the rows of the data can be represent as the union of pairs of axes,
known as factorial planes, where the plane of the first and second axes (asso-
ciate whit the first and second eigenvalues and eigenvector) constitute the best
projection. In these planes, nearby points indicate similarity between the indi-
viduals and distant points indicate dissimilarity. In the case of the columns the
representation obtained by crossing pairs of axes allows to get a plane where
the points are represented as vectors and the angles formed between the pairs
of them indicate the correlation of the columns (Lebart et al.[6]).

2.2 Correspondence Analysis with respect to a model

The CA methodology can be used to find the best representation for contin-
gency tables (where the rows and columns represent different variables set)
[Benzécri [7], Lebart et al.[6]], and can be seen as a Weightes Principal Com-
ponent Analysis (Pardo et al. [8]), denoted as ACP (X,M,D).

Escofier[9] generalized the CA to consider it as the relation with a model,
which is a matrix that have a relation with F. The best know example of a
model is the independence model that arises by multiplying the marginals of
the matrix of frequencies F.



Evolution of electoral behavior by principal axes methods 185

For example, one can consider the F as the frequency table an H as the
independence model matrix with general term hljik = f l.i.f

.j
.k . Then, in the

Simple Correspondence Analysis (SCA) which is an ACP (X,M,D) where X

has general term xljik =
f lj
ik

−f l.
i.f

.j
.k

f l.
i.
f .j
.k

, M = diag(f .j.k) and D = diag(f l.i. ), can also

be seen as a AC(F,H) with respect to the independence model.

2.3 Weighted Intra Blocks Correspondence Analysis

Intra Blocks Correspondence Analysis (IBCA) is a methodology use to rep-
resent contingency tables with sub-partitions in rows and columns. In order
to facilitate the explanation of the IBCA, the Colombian presidential elections
data is presented in the Table 1. In this case, Ele represent the year of the
election, Can the candidate, Cat a group of municipalities according to their
population size and Mun the municipality. One can see that the groups creates
to new structures known as band and block.

Table 1: Contingency table with sub-partitions in rows and columns for the
presidencial municipality elections

Ele86 . . . Ele10
Can1 Can2 . . . . . . . . . . . . . . . Can26 Can27

Cat1
Mun1
Mun2
. . .

. . .
. . .
. . .
. . .

Cat7
. . .

Mun960
Mun961

A band is the partition of the table, created by a group of variables in the
rows (row bands) or in the columns (column bands). In the case of the Table
1 an example of row band is the vote for all candidates in all elections for
municipalities in category 1, and an example of column band is the voting in
all the municipalities and all the categories for 1986 election. A block is create
by the intersection of a row band with a column band so, in the Table 1, an
example of block is the voting for all the candidates in the 1986 election in all
the municipalities in category 1.

Then, the IBCA allows to study the relationship between the municipali-
ties and the candidates, excluding the variation introduce by the size of the
populations and the year of elections. This is possible, because this methodol-
ogy preforms an CA with respect to independence model between the row and
columns bands, which subtract the inertia generate by the bands leaving only
the inertia of the variables within the blocks (Pardo[10]).

This implies that the IBCA can be seen as a PCA(X,D,M) or an CA(F,B),
where the general term of each matrix is presented in the Table 2 [Pardo[10],
Pardo[8]].
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Table 2: General terms in the IBCA matrix

Method Matrix X Matrix D Matrix M Modelo

IBCA xlj
ik

=
f
lj
ik

−
f
lj
i.

f
lj
.k

flj
..

fl.
i.

f
.j
.k

diag(f l.
i. ) diag(f .j

.k
) blj

ik
=

f
lj
i.

f
lj
.k

flj
..

However, the IBCA great limitation is that can be influenced by over-
sized bands (bands whit a lot of variables or weight). Taking this into ac-
count, Pardo[10] propose the Weighted Intra Blocks Correspondence Analysis
(WIBCA) (as an extension of the Multiple Factorial Analysis for Contingency
Table (MFACT) presented by Bécue-Bartaut and Pagès[11] in which is possible
to introduce simultaneously weights to M y D, in order to eliminate the effect
of the oversized bands. Pardo[10] demonstrate that this weighted matrix are
M = diag(αjf

.k
.j ) and D = diag(βlf

i.
l. ), where αj y βl are the weights, which

have to be estimated by iterative process.

2.4 Clustering strategy

In addition to the previous methodology, this papers implements clustering
strategies for the interpretation of the results at the municipality level. This is
necessary since the amount of municipalities complicates the individual analysis
for the rows.

Having this in mind, in this work the mix algorithm for the classification
of the individuals is used. This algorithm implement the Ward algorithm,
for hierarchical classification, in order to choose the number of clusters, the
gravity centres and an initial classification. Then, the results are optimized by
the K-means algorithm (Lebart et al. [6]).

3 The data

This paper study the relations between Colombian municipalities and votes
for the principals presidential candidates en each election from 1986 to 2010,
according with the configuration present in the Table 1.

In Colombia the presidential term has a duration of 4 year, that means that
in the period of interest seven presidential election took place. Also, this paper
only considers the 27 candidates who obtained a total number of votes greater
than the blank vote. The Table 3 shows the candidates included in the analysis
and the year of participation.

Also, this work only takes into account the 961 municipalities, and not the
1120 municipalities that currently exist, with voting between 1986 and 2010.
The absence of voting in the other 159 municipalities can respond to various
reasons such as lack of the municipality, inability to install polling stations
because of armed conflict, among other reasons.
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Table 3: Presidential candidates and year of participation

Election year Candidate Name Candidate-year code

1986
Virgilio Barco Bar86
Alvaro Gomez Gom86
Jaime Pardo Par86

1990

Cesar Gaviria Gav90
Alvaro Gomez Gom90
Rodrigo Lloreda Llo90
Antonio Navarro Nav90

1994
Antonio Navarro Nav94
Andres Pastrana Pas94
Ernesto Samper Sam94

1998

Harold Bedoya Bed98
Andres Pastrana Pas98
Noemi Sanin San98
Horacio Serpa Ser98

2002

Luis Garzon Gar2
Noemi Sanin San2
Horacio Serpa Ser2
Alvaro Uribe Uri2

2006
Carlos Gaviria Gav6
Horacio Serpa Ser6
Alvaro Uribe Uri6

2010

German Vargas Lleras Lle10
Antanas Mockus Moc10
Rafael Pardo Par10
Gustavo Petro Pet10
Noemi Sanin San10
Juan Manuel Santos Sant10

Table 4: Classification of Colombian municipality according to population size

Category Minimum Maximum Number of municipalities

Cat1 500.001 - 9
Cat2 100.001 500.000 51
Cat3 50.001 10.0000 60
Cat4 30.001 50.000 107
Cat5 20.001 30.000 134
Cat6 10.001 20.000 317
Cat7 0 10.000 441

The municipality classification, for the creation of the bands, is made ac-
cording to the parameters established in the law 136 (CNC[2]) which is pre-
sented in the Table 4.

4 Application

This section present the principal results for the application of the WIBCA
in the Colombian presidential elections data. For the implementation of the
WIBCA the R-package pamctd is used (Pardo[13]) and for the cluster classifi-
cation the R-package FactoClass (Pardo and Del Campo[12])are employed. In
some cases was necessary to modify the functions to make them compatible.

The inertia analysis and the Figure 1 (which represent the first two axes
and the centres of the cluster analysis) shows the candidates with the higher
percent of votes. The first and second axes explain the 51% of the inertia
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Fig. 1: WIBCA for municipalities presidential elections between 1986 and 2010

(31% and 20% respectively) and identify the candidates of the Liberal and
Conservador parties like Serpa, Pastrana, Samper and Barco. The second axis
is also associate with candidates who do not belong to traditional Colombian
parties like Lleras, Uribe in 2002 and Mockus.

Leftist candidates like Petro, Gaviria, Jaime Pardo and Navarro are char-
acterized by the third and fourth axes (11% and 9% of the inertia respectively)
which means that this candidates do not have as many percentage of votes as
the previous ones but they receive voting from a different set of municipalities
that the previous candidates.

Finally, candidates like Santos and Uribe in 2006 are represented by all the
axes. This could mean that this candidates get votes from all the municipalities
and not only an specific category of municipality.

The Tables 5 and 6 has the cluster characterization of the WIBCA that is
also presented in the Figure 1 and represented in the Figures 2, 3 and 4. In the
first group the candidates Barco, Jaime Pardo, Cesar Gaviria, Samper, Serpa,
Rafael Pardo and Santos present a higher percentage of voting, comparing with
their national result. Except for Jaime Pardo and Santos, these candidates
are affiliate with the Liberal party. This cluster has 10% of the voting, 232
municipalities and around the 75% of this municipalities (Figure 2) belong to
categories 6 and 7.

In the second group the candidates Gomez, Lloreda, Pastrana, Sanin, Uribe
and Santos have a higher percentage of voting, comparing with their national
percentage. Except for Uribe and Santos, these candidate represent the Conser-
vador party. This cluster has 8% of the voting, 212 municipalities and around
the 80% of this municipalities (Figure 4) belong to categories 6 and 7.
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Fig. 2: Relationship between clusters and categories of municipalities

Fig. 3: Relationship between categories and cluster of municipalities

The third group presents the most similar percentage of the vote compare
with the national level. This cluster has 40% of the voting, 155 municipalities
and and has not a dominant category.

In the fourth group the candidates Barco, Cesar Gaviria, Samper, Serpa,
Rafael Pardo and Petro show a higher percentage of voting, comparing with
their national result. Except for Petro, these candidates are affiliate with the



190 M. Maŕın and C. E. Pardo

Fig. 4: Relationship between clusters and candidats

Liberal party. This cluster has 12% of the voting, 139 municipalities and has
not a dominant category.

In the fifth group the candidates Barco, Navarro, Samper, Serpa, Carlos
Gaviria and Petro have a higher percentage of voting, comparing with their
national result. This candidates can be associate with leftist politics. This
cluster has 13% of the voting, 103 municipalities and has not a dominant cat-
egory.

In the sixth group the candidates Barco, Jaime Pardo, Cesar Gaviria, Sam-
per, Gaviria, Pardo and Santos present a higher percentage of voting, compar-
ing with their national result. Except for Santos, this candidates are associate
whit softer leftist politics that the ones in the fifth group. This cluster has 1%
of the voting, 24 municipalities and and has not a dominant category.

In the seven group the candidate Gomez, Lloreda, Pastrana, Sanin, Uribe,
Lleras and Mockus show a higher percentage of voting, comparing with their
national result. The majority of this candidates are associate whit right poli-
cies. This cluster has 15% of the voting, 96 municipalities and and has not a
dominant category.
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Table 5: Cluster characterization for the presidential elections between 1986
and 2010: groups one to four

Candidate
Group 1 Group 2 Group 3 Group 4

Mean
Clas/Cat Cat/Clas Clas/Cat Cat/Clas Clas/Cat Cat/Clas Clas/Cat Cat/Clas

Bar86 16,5 11,2 3,4 2,8 40 6,4 13,4 7,4 6,6
Gom86 5,8 2,4 21,4 10,9 34,7 3,4 9,8 3,3 4
Par86 14,2 0,7 3,6 0,2 36,8 0,4 12,3 0,5 0,5
Gav90 15,4 7,1 4,2 2,4 41,7 4,5 13,7 5,1 4,5
Gom90 5,6 1,3 17,5 4,9 44,8 2,4 10,1 1,9 2,2
Llo90 4,6 0,5 20,5 2,9 30,3 0,8 6,5 0,6 1,1
Nav90 7,5 0,9 3,6 0,5 38,2 1,1 8,7 0,9 1,2
Nav94 8,8 0,3 4,1 0,2 39,2 0,3 9,5 0,3 0,3
Pas94 5,9 2,4 17,1 8,7 36,9 3,6 10,3 3,5 4
Sam94 15,1 6,3 3,7 1,9 39 3,8 14,7 5 4,1
Bed98 8 0,2 4,1 0,2 57,5 0,4 7,4 0,2 0,3
Pas98 6,2 3,6 16,6 11,7 36,8 5 10,1 4,7 5,6
San98 5,9 2,7 3,6 2 53,3 5,8 5,8 2,1 4,4
Ser98 15,3 9 3,1 2,2 36,1 5 19,8 9,4 5,7
Gar2 6,2 0,7 5,2 0,7 54,6 1,4 6,1 0,5 1,1
San2 7 0,7 11,8 1,5 5,9 0,5 1
Ser2 13,3 7,3 3 2 34,4 4,5 22,7 10,2 5,4
Uri2 6,7 6,1 8,5 9,5 45,9 9,9 8,2 6,1 8,9
Gav6 7,1 2,9 4,3 2,1 42,3 4,1 8,7 2,9 4
Ser6 11,7 2,6 2,7 0,7 30,1 1,6 33,3 5,9 2,1
Uri6 9,4 10,8 9,4 13,2 43,5 11,8 9 8,4 11,2
Lle10 5,5 1,3 3,7 1,1 49,7 2,8 8,3 1,6 2,3
Moc10 5,9 2,9 3,6 2,2 50,6 5,9 11,1 4,5 4,8
Par10 12 1,2 3,3 0,4 32,9 0,8 27,2 2,2 1
Pet10 6,3 1,3 2,7 0,7 36,7 1,8 13 2,2 2
San10 5,8 0,8 10,7 1,9 37 1,2 9,7 1,1 1,4
Sant10 12 12,6 9,9 12,6 40,9 10,1 10,6 9 10,1

5 Conclusions

This paper analyse the relation between municipalities and the results of pres-
idential elections between 1986 and 2010, excluding the variation introduce by
the size of the populations and the year of elections. For this a Weighted Intra
Blocks Correspondence Analysis (WIBCA) and a mix algorithm of classifica-
tion is used.

The first plan and inertia analysis show that the candidates with the higher
percent of votes are the best represented in this two axes, specially the candi-
dates Serpa, Pastrana, Samper, Barco, Lleras, Uribe in 2002 and Mockus. In
the other hand, leftist candidates like Petro, Gaviria, Jaime Pardo and Navarro
are characterized by the third and fourth axes, which means that this candi-
dates do not have as many percentage of votes which means that they receive
voting from a different set of municipalities as the previous candidates. Fi-
nally, candidates like Santos and Uribe in 2006 are represented by all the axes,
because this candidates get votes from all the municipalities and not only an
specific type.

The cluster analysis of this results shows the existence of a electoral patron
in the small population size municipalities. One group of this municipalities
vote for candidates which can be associate with the Liberal party and the other
group vote for candidates close to the Conservador party. However, in the 2006
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Table 6: Cluster characterization for the presidential elections between 1986
and 2010: groups five to seven

Candidate
Group 5 Group 6 Group 7

Mean
Clas/Cat Cat/Clas Clas/Cat Cat/Clas Clas/Cat Cat/Clas

Bar86 13,9 6,9 0,7 7,7 12,2 5,2 6,6
Gom86 11,9 3,6 0,2 1,5 16,2 4,3 4
Par86 10,5 0,4 14,4 12,5 8,2 0,3 0,5
Gav90 11,3 3,8 0,7 5,6 13 3,8 4,5
Gom90 10,1 1,7 0,3 1,3 11,5 1,7 2,2
Llo90 8,9 0,8 0,2 0,4 29 2,2 1,1
Nav90 32,8 2,9 0,3 0,6 9 0,7 1,2
Nav94 28,4 0,7 9,5 0,2 0,3
Pas94 12,6 3,8 0,3 2,2 16,8 4,4 4
Sam94 14,3 4,4 0,7 5 12,4 3,3 4,1
Bed98 8,7 0,2 0,3 0,2 13,9 0,3 0,3
Pas98 12,7 5,4 0,3 2,8 17,4 6,4 5,6
San98 10,4 3,5 0,3 2 20,8 6 4,4
Ser98 16,4 7 0,5 5,2 8,7 3,2 5,7
Gar2 13,5 1,1 13,8 0,9 1,1
San2 8,7 0,7 0,5 0,9 25 1,6 1
Ser2 19,5 7,9 0,5 4,3 6,7 2,3 5,4
Uri2 9,5 6,4 0,3 4,4 21 12,2 8,9
Gav6 22,3 6,7 0,7 5,1 14,7 3,9 4
Ser6 15,2 2,4 0,5 2 6,6 0,9 2,1
Uri6 9,6 8,1 0,6 10,9 18,7 13,6 11,2
Lle10 10,2 1,8 0,2 0,8 22,4 3,4 2,3
Moc10 11,8 4,3 0,5 4,6 16,4 5,1 4,8
Par10 11,4 0,8 0,7 1,2 12,4 0,8 1
Pet10 33,3 5,1 0,5 1,9 7,5 1 2
San10 10,4 1,1 0,4 1 26,1 2,3 1,4
Sant10 10,9 8,3 0,8 14,4 14,8 9,8 10,1

election, this patron is less clear, because of the tendency of Santos and Uribe
to get votes from all the municipalities.
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Abstract: We present one example, in which the data are issued from a questionnaire in 

order to find satisfaction typologies (with the services provided by an automobile 

company) of independent groups of individuals. The Agglomerative Hierarchical Cluster 
Analysis (AHCA) was based on two approaches: one based on a particular case of the 

generalized weighted affinity coefficient, which deals with classical data, and the other 

one on the weighted generalized affinity coefficient for the case of symbolic/complex 

data. Both measures of comparison between elements were combined with classical and 
probabilistic aggregation criteria. We used the global statistics of levels (STAT) to 

evaluate the quality of the obtained partitions. 

 

Keywords: Hierarchical cluster analysis, Affinity coefficient, Independent groups of 
individuals, VL Methodology, Classical data, Symbolic data. 

 

1 Introduction 
 

Recent computational advances allow us to summarize very large datasets in 

terms of their underlying concepts, which can only be described by symbolic or 

complex data.  Each entry of a symbolic data table can contain one or several 

values such as subsets of categories, intervals of the real dataset  , or frequency 

distributions (e. g., Bacelar-Nicolau, 2000; Bock and Diday, 2000; Bacelar-

Nicolau et al., 2009, 2010). A symbolic variable Y with domain (or range or 

observation space)   is a mapping     defined on a set   of statistical 

entities (individuals, classes, objects,…). Depending of the specification of   in 

terms of  , symbolic variables can be classified as: classical single-valued, set-

valued, interval, multi-valued (categorical or quantitative), and modal 

(probabilistic) variables. A variable   is modal with observation space   if, for 

each      ( )     is a non-negative measure on  , such as a frequency 

distribution, a probability distribution or a weighting (Bock and Diday, 2000). 
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Here, in the case of symbolic data we will focus on Ascendant Hierarchical 

Cluster Analysis (AHCA) of data units described by modal variables. The VL 

methodology (V for Validity, L for Linkage) is a probabilistic approach for 

clustering methods, based on the cumulative distribution function of basic 

similarity coefficients, and the probabilistic aggregation criteria under this 

methodology resort essentially to probabilistic notions for the definition of the 

comparative functions (e.g. Lerman 1970, 1981; Nicolau, 1983; Bacelar-

Nicolau, 1985, 1987, 1988; Nicolau and Bacelar-Nicolau, 1998). In this work, 

two classical aggregation criteria, Single Linkage (SL) and Complete Linkage 

(CL), as well as three probabilistic aggregation criteria - in the scope of the VL 

methodology- AVL, AV1, and AVB, are used to look for satisfaction typologies 

of independent groups of individuals in two contexts: classical data and 

symbolic/complex data. The measures of comparison between elements are 

based on the affinity coefficient. 

Two different approaches of AHCA of independent groups of individuals are 

described in Section 2. In the first one the data units (independent groups of 

individuals) are described by classical single-valued variables defined on an 

ordinal scale and a particular case of the generalized weighted affinity 

coefficient was used. The second one is based on the weighted generalized 

affinity coefficient for the case of symbolic data. In Section 3 we refer some 

experimental results from Business area. Section 4 contains some concluding 

remarks about this work and its results. 

 

2 AHCA of independent groups of subjects 

 

From the affinity coefficient between two discrete probability distributions 

proposed by Matusita (1951) as the basic similarity measure for comparing two 

probability laws of the same type, Bacelar-Nicolau (1980, 1988) introduced the 

affinity coefficient, as a basic similarity coefficient between pairs of variables or 

of subjects in cluster analysis context (corresponding to pairs of columns or 

rows of a data matrix). Later on she extended that coefficient to different types 

of data, including complex or symbolic data and variables of mixed types 

(heterogeneous data), possibly with different weights (Bacelar-Nicolau, 2000, 

2002; Bacelar-Nicolau et al., 2009, 2010). The extension of the affinity 

coefficient for the case of symbolic data is called weighted generalized affinity 

coefficient. In the present work, we use two different approaches of AHCA of 

independent groups of individuals based on two different generalized 

approaches for the affinity coefficient. 

  

Approach 1: particular case of the weighted generalized affinity coefficient  

In this approach, the data are initially represented in G tables (one table for each 

one of the independent groups of individuals), containing, respectively, N1, 

N2,…, NG, individuals described by p identical variables defined on an ordinal 

scale. Later, G new tables, each one containing the same number n= min{N1, N2, 

…, NG} of individuals (selected from a stratified random sampling) have to be 

obtained from the initial corresponding  tables. Each new table corresponds to a 
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(np) data table, and      (i=1,…, n, h=1,…, G, j=1,…, p) is the value of the 

individual i, belonging to the table Th (abbreviated, h), in the j-th variable (see 

Table 1). Then, the total scores of each independent group of individuals in each 

variable are computed as follows, where       ∑     
 
    (i=1,…, n, h=1,…, G, 

j=1,…, p) is the total score of the group h in the variable j (sum in the column j 

of Th): 

 

Table 1. G new tables (same number n= min{N1, N2, …, NG} of subjects)  

 
    (Group 1)      (Group G) 

 Ind. i                       Ind. i                      

1            ... 1            

2            ... 2            

              
...               

n            ... n            

Total             Total            

 

The computation of the affinity coefficient between the groups h and h’, with h, 

h’=1, …, G, and   h≠h’, is based on the following data matrix (Table 2), and in 

the formula (1): 

 

Table 2. Classical data matrix (approach 1) 

 

              

Group 1            

Group 2            

              
Group G            

 

                                   (    )  
 

 
∑ √

    

    
 
     

     

 
    ,                             (1) 

 

where       ∑     
 
     (respectively,       ∑      

 
   ) is the total score of 

the group h,  in the p variables [sum in the row h (respectively, h’) of Table 2]: 
 

 

Approach 2: weighted generalized affinity coefficient (case of modal data) 

Given a set of N data units (typically groups of individuals: symbolic data units) 

described by p modal variables, Y1,...,Yp (each variable may have a different 

number of “modalities”),  the weighted generalized affinity coefficient between 

the data units k and k’ is given by: 

 

 (    )  ∑       (      )
 
    ∑   ∑ √

    

    
 
     

     

  

   
 

 
                   (2) 
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where:    (      ) is the generalized local affinity between   and    over the j-

th variable, mj is the number of modalities of the j-th variable;       is the 

number of individuals (in the unit  ) which share the category ℓ of Yj;       

∑     
  

   
 ,       ∑      

  

   
 , and the weights,   ,  verify the condition :   ≥0 

and ∑     (see Table 3). 

Either the local affinities or the whole weighted generalized affinity coefficient, 

take values in the interval [0,1] and satisfy a set of proprieties which 

characterize affinity measurement as a robust similarity coefficient (e.g., 

Bacelar-Nicolau, 2002; Bacelar-Nicolau et al., 2009). The coefficient associated 

to the first approach is a particular case of the coefficient associated to this 

second approach.  

 

Table 3.  Symbolic data matrix X with integer frequency distributions 

 

  Yj  Yj’  

      

k   
jkjmkj xx ,,1   

  
''1' ,,

jmkjkj xx   
 

  
     

k´   
jjmkjk xx ´1´ ,,  

  
''´1'´ ,,

jmjkjk xx   
 

  
     

 

This approach is appropriated when we deal with large datasets. 

 

 

3 Experimental results based on business data 
 

Data were collected using a questionnaire applied to 450 customers in order to 

evaluate the satisfaction (latent variable) with the services provided by an 

automobile company, based on 18 component variables, which are described in 

Sousa et al. (2014). The variables (items) are measured in a scale with ordered 

modalities (1- very dissatisfied (VD), 2- generally dissatisfied (GD), 3- neither 

satisfied nor dissatisfied (NSND), 4- generally satisfied (GS) and 5- very 

satisfied (VS)). The respondents are distributed by 11 professional occupations 

(O1- Doctors, architects and engineers; O2- Teachers; O3-Businessmen; O4-

Salesmen; O5-Employees of banks and insurance companies; O6-Military and 

police; O7-Administrative and similar; O8- Employees of the civil construction; 

O9- Employees of the commerce and industry; O10- Employees of hotels and 

restaurants; O11- Employees of other services. The numbers of individuals in 

each modality of the variable “Professional occupation”, with 11 modalities, are 

respectively 45, 40, 79, 42, 38, 40, 35, 34, 51, 24, 22. 

The clustering of the 11 professional occupations was based on two approaches 

(see Section 2). The measures of comparison between elements were combined 
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with two classical aggregation criteria, Single Linkage (SL) and Complete 

Linkage (CL), and three probabilistic aggregation criteria, AVL, AV1, and AVB. 

In the present work, the validation of the results is based on the global statistics 

of levels (STAT), as proposed by Lerman (1970, 1981) and Bacelar-Nicolau 

(1980, 1985), in both paradigms (classical and symbolic data).  

In the first approach the data were initially represented in 11 tables (one table 

for each professional occupation), containing, respectively, 45, 40, 79, 42, 38, 

40, 35, 34, 51, 24 and 22 subjects, described by 18 identical variables. Then, 11 

new tables, composed by n=22 

(     *                                +) rows (selected from a 

stratified random sampling) were obtained from the initial corresponding tables 

(see Table 1). The AHCA of the professional occupations was based on a 

classical data matrix, as Table 2, composed by 11 rows and 18 variables (V1 to 

V18). The entry corresponding to the intersection between the h-th row and the j-

th column of this data matrix contains the total scores of the group h (h=1,…,11) 

in the variable j (j=1,…,18). In this approach, the value of the affinity 

coefficient between the professional occupations h (Oh) and h’ (Oh’) is given by 

formula (1). 

 

 

  O1  --*                                                             

        |--------------*                                              

  O3  --*              |--------*                                     

                       |        |                                     

  O11 --*--------------*        |                                     

                                |--*                                  

  O4  --*-----------*           |  |                                  

                    |-----*     |  |                                  

  O10 --*-----------*     |     |  |                                  

                          |-----*  |                                  

  O5  --*-----*           |        |                                  

              |-----------*        |                                  

  O9  --*-----*                    |                                  

                                   |                                  

  O2  --*--------*                 |                                  

                 |-----------*     |                                  

  O6  --*--------*           |     |                                  

                             |-----*                                  

  O7  --*--*                 |                                        

           |-----------------*                                        

  O8  --*--*                                                           

Fig. 1. Dendrogram obtained with 

CL, AVL, AV1 and AVB 

(Approach 1) 

Fig. 2. Dendrogram obtained with AVL 

and AV1 methods (Approach 2) 

 

The selected partition is the partition into two clusters (STAT=5.5222), which 
was obtained at level 9 by all aggregation criteria (see Figure 1). 
In the second approach (case of a symbolic data table for modal variables), from 
the initial data table (450 × 18), the subjects were distributed into 11 groups 
according to their professional occupation. The data units, O1 to O11, contain, 
respectively, 45, 40, 79, 42, 38, 40, 35, 34, 51, 24 and 22 individuals and each 
entry of the new data table contains a frequency distribution. In fact, the 11 

   O1  --*                                                             
        |                                                             

  O3  --|--------*                                                    

        |        |                                                    

  O11 --*        |                                                    

                 |--*                                                 

  O4  --*--*     |  |                                                 

           |     |  |                                                 

  O5  --*--|     |  |                                                 

           |-----*  |                                                 

  O9  --*--|        |                                                 

           |        |                                                 

  O10 --*--*        |                                                 

                    |                                                 

  O2  --*           |                                                 

        |           |                                                 

  O7  --|-----*     |                                                 

        |     |     |                                                 

  O8  --*     |-----*                                                 

              |                                                       

  O6  --*-----*                                                       
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professional occupations correspond to symbolic data units (rows of a symbolic 
data table as Table 3) described by 18 modal variables (V1 to V18) .  
Figure 2 shows the dendrogram associated with the AVL and AV1 methods. The 
best partition is the partition into three clusters (STAT=5.5372), which was 
obtained at level 8 by all aggregation criteria.  
The clustering results provided by both approaches were compared. Note that at 
levels 7 and 8 both approaches provide the same partitions (respectively, into 
two and into three clusters). 
 

Table 4. Responses given by the subjects belonging to each cluster (%)  

 

  

V1 

    

V2 

    

V3 

  
 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 

C1 0% 0% 63% 25% 12% 0% 8% 14% 79% 0% 0% 0% 0% 4% 96% 

C2 0% 0% 30% 65% 5% 0% 6% 55% 35% 3% 0% 0% 3% 45% 52% 

C3 0% 0% 3% 96% 1% 0% 5% 81% 7% 8% 0% 0% 3% 82% 15% 

   V4     V5     V6   

 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 

C1 0% 0% 76% 20% 4% 8% 13% 55% 23% 2% 0% 8% 9% 79% 5% 

C2 0% 0% 41% 57% 2% 4% 16% 69% 11% 0% 0% 6% 48% 41% 5% 

C3 0% 0% 9% 91% 0% 1% 13% 80% 7% 0% 0% 5% 80% 7% 9% 

    V7    V8     V9   

 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 

C1 0% 5% 8% 86% 0% 0% 0% 4% 92% 4% 0% 0% 0% 4% 96% 

C2 0% 4% 45% 48% 4% 0% 0% 37% 56% 7% 0% 0% 8% 40% 52% 

C3 0% 3% 79% 11% 8% 0% 0% 66% 21% 13% 0% 0% 10% 75% 15% 

   V10     V11     V12   

 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 

C1 0% 0% 4% 51% 45% 0% 0% 3% 27% 69% 0% 0% 0% 17% 83% 

C2 0% 3% 15% 59% 23% 0% 3% 14% 54% 29% 0% 0% 12% 41% 47% 

C3 0% 3% 22% 70% 4% 0% 3% 18% 74% 5% 0% 0% 17% 68% 15% 

   V13     V14    V15    

 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 

C1 4% 16% 47% 27% 5% 0% 0% 14% 86% 0% 0% 0% 0% 15% 85% 

C2 4% 16% 62% 15% 3% 0% 3% 45% 45% 6% 0% 0% 12% 43% 45% 

C3 4% 9% 73% 11% 2% 0% 3% 79% 7% 11% 0% 0% 17% 73% 9% 

   V16     V17     V18   

 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 
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C1 0% 0% 75% 16% 9% 0% 0% 75% 12% 13% 3% 17% 51% 23% 5% 

C2 0% 0% 39% 59% 3% 0% 0% 39% 57% 5% 2% 18% 69% 9% 2% 

C3 0% 0% 7% 93% 1% 0% 0% 7% 93% 1% 0% 13% 77% 10% 0% 

The differences between the clustering results appear to be due, in part, to the 
sampling process associated to the first approach and to the fact that in this 
approach we work only with the total scores of each independent group of 
individuals in each variable. Thus, in the remainder text, we will only refer to 
the best partition provided by the second approach: Cluster 1: {O1, O3, O11}; 
Cluster 2: {O4, O5, O9, O10}; Cluster 3: {O2, O6, O7, O8}. From the 
observation of Table 4, it can be seen some of the main differences between the 
profiles associated to these three clusters. 
In a 2D Zoom Star, axes are linked by a line that connects most frequent 
categorical values of each variable, so it allows us to identify the main 
characteristics of the objects. Figure 3 shows the 2D Zoom Stars associated to 
the clusters of the second approach. We observe that, for instance, most 
respondents included into cluster 3 are: generally satisfied with the aspects 
associated to variables V1, V3, V4, V9, V10, V11, V12, V15, V16 and V17; 
and neither satisfied nor dissatisfied with the aspects associated to variables V2, 
V5, V6, V7, V8, V13, V14 and V18 (see Figure 3 and Table 4). 

 
 

 
 

Cluster 1      Cluster 2    Cluster 3 

 

Fig. 3. 2D Zoom Stars representation for the clusters- Approach 2 
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4 Conclusions 
 

The knowledge about the satisfaction profiles is useful, because customers 

respond better to the Market segmentation strategies which address their 

specific needs. 

In the case of the first approach we loss information because we can´t work with 

the entire sample but only with a stratified random subsample, and this approach 

works only with the total scores of each independent group of individuals in 

each variable (that is, we also loss information about the scores of the groups in 

the modalities of the variables). Contrary, using the second approach (weighted 

generalized affinity coefficient, for complex or symbolic objects) it is possible 

to work with the entire dataset, and with the frequency distributions associated 

to the scores of each independent group of individuals in the modalities of each 

variable. 

The differences between the clustering results (satisfaction typologies) provided 

by the two approaches of AHCA of independent groups of individuals were due, 

in part, to the smaller number of individuals of each group when we apply the 

first approach as a consequence of the sampling process. Nevertheless, we might 

have opted by inquiring a larger number of individuals in each group, during the 

planning of the investigation.  
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Abstract: A number of general-purpose ring and circle detectors are known. In most 

cases, template matching and Hough transform are used to detect rings inside the image. 

However, ring detectors described in the literature were found impractical for the real-

life implementation of the camera-based Instant Feedback System (IFS). Goal of the IFS 
is to collect answers of the students to the multiple-choice questions during the lecture. In 

the frames of the camera-based IFS, students answer to the specific multiple-choice 

question by presenting to the camera a specially designed IFS cards. Image of the class 

contains plurality of IFS cards in the different orientations and of different sizes, which 
makes recognition non-trivial. To simplify recognition, preferred design of IFS card 

contains bounding black ring and some other IFS specific elements positioned inside the 

bounding ring. IFS cards in the periphery of the real-life image are geometrically 

distorted, making standard template match approach too slow and non-reliable. To cope 
with this problem, standard Normalized Correlation template-matching algorithm was 

modified by adding the mask hiding the IFS elements inside the ring. In this case the 

number of templates needed to isolate IFS card is significantly smaller. In order to 

evaluate reliability of the proposed algorithm, special software Monte-Carlo simulator 
was created. Monte-Carlo simulation results show that in case of non-overlapped cards 

recognition error is less than 1%, which can be considered as adequate for the real-life 

camera-based IFS. Developed approach can be used to speed-up recognition in the other 

practically interesting cases, for example, for the traffic signs recognition.  

 

Keywords: Image Processing, Ring Detector, Normalized Correlation, IFS, Monte-Carlo 

simulation 

 

1. Introduction 

 

In many practically important application there is a need to find rings (or 

circles) in the image. A number of general-purpose ring and circle detectors are 

known. In most cases modifications of template maching algorithms and Hough 

mailto:ksamuel@braude.ac.il


206     Samuel Kosolapov 

 
Transform algorithms are used. Those approches are implemented in a number 

of popular libraries and software packages. For example, MATLAB contains 

“imfindcircles“ function to automatically detect circles or circular objects in an 

image. This function requres a radius range in pixels to search for the circles and 

a number of “sensitivity“ parameters. This function implements two different 

methods. Using “two-stage method“ enables to detects parts of the circles, so 

that overlapping circular objects can be detected. Additional option in 

MAPTLAB is to use “CircularHough_Grd“  based on “Circular Hough 

Transform“ [1]. As in the previous case, a range of radii and other “sensitivity“ 

parameters must be specified. In case ellipse must be found,  modifications of 

the “Randomized Hough Transform“ [2] based on original algorithm [3] can be 

used. Popular “OpenCV“ library contains function “HoughCircles“ [4]. This 

library can be used to create PC, Android and iPhone real-time application. 

However, ring detectors described in the above examples were found 

impractical for the real-life implementation of the camera-based Instant 

Feedback System (IFS). Goal of the IFS is to collect answers of the students to 

the multiple-choice questions during the lecture. In the frames of the camera-

based IFS, students answer to the specific multiple-choice question by 

presenting to the camera a specially designed IFS cards [5]. Photo of the class 

contains plurality of IFS cards images in the different orientations and of 

different sizes, which makes recognition and analysis non-trivial.  

 

2. IFS Card Design 

To simplify recognition and analysis of the IFS cards, preferred design of IFS 

card contains bounding black ring and some other IFS specific elements. 

 
                                    Fig. 1. IFS Card Design 
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Figure 1 presents IFS card design described in this work. IFS Card is printed on 

the thick white paper by using any available black and white printer. 

Background of the card is white (1). The card has a black ring (2), orientation 

markers (3 and 5) and two-digit number in the human-readable form (4). This 

number designates short ID of the specific student (for example, number of the 

student in the class list).  Orientation of the IFS card specifies number of the 

selected answer. Orientation markers (3 and 5) prevents orientation ambiguity 

for the numbers like 66-99. Described design does not contains color element, 

so that set of cards can be copied using standard copy-machine. 

 

3. Steps in the IFS Card recognition and analysis 

 

Human observer analyzing the image of the class easily recognizes bounding 

black ring and the number inside the ring for any possible orientation. For the 

computer the problem of recognition of the plurality of the IFS cards is not 

trivial, because orientation and sizes of the bounding rings and digits are 

different. Direct template-matching approach is possible, but time consuming, 

because a very big number of templates (having different digits in the different 

sizes and in the different orientations) must be used.  For this specific IFS 

design, the search can be executed faster. On the first step, only bounding rings 

(of different sizes) are to be found. Then sub images inside the bounding rings 

are to be scaled to the “standard size”. On the second step markers inside sub-

images are to be used to evaluate specific IFS card orientation and rotate its 

digits to the “standard position”. On the third step OCR or direct template match 

algorithm can be used to recognize two digits of the “standard size” and in the 

“standard orientation”.  

 

4. Ring Detector based on Heavily Masked Normalized 

Correlation 

 

Very popular and practical template matching algorithm widely used in the 

Image Processing is "2D Normalized Correlation":  

 

High value of the R (close to 1.0) means that template T is found inside the 

image I starting from [row, col]. Normalization is needed to make recognition 

invariant to the brightness variations. Unfortunately, direct implementation of 

this algorithm in our case is not practical, because of markers and digits inside 

the bounding ring. To cope with this problem, standard Normalized Correlation 
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template-matching algorithm was modified by adding the mask hiding the 

markers and digits inside the ring.  

 

                                 

                          

                              Fig. 2. Mask used to find the ring 

 

Figure 2 presents green region that is to be used to find bounding black ring. 

Pixels outside the green ring are to be excluded from the sums in the 

Normalized Correlation equation. Number of pixels to be used for the 

calculation of the sums is significantly smaller. 

Despite idea of masking looks simple and nearly obvious, exact analog was not 

found in the literature. 

 

5. Monte-Carlo Simulator 

 

In order to evaluate reliability of the proposed algorithm, special software 

Monte-Carlo simulator was created as Windows Forms Desktop C# .NET 

application. 

 

 

 

            Fig. 3. Appearance of the Monte-Carlo software simulator 
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Figure 3 presents appearance of the simulator. Pressing the button “Generate 

Images” call “Pattern Generator Form” (see Figure 4). Operator can specify a 

background image (for example, image of the real class), number of IFS cards to 

place on this background image in the pseudo-random sizes, positions and 

orientations. Additional geometrical parameters of the IFS cards, noise level and 

some others (like level of geometrical distortions, level of cards overlap) can be 

specified. 

 

 

 

        Fig. 4. Pattern Generator Form  

 

Pressing button “Generate Src” creates a number of images: “Label”, 

“Template”, “Mask” (see Figure 5) and resulted synthetic image (see Figure 6) 

 

                      Fig. 5. Label, Template, Mask. 

 

Label, Template and Mask can be stored to files and loaded from files.  

Second part of the Monte-Carlo simulator attempts to recognize IFS cards in the 

image in test. Currently, two implementations of the Heavily Masked 

Normalized Correlations are supported: by using unsafe pointer and by using 

GetPixel function. Obviously, implementation with unsafe pointer is nearly 100 

times faster: VGA size image was processed during 5 seconds. Typical results 

of the processing are presented in the Figure 7. Current utility deals with ring 

recognition only because other recognitions steps are trivial.  Button “Provide 

Monte-Carlo Tests” provides long series of tests {create image – process 
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image} while collecting recognition success rate.  

 
 

                          Fig. 6. Resulted synthetic image 

 

 

 

        Fig. 7.  Results of Heavily Masked Normalized Correlation algorithm:  

Region of the Higest Correlation value (~ 0.99) marked by red cross (Label 

#10). 
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Conclusions 

 

Monte-Carlo simulation results provided on synthetic images show that in case 

of non-overlapped cards circles detection success is close to 99%, which can be 

considered as adequate for the real-life camera-based IFS, because, practically, 

processed image of the class, with recognized cards marked as “green”, must be 

presented to the lecturer for the final approval. By visually inspecting image of 

the class, human observer (lecturer) will easily reveal non-recognized (and/or 

cards recognized in the wrong way) cards, and manually correct the final grades 

list. Despite the need of this manual inspection, time to get the final grades list 

still is fast enough (number of seconds) to consider all the process as Instant 

Feedback System. High detection rate can be achieved only in case that cards 

are not overlapped and in case that camera resolution is high enough to properly 

resolve elements of the IFS cards. Practically, for the camera with 16 Mpixel 

resolution, reliable IFS cards recognition is limited to the class of 20-30 

students. In case of bigger class, a number of images must be obtained, which 

may be considered as not convenient or even not practical for the selected 

camera-based concept. 

 

Future R&D and Applications  

 

Current implementation was limited to the rings detection on synthetic images 

only. Next R&D will include evaluation of the IFS card orientation and OCR of 

the number (short ID) inside the ring as for the synthetic as for real class 

images. It can be expected, that Heavily Masked Normalized Correlation may 

be instrumental for the fast markers search inside the external ring.  More, 

considering that practical number of short IDs is limited to 30, OCR algorithm 

can analyze only unique parts of the IDs by using properly selected masks. 

According to our preliminary evaluations, in this case, OCR speed can be 

increased at least by factor 3. Developed ring detection algorithm uses no third 

party libraries and thus can be ported to any platform (PC, Android, and iPhone) 

by using any modern programming language (C, C++, C#, Java, Python, etc.) 

Additionally, this algorithm can easily be implemented as web service or 

web/cloud application. In case of cloud implementation of the camera-cased IFS 

multiple-choice exam lecturer will grab the image of the class by using simple 

cloud application for the standard smartphone. Grabbed image (or images) will 

be immediately send to the cloud server for the proper image processing. Cloud 

image processing time may be very short. Additional advantage of the cloud 

approach is that no software installation is needed. Additionally, developed 

Heavily Masked Normalized Correlation approach can be used to speed-up 

recognition in the other practically interesting cases, for example, for the traffic 

signs recognition.  
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Abstract. The aim of the present study was to establish comparisons between male
adolescent athletes and non-athletes, aged between 15 and 16, belonging to two
schools of Barcelos (a city in the North of Portugal), and regarding the following
components: 1) body composition, and 2) food intake. The sample was constituted
by 118 subjects, of which 40 were athletes and 78 non-athletes. Weight and height
were measured. The feeding pattern was obtained with the application of a semi-
quantitative food frequency questionnaire; the data was treated using ”The Food
Processor Plus, 7.0” program. The assessment of body composition was determined
through measurement of 4 skinfolds: tricipital, bicipital, sub-scapular and supra-iliac.
The statistical procedures used were the mean, the standard-deviation, the minimum
and the maximum, and the Student’s independent samples t-test. The data were
normally distributed, and the variances were homogeneous. The accepted statistical
significance level was of 5%. The main results and conclusions were the following: 1)
athletes had higher energy intakes than non-athletes, confirmed by the consumption
of larger amounts of carbohydrates, lipids and proteins; 2) in this age stratum, dif-
ferences in body composition between athletes and non-athletes were not evident.
Keywords: Exploratory data analysis, body composition estimation, levene test,
t-test.

1 Introduction

Concerns about food hygiene date back to ancient Greece, when famous athletes
like Lampis of Lacone or Milo of Cretonne, already recognized the importance
and the merit of adopting certain eating habits, in search of better athletic
performances.
At the present time, the anthropometric measures, by skinfolds (SKF) method,
and nutrition assessment, by the recourse to food frequency questionnaires
(FFQ) are some field practices more used in body composition estimation as
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well as in nutritional intake, respectively, particularly in detection of psychoso-
matic and chronic imbalances in relation to energy intake to expenditure ratio
(Gibson[18], Willett[51], Silva and Rodrigues[45], Silva et. al.[47]).
When we compare athletes with non-athletes, regarding food intake and energy
expenditure, we know that the first are subjected to a more intense physical
work volume, therefore, they have an increased need of food intake, as a way
to compensate for the imbalance due to regular physical activity Pendergast
et. al.[37]. However, the comparison of body composition between male ado-
lescents, athletes and non-athletes, do not assume evident differences Silva et.
al.[46].
The sports diet, according to (Craplet et. al.[9], Rodrigues[41], Hamm[19],
Jeukendrup and Cronin[24], Silva et. al.[47]) is assumed as a variable of capital
importance in the search to obtain high competitive performances, that is, the
physical ability is strictly dependent upon the feeding process.
On the other hand, systematic and regular training, as well as competition
and the adoption of appropriate eating habits, have remarkable effects on the
body structure (particularly, the development of muscle mass), the typology
of fibers, capillarization and metabolism Hertogh et. al.[21]. Therefore, the
establishment of comparisons and eventual relationships with the nutritional
profiles and body composition between athletes and non-athletes adolescent
males is stated as the main reason for this study.

2 Methods

Subjects. The sample was composed by 118 volunteer males, according to
ACSM[1], of which 40 were athletes (ATHL) [we considered athlete, a subject
who has been undergoing for at least 6 months a regular sports activity, orga-
nized and oriented by a coach, with a minimum of 2 sessions and 4 hours of
practice per week, apart from the curricular lessons of physical education with
2 sessions and 3 hours per week. The sports practice were: football (n=27),
basketball (n=6), rolling skate (n=3), karate (n=2), sprint run (n=1) and ta-
ble tennis (n=1)], and 78 non-athletes (NATH) [we considered non-athlete a
subject whose only physical activity is the school lessons of physical education,
2 sessions and 3 hours per week], aged between 15 and 16 years (ATHL: 15.6
± 0.50 years; NATHL: 15.3 ± 0.47 years). All the subjects participated in all
the proposed tests.
Food habits assessment. The estimation of the food intake was accom-
plished through the use of a semi-quantitative FFQ, referring to preceding year
to interview, aided by the illustration of a photographic coloured manual con-
taining all the food items used in the questionnaire, serving not only as a visual
means for the subject, but also allowing the choice of multiples and submulti-
ples of average amounts (Lopes et. al.[29], Barros et. al.[2], Rebelo et. al.[39],
Rodrigues et. al.[42]). Food Processor Plus, version 7.0, was then used to con-
vert the data collected by the FFQ into nutrient intakes ESHA Research[15].
Anthropometric measurements. According to the proposals and the pro-
tocol defined by Harrison et. al.[20], the following anthropometrics measures
were undertaken: height and body weight, bicipital, tricipital, sub-scapular and
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supra-iliac SKF. A ”Slim-Guide” caliper was used for the SKF Donoghue[11].
Body composition estimation. We used the indirect method based on an-
thropometrical measurements, diving the body mass into two compartments,
taking into account the proposals of Durnin and Womersley[13], to estimate
body density (BD); percentage of body fat mass (%FM) was obtained using
to the equation by Siri[48] and the amount of fat-free body mass (FFM) was
determined by direct calculation, by subtraction.
Statistical procedures. All the variables were statistically treated. We used
the most important descriptive measures: mean (x̄) and standard-deviation (s).
The minimum (Min) and the maximum (Max), was used to show the external
deviations. The Kolmogorov-Smirnov test was used, and indicated that the
data distribution was normal. The Levene statistics showed that the variances
were homogeneous. The Student’s independent samples t-test (p) was used to
determine the differences between the two groups of subjects. The statistical
significance level was of 5% (α = 0.05). The SPSS 19.0 was the statistical
program used to carry out the analysis.

3 Results

All results will be presented as mean ± standard-deviation, minimum, maxi-
mum, as well as the t-test p value (p). Table 1 allows us to verify the differences
between the two groups concerning the amount of daily calories intake. Ath-
letes subjects ingested significantly higher amount of energy than non-athletes
subjects (p = 0.021). Both groups presented a moderate coefficient of variation
(ATHL: 24.98; NATH: 22.58).

Table 1. Daily dietary energy (kcal) intake by both groups.

ATHLETES NON-ATHLETES
x̄ s Min-Máx x̄ s Min-Máx p

Energy (kcal) 3203 800.04 1947-4932 2897 654.09 1875-4825 0.021

Macronutrients
With statistically significant evidence, adolescent athletes consumed higher
amounts of carbohydrates (complex and total), and proteins; the cholesterol
intake is significantly higher in the athletes sample. The sugars, as well as
the saturated, monounsaturated, and polyunsaturated fat present a marginal
statistical evidence (0.05 < p < 0.10), in all cases due to higher mean values of
athletes subjects.
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Table 2. Macronutrients intake results.
ATHLETES NON-ATHLETES

Macronutrients x̄ s Min-Máx x̄ s Min-Máx p

Carbohydrates (CHO):
Sugars (g) 162 50.61 88-302 146 48.20 42-261 0.091 (ns)

Complex CHO (g) 161 57.10 78-182 141 47.33 57-265 0.047
Total CHO (g) 398 119.09 239-663 357 98.69 177-647 0.050

Lipids:
Saturated Fat (g) 39 10.98 23-65 35 9.04 13-55 0.062 (ns)

Monounsaturated Fat (g) 46 12.65 26-88 41 10.49 18-73 0.060 (ns)
Polyunsaturated Fat (g) 21 5.37 11-36 19 5.26 8-33 0.206 (ns)

Cholesterol (mg) 591 173.31 337-1062 494 144.08 231-833 0.002
Total Fat (g) 115 30.06 67-199 105 25.11 49-162 0.055 (ns)
Proteins (g) 144 37.57 75-256 131 29.84 82-229 0.044

ns – not significant (p > 0.05)

Body Composition
The results show a great homogeneity of the two studied samples, that is, in
spite of athletes register higher mean values of height and body weight, the
differences between both groups are not statistically significant (p > 0.05).
In the same way, at the level of internal body structure, comparatively to
non-athletes, the athletes present, in average, less skinfold thickness, higher
body density, and higher lean body mass, what is important in the context
of sports competitive practice, however, no statistically significant differences
exist between both groups (p > 0.05). The fat-free mass, present a marginal
statistical difference, due to higher mean value of athletes (p < 0.10).

Table 3. Body composition results.

ATHLETES NON-ATHLETES
Variables x̄ s Min-Máx x̄ s Min-Máx p

Body mass (k) 62.5 9.34 42.5-89 60.1 9.85 42-83.5 0.193 (ns)
Height (cm) 173.8 6.18 162-190 172.5 6.66 158-189 0.335 (ns)∑
4SKF (mm) 30.9 11.40 15.5-79.6 32.6 12.65 16.5-70.5 0.466 (ns)
BD (g/cc) 1.0704 0.01 1.04-1.09 1.0692 0.01 1.05-1.09 0.497 (ns)
FM (%) 12.5 3.82 5.0-24.6 13.0 4.15 5.7-23.1 0.494 (ns)
FFM (k) 54.5 6.67 40.3-67.0 51.9 6.95 37.9-67.3 0.062 (ns)

ns – not significant (p > 0.05)∑
4SKF – sum of four SKF

DISCUSSION
Food Intake. Physical activity can be assessed by determining the energy
intake (Saris[43], Silva et. al.[46], Rodrigues et. al.[42], Silva et. al.[47]). Sev-
eral methods are used and expressed in the literature to calculate the needs
and the daily energy expenditures Dwyer[14]. In the present study we used a
semi-quantitative FFQ. So far, few studies have been published on food intake,
body composition and physical activity in the adolescent Portuguese popula-
tion. The accomplishment of FFQ results is a dificult task, more so when they
are applied to adolescent populations (Marble[31], Fidler et. al.[16]). There-
fore, such FFQ should not be very constraining, but fast and precise in the
application, so that they can be acceptable and valid. Such characteristics
have been largely aimed at the questionnaire type, approach and consequent
treatment of data (Gibson[18], Willett[51], Lopes et. al.[29], Lopes[28], Moreira
et. al.[33]).
Energy Requeriments. The energy intake values of athletes (3203kcal) are
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in accordance with the interval recommended by Creff and Bérard[10] (3000
to 3500kcal/day) or Leleuch[26] (2800 to 3500kcal/day), while for non-athletes
(2897kcal) is slightly higher than that recommended by COMA (1991), that
is to say, 2775kcal/day, but near to 2900kcal DRI (2002) recommendation.
Among sportsmen, the present sample show higher values of energy intake
than the wrestlers, and balanced with the footballers and athletics of Rybeire
et. al.[40], and lower values than the swimmers of Berning et. al.[5] study.
Macronutrients. In this study, the values for carbohydrate intake, the most
important nutrient within sports practice, expressed as percentage of total en-
ergy intake (ATHL: 1750%; NATH: 1749%) were below the interval defined
by Brouns[6], between 60-70% for athletes and 55-65% for non-athletes ado-
lescents. The daily values for total fat intake, recommended by Brouns[6] for
sportsmen are between 20-30%. The athlete’s sample exceeded this recommen-
dation by about 2%. For non-athletes, Brouns[6] suggests intakes between 20
and 35%. The values in the present study (33%) are actually in accordance
with the suggested interval. Higher serum cholesterol levels currently represent
one of the most serious risk factors in the premature appearance of cardiovas-
cular disease. According to the National Education Programs Working Group
on the Management of Patients with Hypertension and High Blood Cholesterol
(1991), the ”wanted or convenient” levels of serum cholesterol most lie below
240mg/day. An analysis of the results (Table 2) allows us to verify that both
groups ingested amounts considerably above the recommended requirements
(ATHL: 591.0 mg; NATH: 494.1 mg).
Heyward[22] recommends a balanced intake of fat intake, with 10% of total
daily fat intake supplied equally by saturated, monounsaturated and polyun-
saturated fat. If we compare these values with those obtained in this study, we
conclude that the athletes and non-athletes ingest relatively large amounts of
these nutritients (Table 4). The suitable daily percentage of proteins proposed
by Heyward[22] for non-sportsmen is approximately 12%, while Wilmore and
Costil[52] increase the interval to 12-15%. For sportsmen, Creff and Bérard[10]
suggest around 15%. From the analysis of our results we verify that both
groups ingest larger amounts to those prescribed in the literature (ATHL and
NATH ≈18%).
In short, when we compared the results between athletes and non-athletes
(Table 4), we verify a similarity between the percentages of macronutrients
ingested by each group. However, the data presented in Table 2 shows the
significant differences (p < 0.05) between these groups in some macronutrients.
On the other hand, data emerging from the literature (Hamm[19], Pendergast
et. al.[37]) confirms a high intake of fats, sugar and cholesterol, a balanced
intake of protein, but an insufficient one of complex carbohydrates between
the actual intake of macronutrients and the recommended doses, in sportive or
sedentary population, which confirms the data from the present study.

Body Composition The determination of the FFM and FM in young
people is a hard task, because, it is very difficult to know, if the slight fluc-
tuations verified in body composition, are due to the growth process or to
the regular physical activity and food intake, or both (Malina[30], Bellisle et.
al.[3]). Despite the athletes presented thinner SKF and smaller percentage
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Table 4. Nutrient intakes as percentage of total energy intake (TEI) in both groups.

ATHLETES NON-ATHLETES

Nutrients TEI - % TEI - %

CHO total 49.7 49.3
Proteins total 18.0 18.1

Total Fat 32.3 32.6
Saturated Fat 11.0 10.9

Monounsaturated Fat 12.9 12.7
Polyunsaturated Fat 5.9 5.9

of body fat, the present study results, show no statistically significant differ-
ences (p > 0.05) between both groups, what is demonstrative of homogeneity.
However, the increased amount of exercise is accompanied by a decrease in
the %FM and increase of FFM and bone mineral density in sports populations
(Cisar et. al.[7], Bergman and Boyungs[4], Penteado et. al.[38]). Due to the di-
versity of sports practice, there are several researchers who refer to the �ideal
values� of FM in accordance with the type of physical activity practiced and
its demands (Wilmore[53], Ward et. al.[50], Lohman[27], Högström et. al.[23],
Silva et. al.[47]). The athletes presented different body composition values
from those observed in the sedentary population [23], which corroborates the
opinion of some early researches (Parizkova[35], Forbes[17]), these differences
are due to regular physical load to which the sportsmen are subject. However,
the analysis of Table 3, does not prove this data. Similarly, some of the studies
accomplished with male Portuguese adolescents, are not unanimous in relation
to the values found for FFM and FM (Sobral[49], Silva[44]). The height and
the body weight show no statistical significant difference when both groups
are compared (Table 3). In fact, in what concerns growth development, the
revision of literature is practically unanimous in admitting the inexistence of
significant differences induced by the regular practice of physical activities in
children and adolescents (Sobral[49], Montecinos[32], Landry and Driscoll[25]).
In short, despite a great number of studies aimed to prove physical exercise
to be an important contribution to the maintenance of body weight and the
modification of body composition in children and adolescents (Pate et. al.[36],
Malina[30]), such data are not clear or objective according to the results ob-
tained in the present study.

4 Conclusions

With regards to the nutritional profile, compared with the non-athletes, the
athletes showed higher intakes of all the macronutrients. Such data sustains
the thesis that larger energy expenditures are matched by larger caloric in-
takes. This procedure seems to be consistent with the training loads. As the
differences in body composition between both groups have not shown statistical
meaning, we conclude that the physical activity among subjects of the same
age, sex, height and body composition, seems to be the determinant factor in
the variation of macronutrients intake and energy expenditure. Lastly, in terms
of distribution of macronutrients, this study indicates the existence of a certain
imbalance between the caloric intake and the level of physical activity, which
influences the maintenance of a well balanced body structure in adolescents.
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ficação dos Inquéritos. Arquivos de Medicina, 8 (5): 291-294.

30. Malina, R.M. (1994). Physical Activity: Relantionship to Growth, Maturation
and Physical Fitness. In: Physical Activity Fitness and Health. International
Proceedings and Consensus Statement, pp.918-930. Champaign. Illinois: Human
Kinetics, Inc.

31. Marble, C. (1995). Bilan de deux ans d’éducation nutritionnelle effectuée chez des
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Abstract. As the incidence of cancer continues to rise, it is natural for a community to 

want to compare the incidence of cancer in the region with the incidence of cancer in 

another region, such as the rest of the nation. The cumulative incidence rate is a measure 

that was introduced in the cancer literature in 1976. This measure is easy to calculate and 
facilitates comparing the incidence of cancer in two regions. The aim of this paper is to 

promote this measure by means of a worked example based on illustrative data. 
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1  Introduction 
 

“A cancer, or malignant growth, is now known to be a continuous, purposeless, 

unwanted, uncontrolled and damaging growth of cells.” (Stephens and Fox[8].) 

There are many types of cancer - prostate cancer, lung cancer, bowel cancer, 

breast cancer to name a few. Although the term “cancer” refers to a broad range 

of diseases, we will use the term “cancer” to refer, collectively, to all malignant 

cancers. This is the practice of cancer agencies such as the Australian Institute 

of Health and Welfare[1].  

 

The incidence of cancer is the number of new cases diagnosed in a particular 

population and a particular period of time, usually a year. Thus, incidence is a 

non-negative integer. The incidence rate is the incidence per 100,000 head of 

population.  

 

It is natural to want to compare the incidence rates of cancer in two populations. 

One may wish to compare the incidence rate of cancer in a small regional area 

with that in the rest of the nation. One may wish to compare the incidence of 

bowel cancer among men with the incidence of bowel cancer among women. 

One may wish to compare the incidence rate of cancer in a region at a particular 
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time with that in the same region at an earlier time. This could lead to a time 

series approach to tracking the incidence of cancer in a region over time. 

 

Age is a risk factor associated with cancer (Mills[7]). Hence the incidence rate 

of cancer will tend to be higher in older populations, all other things being 

equal. The traditional approach to dealing with this difference in age profiles is 

to use age-standardized incidence rates. This involves choosing some standard 

population on which to base the calculations (Estève et al.[4], p. 56). This 

approach has several difficulties. For example, when looking at age-

standardized rates in a population, one needs to know the standard population 

that was used in the calculation.  

 

The concept of cumulative rate of cancer was proposed as an alternative to the 

age-standardized incidence rate by the distinguished epidemiologist N.E. Day[2] 

in 1976, although its origins can be traced back to a paper by Yule in 1934 

(Yule[9]). The cumulative rate has the advantage that it avoids the arbitrariness 

of having to choose a pre-defined, standard population - which Yule describes 

as “superfluous”. 

 

The cumulative rate is also directly connected to the cumulative risk, or 

actuarial risk, of being diagnosed with cancer by a given age. Some cancer 

agencies quote numerical values of the risk of being diagnosed with cancer. The 

difficulty with this measure of lifetime risk of being diagnosed with cancer is 

that the measure is based on an assumption that the only cause of death in the 

population is cancer. Since this key assumption is often not mentioned in 

reports, the meaning of lifetime risk can be easily misunderstood. In this paper 

we do not concern ourselves with risk for these reasons, but simply mention it in 

passing. The connection between risk and cumulative rate is discussed fully in 

Day[2], Estève et al.([4] p. 60), and Lenard et al. [5].  

 

The primary aim of this paper is to demonstrate how one compares the 

cumulative rates of cancer in two populations. This is a fundamental problem 

for practitioners. We will achieve this by means of an example that is based on 

data that are hypothetical, but realistic. The data are purely illustrative. This 

worked example can be used as a model by those who wish to make such 

comparisons in practice. 

 

Despite the advantages of the cumulative rate, it is not often used in practice. 

So, the secondary aim of this paper is to promote further discussion of the 

cumulative rate. 

 

2  Methods 
 

Table 1 contains hypothetical data for two regions. We have chosen to use 

hypothetical, or illustrative, data because our aim is to demonstrate the method 

rather than compare the incidence of cancer in two particular regions. The data 
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are presented in 5-year age groups. For each age group, the number of persons 

in the population and the incidence of cancer are presented for each region. For 

example, in Region 1, there are 31,294 persons aged between 40 and 44, and 81 

of these persons were diagnosed with cancer in the year in question. 

 

 

Age group Region 1 Region 2 

 Pop1 (n) Inc1 (x) Pop2 (m) Inc2 (y) 

0-4 29289 12 498381 118 

5-9 29202 6 464389 55 

10-14 31749 7 461565 66 

15-19 32427 9 500763 91 

20-24 27235 6 591423 175 

25-29 24195 19 612961 313 

30-34 23986 16 563386 492 

35-39 27952 48 564801 793 

40-44 31294 81 567399 1186 

45-49 32571 132 540007 1969 

50-54 33412 205 512283 2883 

55-59 31051 274 455982 3675 

60-64 30033 370 421669 5064 

65-69 23739 423 325045 5382 

70-74 18709 412 251007 4845 

Table 1: Hypothetical population data and incidence data for two regions 

Details of the methods, and the mathematical ideas that underpin them, have 

been discussed elsewhere; for example see Estève et al.[4] and Lenard et al.[6]. 

Here we present only the formulae that are necessary for the calculations. 

 

Cumulative rate by age 75 for Region 1 is given by  

 

 (1) 

 

We use the term “cumulative rate” as an abbreviation for “cumulative incidence 

rate”. One could calculate a cumulative mortality rate in a similar manner  using 

mortality data rather than incidence data in Table 1.  

 

It is clear from formula (1) that the cumulative rate by age 75 is simply the sum 

of the age-specific incidence rates (expressed as probabilities) from 0 to 75. This 

interpretation makes the cumulative rate easy to comprehend. It also allows the 

cumulative rate to be a stand-alone measure almost devoid of assumptions. 

 

The cumulative risk of being diagnosed with cancer by age 75 for Region 1 is 

approximated by 

 

 )/(51 nxCumRate
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 .)/(5exp1  nx  

 

The estimated standard deviation of cumulative rate by age 75 for Region 1 is 

given by 

 

 .)/(5 2

1  nxs   

 

Alternatively, one could use the approach in Dobson et al.[3] for estimating the 

standard deviation of the cumulative rate. 

 

For Region 2, the formulae are similar: substitute y for x, and m for n. 

 

The z-statistic for comparing the cumulative rates for the two regions is 

 

./)21( 2

2

2

1 ssCumRateCumRatez   

 

Under the null hypothesis that the two populations have the same expected 

cumulative rates, this z statistic has, approximately, the standard Normal 

distribution. 

 

Suppose that we expect, from experience, that the cumulative rate of cancer in 

Region 1 is larger than the cumulative rate in Region 2. Then we would conduct 

a one-sided statistical test and calculate the probability, p, that Z > z where Z has 

the standard Normal distribution. 

 

3  Results 
 

The results of the analysis of the data are presented in Table 2. We have 

included the approximate cumulative risks only as a matter of interest; our main 

focus is on the cumulative rates. 

 

 Region 1 Region 2 

Cumulative rate by age 75 0.3913 0.3553 

Approx. cumulative risk by age 75 0.3238 0.2990 

Est. s.d. of cum. rate by age 75 0.0089 0.0022 

z 3.9193 

p=P(Z > z) 4.4404E-05 

Table 2: Results of analysis of data in Table 1. 

 

In this example, the p-value associated with the z-statistic is very small (p = 

4.4404E-05). Hence, the data provide strong evidence, in which considerable 

confidence can be placed, that the cumulative rate of cancer up to age 75 is 

higher in Region 1 than in Region 2. 
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4  Policy implications 

 

Our discussion of the cumulative rate as a measure is linked to economic 

policies surrounding cancer care. 

 

Differences in cumulative rates between regions arise from epidemiological 

factors or demographic structure, or both factors jointly. There are likely to be 

economic implications from these differences. The allocation of cancer services, 

whether private, publicly-funded or publicly-provided, can usually be improved 

between regions. Cancer incidence influences economic decision-making, 

whether these are the decisions of private agents or government. Policy 

responses may be warranted. Economic policy formulated by government would 

need to improve the allocation of cancer resources in ways that private 

decisions, whether those of the consumer of cancer resources or the producer of 

cancer services, do not achieve. Appropriate measures of the size and impact of 

the cancer problem informs both private and public decisions. 

 

The appropriate economic role of government extends even to ensuring the 

public is correctly informed of the incidence and impact of cancer. For example, 

alleviating pervasive ill-informed dread in populations is welfare-enhancing.  

Government action may also improve decisions over cancer resources at the 

margin in order that cancer resources are allocated to the highest possible 

outcome, without anyone‟s welfare being made worse off. 

 

The cumulative rate is likely to vary across regions. Regional disparities occur 

either because of different population structures (demographic factors) or from 

differences in the cancer incidence in each age-group (epidemiological reasons). 

Alternatively, two regions could report similar cumulative rates. This sameness 

may, on first appearance, suggest to a policy maker that economic rationale for 

treatment resources for cancer in both regions is similar; however, the 

population structure in that region may conceal a heightened incidence of cancer 

in some age groups.  Thus, it must be kept in mind that, like other measures, the 

cumulative rate is a summary measure that has its place in an armamentarium of 

measures to inform cancer policy. Like all measures, the implications of the 

measures applied must be clearly understood. 

 

Two regions reporting the same, or similar, cumulative incidence rates may 

have different cumulative mortality rates. If cumulative mortality rates in two 

regions are also the same, then cancer treatment resourcing ought to be the 

same. In other words, cancer survival is approximately the same between this 

region and the other.  If the cancer mortality rates differ, then one must 

investigate whether the stage of the cancer at diagnosis differs between the two 

regions. Later stage cancers being detected more frequently in one region, 

require different resourcing and different site profiles of cancers in two regions 

also implies that the same resourcing of treatment is not appropriate.  
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Thus, regional differences in cancer mortality may be related to differences in 

economic access to cancer resources. People living in one locality (say, a 

regional or remote area) can have lower incomes. They may face higher prices 

for cancer treatment, including the cost of travel (the „time price‟). Price 

differentials can arise despite health insurance arrangements that assert equality 

and fairness are valued objectives of insurance.  

 

A region with the higher cumulative rate incidence may be able to improve 

longevity in the region when the cancer resources that are not enhancing health 

outcomes are redirected to uses that lead to better health outcomes. This 

outcome can be achieved through the judicious maintenance of the price 

mechanism. 

 

There is another economic use for developing the appropriate measurement of 

cancer for policy purposes. Apart from its use in improving economic efficiency 

in the allocation of cancer resources, cancer measurement can inform equity. 

Distributive fairness is a widely-accepted objective of the health sector, and thus 

for cancer.  

 

Weighing the fairness of different cumulative rates of cancer in populations 

involves notions about the equal treatment of equals and unequal treatment of 

unequals. One cannot weigh inequity until measurement of the health inequality, 

or equality, is first undertaken. There are various measures of age-related 

inequality that can be applied.  Each measure (e.g. the coefficient of variation, 

the Gini coefficient, the Atkinson Index) has different welfare implications.  

Once the nature and extent of the inequality is measured and known, then one 

can weigh whether the equality/inequality is fair. 

 

5  Conclusions 
 

This paper has been written for practitioners who wish to use the cumulative 

rate to compare the incidence of cancer in two different populations. The 

cumulative rate could also be used to compare mortality from cancer in two 

different populations. The cumulative rate might be used in making decisions 

about allocating resources for cancer care to different regions.  

 

Although Estève et al. ([4], pp. 74-84) discuss methods for comparing the 

incidence of a disease in two populations, they do not discuss the use of the 

cumulative rate in this context. The present paper fills this gap in the literature. 

 

The cumulative rate proposed by Day[2] avoids the arbitrariness of a pre-

defined standard population on which to base the calculations. The only data 

required are the population data and incidence data stratified by 5-year age 

groups. It is possible to deal with age groups of other widths; see Lenard et al. 

[6] as to how this might be done. 
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The method can be easily adapted to consider the cumulative rate of particular 

cancers. For example, in considering the cumulative rate of breast cancer among 

female Australians, one would tabulate the population and incidence of female 

Australians.  

 

The purpose of a project will guide the researcher in choosing an appropriate 

maximum age for the cumulative rate. Day[2] recommends that, for whole of 

life comparisons, 74 is an appropriate maximum age; there are many competing 

risks for people over this age. However, with increased life expectancy, a higher 

maximum age may be appropriate for whole of life comparisons. To compare 

the impact of cancer on younger people, one might set 44 as a maximum age. 

For childhood cancers, Day[2] suggests that one might consider the maximum 

age as 14. 

 

One could also use this method to compare the cumulative rates of cancer in one 

region in two different years. Indeed, one could use the cumulative rate to track 

how impact of cancer on a particular population is changing over time. 

 

It would be interesting to investigate multiple comparison procedures for 

comparing the cumulative rates of several populations.  

 

For example, if one were allocating resources for cancer care to four regions A, 

B, C, D it would be useful to be able to say that the cumulative rate in A was 

significantly higher than in B, C, and D, but there is no significant difference 

between the rates in B, C, and D. Then one would have a sound basis for 

allocating equal resources to regions B, C, D and more to A. However, in 

comparing the cumulative rates in several populations will involve some 

technical details to control the size of Type I errors. We will need to draw on the 

research literature surrounding multiple comparison procedures to explore this 

matter further. 

 

We will return to some of these issues raised in this section in later papers. 

 

Investigating the cumulative rate as a measure of incidence, or mortality, for the 

purposes of making comparisons is a contribution to the study of inequalities in 

cancer care. This touches on matters of justice. 
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Abstract: Mexico presents sharp contrasts on the evolution of the level of mortality. On 
one hand, chronic degenerative diseases, especially those related to diabetes, are in an 
alarming increase.  On the other, different criminal groups associated with drug 
trafficking has increased the number of violent deaths. This has resulted in the decline of 
life expectancy in certain regions. For example, in regard to the death rate from diabetes 
mellitus, while in 2000 this figure reached 47.8 per hundred thousand for 2011 was 71.0 
per hundred thousand. Meanwhile, in regard to the mortality rate from homicide, while in 
2007 it amounted to 8.2 per hundred thousand in 2010 had increased to 22.9 per hundred 
thousand. In this paper we estimate years of life lost (Arriaga, 1996) for these two causes 
of death, analyze their trends and relate this indicator with temporary life expectancies. 
Information from vital statistics, available for 2000 and 2010 at national level is used. 
The estimations may provide clues to the Mexican authorities to formulate population, 
health and social policies that help to increase the limits of life expectancy in our 
country. 
Keywords: demographic analysis, mortality by cause, years of life lost, temporary life 
expectancy. 

 
1  Introduction 
 

In Mexico the epidemiological transition has followed the expected pattern. 
That is, there has been a relative increase of chronic-degenerative diseases. 
Accordingly, in the last decade it has been observed a rise in diabetes mortality, 
but to levels above those of most developed countries. Apart from bad habits of 
diet and sedentarism, it seems there is a genetic factor affecting adversely the 
Mexican population. Therefore, unlike for developed countries, diabetes 
mellitus has been the first or the second cause of death in Mexico in recent 
years. For example, according to figures from World Health Organization 
(WHO, 2011), from a total of 192 countries, Mauritius was the country with the 
highest diabetes mortality rate in the world (176 per hundred thousand), Mexico 
occupied the sixth place (83.8 per hundred thousand), above of countries like 
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Portugal (19.3 per hundred thousand), the United States (15.2 per hundred 
thousand), Canada (13.4 per hundred thousand) and Japan (4.5 per hundred 
thousand). 
 
Another problem facing Mexican population is the mortality associated with 
violence which has also presented a rising trend. The so called “war against 
narco” launched by former president Calderón, provoked a spiral of violence 
that made increase the number of deaths due to homicide from 8,868 in 2007 to 
27,213 2011. 
In this paper we estimate the years of life lost (Arriaga, 1996) by two causes of 
death: diabetes and homicide. As it is known, demographic analysis of mortality 
often has used different kind of indicators such as crude death rates, specific 
mortality rates and life expectancies at birth. These indicators aim at portraying 
the levels and trends of the phenomenon. Nonetheless, each of these indexes 
present advantages and pitfalls. Thus, for instance, it is known that crude death 
rates are influenced by age structure, even when the inputs for its calculation are 
easily available. The years of life lost is an index that not only reflects the 
number of deaths occurring by each cause. It also takes into account the timing 
of the deaths. 
Information from vital statistics, available for 2000 and 2010, at national level, 
is used. The estimations may provide clues to the Mexican authorities to 
formulate population, health and social policies that help to increase the limits 
of life expectancy in our country. 
 
2  Methodology 
 

One way to look at the impact of a certain cause of death on life expectancy is 
through the years of life lost (YLL). This methodology originally proposed by 
Arriaga (1996) consists on calculating the years that persons who die before 
certain age lose in comparison to the hypothesis that they had reached that age. 
The assumptions to calculate YLL are: The mortality should be null between 
two ages chosen for the analysis, i.e. those who die should have lived until the 
upper limit of the interval considered for the analysis. Assuming the analysis is 
made between the ages a and v (v – a = u). It is also assumed that there is a life 
table available that reflects the mortality of the population studied. If the 
distribution of deaths by cause in the life table is equal to the distribution in the 
deaths registered, then: 
   

ndx,j  =  ndx  ( nDx,j / nDx ) 
where: 

 ndx,j  : is the number of deaths due to cause j, between ages x and x+n 
           from the life table 

 ndx : is the number of deaths between ages x and x+n from the life 
table 
 nDx : is the number of deaths registered between ages x and x+n 
 nDx,j  is the number of deaths registered between ages x and x+n , due 



Impacts of diabetes and homicide mortality on life expectancy in Mexico 235 

             to cause j  
 
the volume of YLL by people who die by cause j in the interval of ages between 
x and x+n  is: 
  u,nAPx,j   =   ndx,j  [  (n – nkx) + (v – x – n) ] 

where 
 nkx  :  is the average part of the interval [x , x+n] lived by those who 

die 
 in that interval among those who have survived to age a, the average 

of  
YLL is given by the expression: 
 

  u,napx,j   =   ndx,j  [  (v – nkx – x ) ] / la  (1) 
 
It is possible to add the years of life lost in each interval of ages comprised 
within the large interval of ages between a and v: 

 

 
 
 
This is the formula we applied for most results presented in this paper 
considering an initial age a = 20 and the final age v = 80. The causes of death (j) 
included are diabetes mellitus and homicide. 
 
On the other hand, expression (1) can be added for different causes of death. 
Considering m causes of death with no intersection and that those m causes 
comprise all possible causes of death, one can calculate the YLL for an age 
interval [x, x+n] and for all the causes: 
 

 
 
If in turn, this last expression can be added for all ages between a and v, and in 
this way we can get the years of life lost between a and v by those who die by 
any cause. We also analyze those results for 2000 and 2010 and for males and 
females.  
 
Another index we use in this paper to contrast with the years of life lost, is the 
temporary life expectancy which can be defined as the average number of years 
the survivors at certain age (a) are going to live between that age and another 
age (v). If u = v – a, between the ages a and v, people might live (in theory) a 
maximum of u years. However, considering mortality they live on average: 
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i.e., the person years lived by the cohort between the ages a and v, divided by 
the number of those that survived t age a. 
 
3  Results 
 

We applied the methodology to calculate YLL in the Mexican population 
between ages 20 and 80 due to diabetes mellitus, homicide, and for all the 
causes, for the years 2000 and 2010 and by sex (Table 1 and 2). The inputs were 
life tables by sex for the years 2000 and 2010 and registered deaths by sex, age 
group and cause (Table 3). 
 
 
We can see some general results when we considered the YLL by all causes: 
 
1. Men lose more than two additional years than women. 
2. The trend over time is to the reduction of YLL. Between 2000 and 
2010 

 YLL reduced around one year for each sex. For men the reduction was 
 from 6.503 to 5.440, whereas for women from 4.222 to 3.340 years of 
 life lost. 

 
 

Table 1. Mexico, 2000. Deaths by sex, age group and cause (Total, diabetes 
and homicide). 
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Age

group Males Females Both Males Females Both Males Females Both

0 21,793 16,769 38,621 3 2 5 49 38 87

 1-4 3,726 3,236 6,963 6 4 10 61 47 108

 5-9 2,025 1,432 3,457 4 9 13 66 27 93

 10-14 2,252 1,466 3,718 11 20 31 152 45 197

 15-19 5,106 2,282 7,389 30 47 77 833 140 973

 20-24 7,388 2,606 9,995 60 66 126 1,407 147 1554

 25-29 8,380 2,911 11,291 133 104 237 1,438 139 1577

 30-34 8,737 3,271 12,009 198 135 333 1,233 128 1361

 35-39 9,848 4,107 13,956 359 250 609 1,046 115 1161

 40-44 10,387 5,109 15,496 650 500 1150 777 87 864

 45-49 11,455 6,603 18,061 1,071 984 2055 651 72 723

 50-54 12,574 8,493 21,068 1,622 1,677 3299 432 55 487

 55-59 14,839 10,653 25,494 2,286 2,485 4771 375 44 419

 60-64 17,100 13,747 30,849 2,834 3,399 6233 264 51 315

 65-69 19,510 16,467 35,978 3,036 3,999 7035 195 38 233

 70-74 20,865 18,506 39,371 2,987 3,804 6791 135 34 169

 75-79 21,513 19,424 40,938 2,603 3,393 5996 110 22 132

 80-99 44,356 53,462 97,822 2,928 4,769 7697 92 43 135

 100+ 1,023 1,952 2,975 8 35 43 1 2 3

N. S. 1,425 757 2,216 34 69 103 127 19 146

Total 222,509 176,484 399,046 20,863 25,751 46,614 9,444 1,293 10,737

Total Diabetes Homicide

 
 
Source: Elaborated from SINAIS (2013). 
 
When specific causes of death are considered, the panorama changes. The sex 
differential for homicide mortality is very important. In terms of YLL, men lose 
about seven times more years than women. As to deaths due to diabetes, in 2000 
male mortality was 2% higher than female mortality. In 2010 it was 24% higher. 
Unlike mortality by all causes, the years of life lost due to homicide rose 
between 2000 and 2010 for both sexes. In the case of men it went from 0.239 to 
0.296: an increase of 24%; for women, at much lower level, went from 0.036 to 
0.041: an increase of 14%. 
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Table 2. Mexico, 2010. Deaths by sex, age group and  
cause (Total, diabetes and homicide). 

Age

group Males Females Both Males Females Both Males Females Both

0 16,148 12,637 28,785 nd nd nd nd nd nd

 1-4 3,075 2,576 5,651 1 4 5 66 51 117

 5-9 1,603 1,276 2,882 8 4 12 41 31 73

 10-14 2,126 1,482 3,609 9 19 28 168 72 241

 15-19 7,100 2,801 9,902 27 37 64 1,977 318 2,296

 20-24 10,197 3,015 13,216 85 99 184 3,492 362 3,855

 25-29 11,229 3,168 14,401 135 145 280 3,822 318 4,140

 30-34 12,228 3,723 15,955 335 193 528 3,742 302 4,046

 35-39 13,446 4,838 18,292 576 384 960 3,176 230 3,409

 40-44 13,723 6,202 19,926 1,132 792 1,924 2,116 189 2,306

 45-49 15,704 8,867 24,575 1,973 1,511 3,485 1,429 168 1,597

 50-54 18,385 11,685 30,076 3,150 2,588 5,738 1,003 102 1,106

 55-59 20,786 14,799 35,590 4,359 3,870 8,230 604 67 671

 60-64 23,443 18,371 41,818 5,104 5,225 10,329 378 54 432

 65-69 26,005 21,237 47,247 5,412 5,820 11,232 269 42 311

 70-74 29,572 25,484 55,065 5,471 6,248 11,720 174 43 217

 75-79 31,559 29,218 60,783 4,878 5,988 10,868 114 19 133

 80-99 71,869 85,025 156,912 6,975 10,227 17,202 102 28 130

 100+ 1,634 2,806 4,440 27 79 106 1 0 1

N. S. 2,195 459 2,813 35 33 68 635 38 708

Total 332,027 259,669 592,018 39,692 43,266 82,963 23,309 2,434 25,789

Total Diabetes Homicide

 
 

Source: SINAIS (2013). 
 
For diabetes mellitus there were mixed results in the trends of YLL. For males 
the YLL rose from 0.816 in 2000 to 0.927 in 2010; i.e. a 14% increase. For 
females a reduction took place between 2000 and 2010, from 0.797 to 0.747, a 
fall of 7%. 
 
The years of life lost is an index that not only reflects the number of deaths 
occurring by each cause. It also takes into account the timing of the deaths. An 
early death produces more YLL than a late death. This explains the apparent 
paradox of having (for the Mexican population) higher mortality rates due to 
diabetes for women on one hand, and on the other more YLL for men. This is 
produced because there are more premature male deaths. 
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Table 3. Mexico: YLL between ages 20 and 80. Males 2000. Homicide. 

Age nd(x)
1

nDx nDx,j nDx,j/nDx ndx,j nkx u,n,APx,j u,n,apx,j

0 4062 21793 0.41

1 591 3726 61 0.0164 9.6755 1.92 745.7893 0.0079

5 130 2025 66 0.0326 4.237 2.5 307.1852 0.0032

10 135 2252 152 0.0675 9.1119 2.5 615.0533 0.0065

15 190 5106 833 0.1631 30.9969 2.5 1937.3042 0.0204

20 254 7388 1407 0.1904 48.3728 2.5 2781.4341 0.0293

25 289 8380 1438 0.1716 49.5921 2.5 2603.5865 0.0274

30 412 8737 1233 0.1411 58.1431 2.5 2761.7958 0.0291

35 517 9848 1046 0.1062 54.9129 2.5 2333.7972 0.0246

40 822 10387 777 0.0748 61.4897 2.5 2305.8655 0.0243

45 1336 11455 651 0.0568 75.9263 2.5 2467.6054 0.026

50 2273 12574 432 0.0344 78.0926 2.5 2147.5457 0.0226

55 3569 14839 375 0.0253 90.1931 2.5 2029.3441 0.0214

60 5310 17100 264 0.0154 81.9789 2.5 1434.6316 0.0151

65 7893 19510 195 0.01 78.8895 2.5 986.1193 0.0104

70 12292 20865 135 0.0065 79.5313 2.5 596.4845 0.0063

75 17961 21513 110 0.0051 91.838 2.5 229.5949 0.0024  
      1/ This data come from Mina´s  (2001) mortality table. 
       Source: Elaborated from Mina (2001) and SINAIS (2013). 
 
Temporary life expectancies between ages 20 and 80 are about two years higher 
for females than for males (Table 6). During the first decade of the XXI century 
they rose one year. The differences mentioned above are almost the same as the 
differences existing in the YLL (Table 4) both by sex and between 2000 and 
2010, namely, a sex differential of two years, and an improvement of one year 
in 2010, in comparison with 2000. This means that reduction in years of life lost 
have a close relationship with life expectancies. 
 
As it was said, the total of years of life lost is equal to the sum of the YLL by 
each cause. Therefore any reduction in the YLL by each cause will contribute to 
the reduction of the total YLL and thereby to almost the same increase in the life 
expectancy. 
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Table 4. México. YLL 20-80 by causes and sex,  
2000 and 2010 

Males Females Males Females

Total 6.503 4.222 5.44 3.34

Diabetes 0.816 0.797 0.927 0.747

Homicide 0.239 0.036 0.296 0.041

2000 2010

 
          Source: Estimate. 

 
Table 5. México. Mortality rate by causes and sex, 2000 

 and 2010(per hundred thounsand people) 

Males Females Males Females

Diabetes 43.8 51.6 72.4 75.3

Homicide 19.8 2.6 42.5 4.2

Total
* 4.68 3.54 6.1 4.5

2000 2010

* This rate is by thousand people.  
              Source: Estimate. 

 
Table 6. México. Temporary life expectancies 60e20 

 

Sex 2000 2010

Males 53.5 54.56

Females 55.78 56.66  
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Abstract. We propose a series of methods and models in order to explore the Global Burden 
of Disease Study and the provided healthy life expectancy (HALE) estimates from the 
World Health Organization (WHO) based on the mortality μx of a population provided in a 
classical life table and a mortality diagram. Our estimates are compared with the HALE 
estimates for the World territories and the WHO regions. From the mortality point of view 
we have developed a simple model for the estimation of a characteristic parameter b related 
to the healthy life years lost to disability and providing full application details along with 
characteristic parameter selection and stability of the coefficients. We also provide a direct 
estimation method of the parameter b from the life tables. We straighten the importance of 
our methodology by proposing and applying estimates of the parameter b by using the 
Gompertz and the Weibull models. 
From the Health State point of view we summarize the main points of the first exit time 
theory to life table data and present the basic models starting from the first related model 
published by Janssen and Skiadas (1995). Even more we develop the simpler 2-parameter 
health state model and an extension of a model expressing the infant mortality to a 4-
parameter model which is the simpler model providing very good fitting on the logarithm of 
the force of mortality, ln(μx). More important is the use of the Health State Function and the 
relative impact on mortality to find an estimate for the healthy life years lost to disability. 
We have developed simple programs in Excel providing immediately the Life Expectancy, 
the Loss of Healthy Life Years and the Healthy Life Expectancy estimate. 
Keywords:  Health state function, Healthy life expectancy, Mortality Diagram, Loss of 
healthy life years, LHLY, HALE, DALE, World Health Organization, WHO, Global burden 
of Disease, Health status, Gompertz, Weibull. 
 
1. Introduction 
Starting from the late 80’s a Global Burden of Disease (GBD) study was applied in many 
countries reflecting the optimistic views of many researchers and policy makers worldwide 
to quantify the health state of a population or a group of persons. In the time course they 
succeeded in establishing an international network collecting and providing adequate 
information to calculate health measures under terms as Loss of Healthy Life Years (LHLY) 
or Healthy Life Expectancy (HALE). The latter tends to be a serious measure important for 
the policy makers and national and international health programs. So far the process 
followed was towards statistical measures including surveys and data collection using 
questionnaires and disability and epidemiological data as well (McDowell, 2006). They 
faced many views referring to the definition of health and to the inability to count the 
various health states and of course the different cultural and societal aspects of the 
estimation of health by various persons worldwide. Further to any objections posed when 
trying to quantify health, the scientific community had simply to express with strong and 
reliable measures that millions of people for centuries and thousands of years expressed and 
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continue to repeat every day: That their health is good, fair, bad or very bad. As for many 
decades the public opinion is seriously quantified by using well established statistical and 
poll techniques it is not surprising that a part of these achievements helped to improve, 
establish and disseminate the health state measures. However, a serious scientific part is 
missing or it is not very much explored that is to find the model underlying the health state 
measures. Observing the health state measures by country from 1990 until nowadays it is 
clear that the observed and estimated health parameters follow a rather systematic way. If so 
why not to find the process underlying these measures? It will support the provided health 
measures with enough documentation while new horizons will open towards better estimates 
and data validation.  
From the early 90’s we have introduced and applied methods, models and techniques to 
estimate the health state of a population. The related results appear in several publications 
and we have already observed that our estimates are related or closely related to the 
provided by the World Health Organization (WHO) and other agencies as Eurostat or 
experts as the REVES group. However, our method based on a difficult stochastic analysis 
technique, is not easy to use especially by practitioners.  The last four centuries demography 
and demographers are based on the classical Life Tables. Thus here we propose a very 
simple model based on the mortality μx of a population provided in a classical life table. To 
compare our results with those provided by WHO we use the μx included in the WHO 
abridged life tables. Our estimates are compared with the HALE estimates for all the WHO 
countries. Even more we provide the related simple program in Excel which provides 
immediately the Life Expectancy, the Loss of Healthy Life Years and the Healthy Life 
Expectancy estimate. The comparisons suggest an improved WHO estimate for the majority 
of the countries. There are countries’ results differing from the model and need further 
study. 
 
Further Details 
The Global Burden of Disease Study explored the health status of the population of all the 
countries members of the World Health Organization (WHO). It is a large team work started 
more than 25 years ago (see Murray and Lopez, 1997,2000, Mathers et al., 2000, Salomon, 
et al., 2010, 2012, Murray et al., 2015, Hausman, 2012, Vos et al., 2012, Robine, Romieu, 
Cambois, 1999, WHO, 2000, 2001, 2002, 2004, 2013, 2014 and many other publications). 
The last years, with the financial support of the Bill and Melinda Gates foundation, the work 
was expanded via a large international group of researchers. The accuracy of the data 
collection methods was improved along with the data development and application 
techniques. So far the health status indicators were developed and gradually were 
established under terms as healthy life expectancy and loss of healthy life years. Methods 
and techniques developed during the seventies and eighties as the Sullivan method (Sullivan, 
1971) were used quite successfully. Several publications are done with the most important 
included in The Lancet under the terms DALE and HALE whereas a considerable number 
can be found in the WHO and World Bank publications. The same half part of a century 
several works appear in the European Union exploring the same phenomenon and providing 
more insight to the estimation of the health state of a population and providing tools for the 
estimation of severe, moderate and light disability. The use of these estimates from the 
health systems and the governments is obvious. 
To a surprise the development of the theoretical tools was not so large. The main direction 
was towards to surveys and collection of mass health state data instead of developing and 
using theoretical tools. The lessons learned during the last centuries were towards the 
introduction of models in the analysis of health and mortality. The classical examples are 
Edmund Halley for Life Tables and Benjamin Gompertz for the law of mortality and many 
others. Today our ability to use mass storage tools as the computers and the extensive 
application of surveys and polls to many political, social and economic activities directed 
the main health state studies. In other words we give much attention to opinions of the 
people for their health status followed by extensive health data collection. However, it 
remains a serious question: Can we validate the health status results? As it is the standard 
procedure in science, a systematic study as the Global Burden of Disease should be 
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validated by one or more models. Especially as these studies are today the main tool for the 
health programs of many countries the need of verification is more important. 
People reply according to their experience. Two main approaches arise: The mortality focus 
approach and the health status approach. Although both look similar responds may have 
significant differences. The main reason is that health is a rather optimistic word opposed to 
the pessimistic mortality term. Twenty years ago we provided a model to express the health 
state of a population. We developed and expanded this model leading to a system providing 
health status indexes. Here we propose several methodologies to estimate the health indexes 
and to compare with the provided by WHO.   
 
2. The mortality approach 
2.1. The Simplest Model 
We need a simple model to express the health status. The best achievement should be to 
propose a model in which the health measure should be presented by only one main 
parameter. We thus propose a two parameter model with one crucial health parameter: 
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    (1) 

The parameter T represents the age at which μx=1 and b is a crucial health state parameter 
expressing the curvature of μx. As the health state is improved b gets higher values. 

 
Fig. 1. The mortality diagram 

The main task is to find the area Ex under the curve OCABO in the mortality diagram (see 
Figure 1) which is a measure of the mortality effect. This is done by estimating the integral 
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The resulting value for Ex in the interval [0, T] is given by the simple form: 

           
 

     
 

It is clear that the total information for the mortality is the area provided under the curve μx 
and the horizontal axis. The total area Etotal of the healthy and mortality part of the life span 
is nothing else but the area included into the rectangle of length T and height 1 that is  
Etotal=T. The health area is given by 

                       
 

     
 

  

   
 

Then a very simple relation arises for the fraction Ehealth/Emortality that is 
       

          
      (2) 

This is the simplest indicator for the loss of health status of a population. As we have 
estimated by another method it is more close to the severe disability causes indicator. 
The relation Etotal/Emortality provides another interesting indicator of the form: 

      

          
     

This indicator is more appropriate for the severe and moderate disability causes indicator (It 
is compatible with our estimates using the health state approach). It provides larger values 
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for the disability measures as the Etotal is larger or the Emortality area is smaller by means that 
as we live longer the disability period becomes larger. 
This method suggests a simple but yet interesting tool for classification of various countries 
and populations, for the loss of healthy life years. A correction multiplier λ should be added 
for specific situations so that the estimator of the loss of healthy life years should be of the 
form: 

     
      

          
        

However, for comparisons between countries it is sufficient to select λ=1. Even more the 
selection of λ=1 is appropriate when we would like to develop a quantitative measure for the 
LHLY without introducing the public opinion for the health status and the estimates for the 
cause of diseases and other disability measures. From another point of view the influence of 
the health status of the society to the public opinions related to health may cause differences 
in the values for LHLY estimated with the HALE method thus a value for λ larger or smaller 
than unity is needed. By means that we will have to measure not exactly the health status but 
the public opinion related to the health status, the latter leading in a variety of health 
estimates in connection to socioeconomic and political situation along with crucial health 
information from the mass media. Both measures, the standard measure with λ=1 and the 
flexible one with λ different from 1 could be useful for decision makes and health policy 
administrators and governmental planners.  
To our great surprise our model by selecting λ=1 provided results very close to those 
provided by WHO as it is presented in the following Tables and in other applications. It is 
clear that we have found an interesting estimator for the loss of healthy life years.  
Our idea to find the loss of healthy life years as a fraction of surfaces in a mortality diagram 
was proven to be quite important for expressing the health state measures. A more detailed 
method based on the health state stochastic theory is presented in the book on The Health 
State Function of a Population and related publications (see Skiadas and Skiadas 2010, 
2012, 2015) where more health estimators are found. 
2.2.1. Application details 
As our method needs life table data we prefer to use full life tables when available. The 
Human Mortality Database is preferred for a number of countries providing full life tables. 
However, only a small part of the world countries are included and thus we also use the 
abridged life tables provided by the World Health Organization. The new abridged life 
tables from WHO including data from 0 to 100 years provide good results when applying 
our method. Instead the previous life tables (0 to 85 years) are not easily applied. It could be 
possible to use these life tables by expanding from 85 to 100 years. For both the abridged 
and the full life table data we have developed the appropriate models and estimation 
programs in Excel thus make it easy to use.  
2.2.2. Stability of the coefficients of the Simple Model 
Here we discuss some important issues regarding the application of the simple model 
proposed by equation (1). To apply this model to data we use a non-linear regression 
analysis technique by using a Levenberg-Marquardt algorithm. The data are obtained from 
the WHO database providing abridged life tables of the 0-100 years form. The important 
part of the model is the parameter b expressing the loss of healthy life years. Even more b 
can express the curvature of mortality function μx. Applying the model to data we need a 
measure for the selection of the most appropriate value for b.  
2.2.3. When b should be accepted 
The simpler is to find if b follows a systematic change versus age. We start by selecting all 
the n data points (m0, m1,…, mn) for μx to find b and then we select n-1, n-2,…, n-m for a 
sufficient number of m<n. As is presented in Figure 2 the parameter b follows a systematic 
change. The example is for USA males and females the year 2000 and the data are from the 
full life tables of the Human Mortality Database. As it is expected b is larger for females 
than for males. In both cases a distinct maximum value in a specific year of age appears. 
Accordingly a specific minimum appears for the other not so important parameter T (see 
Figure 3). It is clear that only the specific maximum value for b should be selected. Even 
more the estimates for the maximum b account for a local minimum for the first difference 
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dx’ of dx provided from the life table. Next Figure 4 illustrates this case for USA males the 
year 2000 along with a fit curve from our model SK-6. The maximum b is at 94 years for 
males and females the same as for the minimum of the first difference corresponding to the 
right inflection point of the death curve dx. Table I includes the parameter estimates for b 
and T the year 2000 for USA males and females. 

 
 

 
Fig. 2. Development of the 
health parameter 

Fig. 3. Development of T 
parameter 

Fig. 4. First difference 
(derivative) of dx versus age 

 
2.3. Estimation without a model (Direct estimation) 
As the needed data sets in the form of mx or qx data are provided from the life tables we have 
developed a method of direct estimation of the loss of healthy life year estimators directly 
from the life table by expanding the life table to the right. 
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The only needed is to estimate the above fraction from the life table data. A similar indicator 
results by selecting the qx data from the life table and using the: 
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In both cases the results are similar as it is presented in the following Figure 5 (A and B). 
The estimates from mx are slightly larger than from qx. In both cases the b estimators growth 
to a maximum at old ages and then decline. The selected b or b+1 indicator for the life years 
lost from birth are those of the maximum value. A smoothing technique averaging over 5 
years estimators is used to avoid sharp fluctuations in the maximum range area for the direct 
method. For the Model method a simple 3 point averaging gives good results. The maximum 
HLYL for the direct estimation is 9.84 for mx and 9.26 for qx. For the Model estimation with 
mx data the related HLYL is 10.0. As we have estimated for other cases both the estimation 
of the b indicator by this direct method and the method by using a model give similar 
results.   
2.4. More details: The Gompertz and the Weibull Distributions 
It should be noted that a more convenient Gompertz (1825) model form is provided by 
Jacques F. Carriere (1992) in the form        , where B and c are parameters. This is 
close to our simple model selected.  
However, we have also selected and applied the following form for the probability density 
function of the Gompertz model: 

                
                                                (4) 

 
The characteristic parameter expressing the loss of healthy life years is the parameter l. this 
is also demonstrated by observing the cumulative distribution function of the form: 

           
 

The related survival function is 



246       Christos H Skiadas 

 
             

 
The probability density function is: 

                  
 

And the hazard function is  

     
  
  

                            

Thus explaining the above Gompertz form selected (k=l-ln(b)). 
The selected value for the estimation of the healthy life years lost is provided by the 
parameter l. 
In the same paper Carriere suggests the use the Weibull model. This model has density 
function (b and T are parameters):  
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The Weibull model provides an important form for the hazard function: 
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Even more the cumulative hazard is given by: 
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Another important point is that the Cumulative Hazard provided by the Weibull model is 
precisely the form for the simple model presented earlier and the parameter b expresses the 
healthy life years lost. 
 

 A B 
Fig. 5. Estimation of the HLYL indicator (b) by the direct method and by the simple model 

(Full results A and expanded around the maximum B). 
 
3. The Health State Models 
3.1. The Health State Distribution 
Although the health state models are introduced from 1995 (see Janssen and Skiadas, 2015 
and more publications from Skiadas 2007 and Skiadas and Skiadas 2010, 2012, 2014) few 
applications appear. The main reason is due to the very laborious first exit time stochastic 
theory needed and that it is assumed that the use of the Gompertz and the Weibull models 
along with the related extensions give enough tools for the practical applications. This is not 
correct as the first exit time stochastic models are produced by using one of the most elegant 
and accurate methodology to model the health-death process as it is demonstrated in the 
following. The probability distribution of the general health state model is of the form: 
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For the main applications in Demography we can set σ = 1 reducing to the simpler from: 
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While the simpler form arises for the following health state function  
                                                              (7) 

That is  
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The simpler model of this form arises when c = 1 and it is the so-called Inverse Gaussian 
expressing the probability density function for the first exit time of a linearly decaying 
process: 
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Applications of this or similar type forms be can found in Ting Lee and Whitmore (2006) 
and in Weitz and  Fraser (2001). 
 

TABLE I 

Parameter estimates for the model (USA, 2000) 

Age Females Males   Age Females Males 

Years b T b T   Years b T b T 

71 5.318 147.5 4.975 142.3   91 8.942 110.7 7.992 109.4 

72 5.308 147.5 5.244 136.4   92 9.143 110.0 8.081 109.1 

73 5.296 147.5 5.231 136.4   93 9.224 109.8 8.173 108.8 

74 5.663 140.0 5.459 132.3   94 9.291 109.6 8.218 108.6 

75 5.649 140.0 5.559 130.5   95 9.286 109.6 8.189 108.7 

76 5.905 135.6 5.642 129.2   96 9.263 109.6 8.148 108.8 

77 5.896 135.6 5.736 127.8   97 9.224 109.7 8.094 109.0 

78 6.146 131.9 5.844 126.3   98 9.167 109.9 8.027 109.2 

79 6.280 130.1 5.981 124.5   99 9.093 110.1 7.947 109.4 

80 6.551 126.8 6.214 121.8   100 9.002 110.3 7.856 109.7 

81 6.748 124.6 6.368 120.2   101 8.896 110.6 7.754 110.0 

82 6.972 122.5 6.587 118.2   102 8.775 110.8 7.642 110.3 

83 7.209 120.4 6.774 116.6   103 8.641 111.2 7.521 110.7 

84 7.453 118.5 6.981 115.0   104 8.495 111.5 7.391 111.0 

85 7.710 116.8 7.186 113.6   105 8.339 111.9 7.255 111.4 

86 7.947 115.3 7.378 112.5   106 8.173 112.3 7.114 111.8 

87 8.185 114.0 7.546 111.5   107 8.000 112.7 6.967 112.3 

88 8.369 113.1 7.665 110.9   108 7.822 113.1 6.818 112.7 

89 8.579 112.2 7.826 110.1   109 7.638 113.5 6.666 113.2 

90 8.778 111.3 7.916 109.8   110 7.452 114.0 6.512 113.6 

 
The last model as right skewed cannot express the human death process expressed by a 
highly left skewed probability density function. Instead the previous 4-parameter model is 
applied very successfully. Even more this form is very flexible providing very good fitting 
in the case of high levels of infant mortality, as it was the case for time periods some 
decades ago and also for nowadays when infant mortality is relatively low. Two different 
options arise for the model. That corresponding to the health state estimation with the 
parameter l expressing the high level of the health state and represented with the figures 6A 
and 6C and another form with low levels for the parameter l expressing the Infant Mortality 
(see the figures 6B and 6D). In the latter case the form of the density function is: 
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When the parameter l is very small a 2-parameter model termed here as the Half-Inverse 
Gaussian distribution results: 
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The name arises from the similarity of this form with the Half-Normal distribution. 
The advantage of the proposed half-inverse Gaussian or IM-Model for the infant mortality 
modeling is obvious in the case of the application in USA females in 1950. The IM-Model 
provides a fairly well R2=0.990 instead of R2=0.920 for the Health State Model which 
provides similar results with the 2-parameter model (see the Table II). The resulting R2 for 
the year 2010 in USA females are similar as the infant mortality is relatively small (see 
figures 6C and 6D and Table II). 
 
3.2. An Important Extension: The simplest IM-Model 
Christel Jennen (1985) suggested a second order approximation to improve the previous 
model with the first order approximation form: 
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However, we propose and apply here a simpler form adequate for the applications in 
demography data: 
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The parameter k expresses the level of the influence of the second order correction term. 
When k=0 the last equation form reduces to the first order approximation. The next step is to 
use the expression              presented earlier for H(x) to find the advanced form of 
IM-model: 
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TABLE II 

Year 2010 2010 2010 1950 1950 1950 

Parameter/R2 Health 
State 

IM 
Model 

2-
Parameter 

Health 
State 

IM Model 
2-

Parameter 

c 5.28 7.91 7.91 4.18 6.26 6.27 

b 0.0192 0.0148 0.0148 0.0239 0.0173 0.0173 

l 13.84 0.0066 - 13.05 0.0314 - 

R2 0.993 0.995 0.993 0.920 0.990 0.927 

 
This is the simpler 4-parameter model providing quite well fitting for the logarithm of the 
force of mortality, providing not only good estimates for the infant mortality but also very 
good estimates for all the period of the life time for males and females as is illustrated in 
Figures 7A-7F. We have thus demonstrated that the model proposed in 1995 and the new 
versions and advanced forms provided in several publications and in this paper, approach 
fairly well the mortality data sets provided by the bureau of the census and statistical 
agencies. This is important in order to straighten the findings when applying the first exit 
time theory to life table data. 
 
3.3. The Health State Function and the relative impact on mortality 
Considering the high importance of the proposed model and the related indicator for the 
verification of the GBD results we proceed in the introduction of a second method based on 
the health state of the population instead of the previous one which was based on mortality. 
This model was proposed earlier (see Skiadas and Skiadas, 2010, 2012, 2013, 2014). These 
works were based on an earlier publication modeling the health state of a population via a 
first exit time stochastic methodology. Here we develop a special application adapted to 
WHO data provided as abridged life tables (0 to 100 with 5 year periods). First we expand 
the abridged life table to full and then we estimate the health indicators and finally the loss 
of healthy life year indicators.  
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A. USA 1950 Females, R2=0.920 B. USA 1950 Females, R2=0.990 

  

C. USA 2010 Females, R2=0.993 D. USA 2010 Females, R2=0.995 
 

Fig. 6. The First Exit Time Model-IM including the Infant Mortality applied in USA death 
probability density for females the years 1950 and 2010. 

 
By observing the above graph (Figure 8) we can immediately see that the area between the 
health state curve and the horizontal axis (OMCO) represents the total health dynamics 
(THD) of the population. Of particular importance is also the area of the health rectangle 
(OABC) which includes the health state curve. This rectangle is divided in two rectangular 
parts the smaller (OAMN) indicating the first part of the human life until reaching the point 
M at the highest level of health state (usually the maximum is between 30 to 45 years) and 
the second part (NMBC) characterized by the gradual deterioration of the human organism 
until the zero level of the health state. This zero point health age C is associated with the 
maximum death rate. After this point the health state level appears as negative in the graph 
and characterizes a part of the human life totally unstable with high mortality; this is also 
indicated by a positively increasing form of the logarithm of the force of mortality ln(μx). 
We call the second rectangle NMBC as the deterioration rectangle. Instead the first 
rectangle OAMN is here called as the development rectangle. For both cases we can find 
the relative impact of the area inside each rectangle but outside the health state area to the 
overall health state. In this study we analyze the relative impact of the deterioration area 
MBCM indicated by dashed lines in the deterioration rectangle. It should be noted that if 
no-deterioration mechanism was present or the repairing mechanism was perfect the health 
state should continue following the straight line AMB parallel to the X-axis at the level of 
the maximum health state. The smaller the deterioration area related to the health state area, 
the higher the healthy life of the population. This comparison can be done by estimating the 
related areas and making a simple division. 
However, when trying to expand the human life further than the limits set by the 
deterioration mechanisms the percentage of the non-healthy life years becomes higher. This 
means that we need to divide the total rectangle area by that of the deterioration area to find 
an estimate for the “lost healthy life years”. It is clear that if we don’t correct the 
deterioration mechanisms the loss of healthy years will become higher as the expectation of 
life becomes larger. This is already observed in the estimates of the World Health 
Organization (WHO) in the World Health Report for 2000 where the healthy years lost for 
females are higher than the corresponding values for males. The females show higher life 
expectancy than males but also higher values for the lost healthy years. The proposed “loss 
of healthy life years” indicator is given by: 
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A. USA 1933 Males B. USA 1933 Females  

  
C. USA 1950 Males D. USA 1950 Females  

  
E. USA 2010 Males F. USA 2010 Females 

 
Fig. 7. The First Exit Time Model-IM including the Infant Mortality applied in the USA 

force of mortality data in logarithmic form for males and females the years 1933, 1950 and 
2010. 
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Where THDideal is the ideal total health dynamics of the population and the parameter λ 
expresses years and should be estimated according to the specific case. For comparing the 
related results in various countries we can set λ=1. When OABC approaches the THDideal as 
is the case of several countries in nowadays the loss of healthy life years indicator LHLY 
can be expressed by other forms. 
Another point is the use of the (ECD) area in improving forecasts especially when using the 
5-year life tables as is the case of the data for all the WHO Countries. In this case the 
expanded loss of healthy life years indicator LHLY will take the following two forms: 

MBCM

ECDOMCO
LHLY


 2

 
MBCM

ECDOABC
LHLY


 3
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Fig. 8. The impact of mortality area to the health state  

 
It is clear that the second form will give higher values than the previous one. The following 
scheme applies: LHLY1<LHLY2<LHLY3. It remains to explore the forecasting ability of the 
three forms of the “loss of healthy life years” indicator by applying LHLY to life tables 
provided by WHO or by the Human Mortality Database or by other sources. 
As for the previous case here important is the loss of health state area MBCM whereas the 
total area including the healthy and non-healthy part is included in OABC+ECD. 

MBCM

ECDOABC
LHLY


 3

                                          (14) 

Details and applications are included in the book on “The Health State Function of a 
Population”, the supplement of this book and other publications (see Skiadas and Skiadas 
2010, 2012, 2013, 2016). It is important that we can explore the health state of a population 
by using the mortality approach with the Simple Model proposed herewith and the health 
state function approach as well. The latter method provides many important health measures 
than the simple model.  
 

4. Application 
Comparative Application for the World and World Regions 
The Table III includes our estimates for the healthy life expectancy at birth for the years 
2000 and 2012 by applying the proposed mortality model and the health state model (HSM), 
and the estimates of WHO referred as HALE and included in the WHO websites (August 
2015). Our estimates for the mortality model are based on LHLY=(b+1)=Etotal/Emortality. 
The main finding is that our models verify the WHO (HALE) estimates based on the Global 
Burden of Disease Study. Our results are quite close (with less to one year difference) to the 
estimates for the World, the High Income Countries, the African region, the European 
region and Western Pacific and differ by 1-2 years for the Eastern Mediterranean region and 
the South East Asian region. In the last two cases the collection of data and the accuracy of 
the information sources may lead to high uncertainty of the related health state estimates. 
This is demonstrated in the provided confidence intervals for the estimates in countries of 
these regions in the studies by Salomon et al. (2012) and the Report of WHO (2001) for the 
HLE of the member states (2000). From the Salomon et al. study we have calculated a mean 
confidence interval of 5.5 years for males and 6.8 for females for the year 2000. We thus 
propose to base the future works on the system we propose and to use it to calibrate the 
estimates especially for the countries providing of low accuracy data. 
To support future studies we have formulated an easy to use framework in Excel. The only 
needed is to insert data for μx in the related column of the program. The program estimates 
the life expectancy, the loss of healthy life years and the healthy life expectancy.  
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TABLE III 

Comparing WHO (HALE) Results 

Sex/Region 

Healthy Life Expectancy at Birth Life Expectancy at Birth (LE) 

2000 2012 2000 2012 

WHO 
HALE 

Mortality 
Model 

 

HSM 
Model 

WHO 
HALE 

Mortalit
y Model 

HSM 
Model 

WHO 
 

Mortality 
Model 

 

WHO 
Mortality 

Model 

Both sexes combined 

World 58.0 58.4 58.2 61.7 62.5 61.9 66.2 66.2 70.3 70.3 

High income  67.3 67.1 67.0 69.8 69.6 69.2 76.0 76.0 78.9 78.9 

African Region 43.1 42.8 42.8 49.6 49.9 49.6 50.2 50.2 57.7 57.7 

Region of the 
Americas 

64.9 65.7 65.4 67.1 67.7 67.2 73.9 73.9 76.4 76.3 

East Med 
Region 

55.4 56.9 56.6 58.3 59.7 59.4 64.9 64.9 67.8 67.8 

European 
Region 

63.9 63.9 63.9 66.9 67.2 67.0 72.4 72.4 76.1 76.0 

South East 
Asian Region 

54.2 56.3 55.6 58.5 60.6 60.0 62.9 63.0 67.5 67.5 

Western 
Pacific Region 

64.8 63.9 64.2 68.1 67.3 67.5 72.3 72.3 75.9 75.9 

Males 

World 56.4 56.6 56.2 60.1 60.4 60.0 63.9 63.9 68.1 68.0 

High income  64.7 64.1 64.2 67.5 67.0 67.0 72.4 72.3 75.8 75.7 

African Region 42.4 41.6 42.3 48.8 48.6 48.6 49.0 49.0 56.3 56.3 

Region of the 
Americas 

62.7 63.1 62.5 64.9 65.1 64.6 70.8 70.8 73.5 73.5 

East Med 
Region 

54.8 55.7 55.6 57.4 58.2 57.9 63.6 63.6 66.1 66.1 

European 
Region 

60.7 60.4 61.1 64.2 64.3 64.5 68.2 68.2 72.4 72.4 

South East 
Asian Region 

53.5 55.4 54.6 57.4 59.2 58.6 61.6 61.7 65.7 65.7 

Western 
Pacific Region 

63.0 61.8 62.0 66.6 65.2 65.7 70.0 70.0 73.9 73.9 

Females 

World 59.7 60.3 59.9 63.4 64.3 64.1 68.5 68.5 72.7 72.6 

High income 70.0 69.7 69.6 72.0 71.8 72.1 79.6 79.5 82.0 81.9 

African Region 43.8 43.8 43.5 50.4 51.2 50.5 51.4 51.4 59.0 59.1 

Region of the 
Americas 

67.2 68.0 67.8 69.1 69.9 69.8 77.0 76.9 79.3 79.2 

East Med 
Region 

56.1 58.2 57.8 59.2 61.3 61.0 66.4 66.4 69.7 69.6 

European 
Region 

67.1 67.6 67.3 69.6 70.0 69.7 76.7 76.6 79.6 79.6 

South East 
Asian Region 

55.0 57.2 56.4 59.7 62.0 61.7 64.3 64.4 69.4 69.4 

Western 
Pacific Region 

66.7 65.7 66.1 69.8 68.9 69.1 74.8 74.8 78.1 78.0 
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5. Discussion and Conclusions 
The GBD study critisized by Williams (see Murray et al. 2000) whereas many comments 
from people from social sciences and philosophy refer to the impossibility to define health 
and, as a consequence, to measure it. The main problem is that we cannot have flexibility in 
finding an estimate of health the way we do with other measures of the human organism and 
related activities. So far if we measure health by collecting surveys it is clear that the 
uncertainty is relatively high. Even more if we decide for an accepted health state estimate 
(see Sanders, 1964 and related studies during 60’s and 70’s) it remains the problem of 
accepting a unit of measure.  The quantitative methods we propose overcome many of the 
objections posed. That we have achieved is to propose and apply several quantitative 
methods and techniques leading to estimates of the healthy life years lost. More than to be 
close to the WHO results, our calculations provide enough evidence for estimating and 
quantifying the health state of a population.  
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Abstract. Climatic changes, such as large temperature fluctuations and increase in the 

occurrence of heat waves, have been evidenced to affect mortality worldwide. In this 

paper we examine the effect of high temperatures on mortality in Cyprus, an island 

which is characterized by a Mediterranean climate. The modeling approach is described. 

First, the temperature function is created within the newly-developed framework of 

distributed lag non-linear models, to simultaneously capture non-linearities and delayed 

effects. The temperature function is, then, incorporated in a Generalized Linear Model 

with a quasi-Poisson distribution to allow for overdispersion, together with possible 

confounders such as meteorological indicators, trends and seasonality. Comparisons are 

additionally made, regarding the effect of temperature on mortality, between inland and 

coastal areas. All the results are presented in a tabular or graphical form and the 

conclusions are discussed. 

Keywords: heat waves, mortality, distributed lag non-linear model, strata constraints, hot 

threshold, GLM, quasi Poisson, harvesting effect. 
 

 

1  Introduction 
 

Global climate change is projected to further increase the frequency, intensity 

and duration of heat waves. Exposure to high temperatures can result in a 

variety of adverse health effects including deaths due to heat-related causes such 

as heat stroke, but also exacerbating many preexisting health conditions 

(Rainham and Smoyer-Tomic[34]; Kovats and Hajat[27]; Gosling et al.[18]). 

Many studies conducted worldwide, have, in fact, indicated a consistent strong 
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association between elevated temperature and all-cause (excluding external 

causes) mortality, despite any variation observed amongst diseases 

(Armstrong[3]; Baccini et al.[5]; Michelozzi  et al.[29]; Zanobetti and 

Schwartz[42]; Biggeri and Baccini[7]; Hajat et al.[24]).  

The association between temperature and mortality has been evidenced to be 

non-linear, following a J-, U-, or V-shaped curve, where minimum mortality is 

detected at moderate temperatures, while an excess health risk is observed at 

temperatures above a certain threshold, with higher mortality at temperature 

extremes (Armstrong[3]; Armstrong et al.[4]; Baccini et al.[5]; Curriero et 

al.[9]; Hajat and Kosatsky[21]).  

In addition, many studies have shown evidence of the so-called “delayed 

effect”. They have indicated that temperature can affect not only deaths 

occurring on the same day, but on several subsequent days, where the converse 

is also true: deaths on each day depend on the effect of the same day’s 

temperature as well as the lag effects of the previous days’ temperatures 

(Anderson and Bell[2]; Braga et al.[8]; Gasparrini et al.[17]). The estimate of 

the effect depends on the appropriate specification of the lag dimension of the 

dependency, defining models flexible enough to represent simultaneously the 

exposure-response relationship and its temporal structure (Gasparrini et al.[17]).  

The island of Cyprus has a typical Mediterranean climate characterized by hot 

dry summers and rainy changeable winters, separated by short autumn and 

spring seasons of rapid change. During summertime, it is mainly under the 

influence of a shallow trough of low pressure extending from the great 

continental depression centered over Southwest Asia, which results in high 

temperatures with almost cloudless skies and negligible rainfall (Price et 

al.[33]). In Cyprus climate change has been observed, with an increase in the 

average annual temperature by 0.8°C in the last thirty-year period and a drop in 

precipitation by 17% from the second half of the century. Climate change is 

expected to act in many ways as a multiplier of existing environment and health 

problems (Symeou[38]). 

Very few studies exist about countries with a Mediterranean climate (Almeida et 

al.[1]; Garcia-Herrera et al.[15]). The current study, therefore, provides 

additional evidence on the effect of extreme weather on mortality in a country 

with a Mediterranean climate, and it is the first that examines this issue for the 

island of Cyprus. The study, additionally, implements a new methodological 

approach. 

 

 

2  The GLM modeling framework 
 

A Generalized Linear Model (GLM) framework will be used in our analysis. A 

general form of the model for the mortality counts, , t=1,….n, is given by:  





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where )(Y , g is a monotonic link function and Y has a distribution 

from an exponential family (McCullagh and Nelder[28]). In epidemiological 

studies of the impact of extreme weather on human health, where the response 

variable is a non-negative daily count (e.g., mortality), overdispersion is often 

observed, where the variance of the outcome is greater than its mean 

( 1,)(  YV ). GLM models with quasi-Poisson regression have been 

shown to capture overdispersion well, by extending the Poisson distribution 

with the estimation of an additional dispersion parameter (Armstrong et al.[4]; 

Guo et al.[19]; Everitt and Hothorn[13]; Hajat et al.[23]; Schwartz et al.[37]; 

Zeger[44]). The functions js  in equation (1) denote smoothed relationships 

between the variables jx and the linear predictor, defined by the (unknown) 

parameter vectors j . The variables ku  include other predictors with linear 

effects specified by the related coefficients k . Using mortality counts in the 

above framework is referred to as the “usual practice” in related research 

(Armstrong[3]; Dominici[10]) and has been widely implemented in studies of a 

single city as well as comparisons of various geographical locations (Baccini et 

al.[5];  Pattenden et al.[31]; Schwartz et al.[37]).  

 

2.1 The temperature function in GLM 

 

First, we consider the function );( 11 βtxs  for temperature, x , that will be 

included in the GLM framework of equation (1), hereafter called the 

“temperature function”. As mentioned in section 1, the relation between 

temperature and mortality has been evidenced to have two main characteristics: 

non-linearity and delayed effect. Many methods have been proposed to deal 

with non-linearity, depending on the shape of the relationship, the degree of 

approximation required and interpretational issues. Among the most commonly 

used methods are smooth curves, such as polynomials, quadratic B-splines or 

natural cubic splines (Dominici et al.[11]) or linear-threshold parameterizations 

(e.g., “hockey-stick model”), which assume a high temperature threshold, k, and 

can by represented by a truncated linear function (x−k)+ which equals (x−k) 

when x>k and 0 otherwise (Armstrong[3]; Hajat et al.[23]; Pattenden et al.[31]; 

Baccini et al.[5]).  

Among the methods that have been proposed to deal with delayed effects, a 

major role is played by distributed lag models (DLM) (Schwartz[36]; Zanobetti 

et al.[43]; Braga et al.[8]). When a linear relation is assumed, this methodology 

allows the effect of a single exposure event to be distributed over a specific 

period of time, using several parameters to explain the contributions at different 

lags, thus providing an estimate of the overall effect. The simplest formulation 

is an unconstrained DLM. However, each individual coefficient at specific lags 

is often imprecisely estimated and highly correlated with estimates of other 

coefficients, resulting in collinearity between exposures in adjacent days. To 
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gain more precision in the estimate of the distributed lag curve, some constraints 

can be imposed, where an effective choice includes strata constraints (Welty and 

Zeger[40]; Armstrong[3]; Pattenden et al.[31]; Gasparrini et al.[17]; Gasparrini 

and Armstrong[16]). In such a “lag-stratified distributed lag model” several days 

are averaged as the effects of temperature over a period of time rather than from 

the contribution of one day, assuming a constant effect (equal coefficients) 

within lag intervals (strata). 

Although there exist well-developed methods for dealing with non-linearity or 

time latency in the temperature-mortality association, these two components are 

rarely modeled simultaneously. We will use a methodology that unifies many of 

the previous methods to deal with delayed effects and at the same time provide 

more flexible alternatives regarding the shape of the relationships, relaxing the 

assumption of linearity. More specifically, the temperature function will be 

modeled using the newly-developed framework of Distributed Lag Non-Linear 

Models (DLNM) (Armstrong[3], Gasparrini et al.[17]; Gasparrini and 

Armstrong[16]). DLNM can describe non-linear relationships by choosing a 

“cross-basis”, which is a bi-dimensional space of functions describing on the 

same time the shape of the relationship along the predictor, x, (temperature) and 

the distributed lag effects.  Choosing a cross-basis amounts to specifying two 

independent sets of “basis” functions, which will be combined (Gasparrini et 

al.[17]). A DLNM can be specified by  

 

, 

 

where rtj. is the vector of lagged exposures for the time t transformed through 

the basis function, the vector wt. is the t
th

 row of the cross-basis matrix W, C is 

an (L+1)×vl matrix of basis variables for the lag vector l, and η is a vector of 

unknown parameters. More details regarding the algebraic notation and 

estimation of DLNMs can be found in Gasparrini et al.[17].     

In our study, the choice of the non-linearity dimension of the cross-basis of 

DLNM will be led by visual inspection of the shape of the temperature-

mortality relation, assuming a high threshold temperature (see section 4). 

Regarding the lag dimension of the cross-basis, we will we assess the effect of 

temperature on mortality with lags up to 10 days before the day of death, using a 

constrained distributed lag model, with strata constraints on the coefficients 

(“lag-stratified distributed lag model”), to avoid collinearity and improve the 

precision of the estimates. We will define 3 strata intervals with dummy 

parameterization, assuming constant distributed lag effects along the strata of 

lags 0-1, 2-5 and 6-10.   

 

2.2 Confounding factors in the temperature-mortality relation 

 

The relationship between temperature and mortality may be confounded by 

measured or unmeasured covariates, which need to be controlled for properly in 

the GLM model (Peng et al.[32]; Touloumi et al.[39]; Dominici et al.[12]). The 

meteorological variable relative humidity has been shown to be a confounder of 
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the mortality-temperature relation and natural cubic splines have been used as a 

smoothed function (Armstrong et al.[4]; Guo et al.[7]; Braga et al.[8]; Curriero 

et al.[9]; Anderson and Bell[2]; Armstrong[3]). We will similarly use natural 

cubic splines to control for the non-linear effect of relative humidity (function 

2s  in equation (1)). Our GLM model will also control for secular trends and 

seasonality, by using smooth functions of time (day of the year) (function 3s  in 

equation (1)). Natural cubic splines are most commonly used in this context, 

where the degree of smoothness is very important, since it determines the 

amount of residual temporal variation in mortality available to estimate the 

temperature effect (Armstrong et al.[4]). The relation between temperature and 

mortality has also been evidenced to be affected by calendar days, where, for 

example, on weekends the number of hospital admissions can be lower than on 

weekdays and can also be lower during public holidays (Armstrong et al.[4]; 

Guo, et al.[19]; Michelozzi et al.[30]; Peng et al.[32]). Thus, any additional 

confounding by seasonally varying factors which vary on shorter timescales will 

be controlled by adding categorical/dummy variables for day of the week and 

public holidays (  in equation (1)).  

Since our interest is on the heat effect on mortality, the analysis will concentrate 

on the warm periods of each year, where a warm period is defined as the months 

from April to September. The same definition was chosen by many previous 

studies (e.g., Baccini et al.[5]; Michelozzi et al.[30]; Almeida et al.[1]; 

Pattenden et al.[31]), in order to ensure reasonable statistical power, given the 

small number of events (mortality), and based on the evidence that heat waves 

occurring at times other than summer may have just as strong a health impact 

(Hajat et al.[22]; Michelozzi et al.[29]). Therefore, the data are composed by 

multiple equally-spaced and ordered series of the same seasons for each year, 

and do not represent a single continuous time series. We will use the 

methodology suggested by Gasparrini and Armstrong[16], especially for 

seasonal analysis, in order to define this multiple series. 

The results will be obtained using R statistical software (The R Foundation for 

Statistical Computing). 

 

 

3  Data 
 

Daily mortality data were provided by the Ministry of Health of the Republic of 

Cyprus, for each of the five districts in Cyprus (Nicosia, Limassol, Larnaca, 

Paphos, Ammochostos) for the period between the years 2004 and 2009. The 

data included total (all-cause) mortality excluding external causes, as classified 

in the Eurostat Shortlist of 65 causes of death. 

Daily meteorological data were collected by the Cyprus Meteorological Service 

in the five main urban centers of the island. The meteorological parameters that 

were used for the purpose of this study included measures of temperature and 

relative humidity. No temperature measure has been shown to be consistently 

better at predicting mortality and thus there is no standard indicator of heat 
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stress (Barnett et al.[6]; Michelozzi et al.[30]). We considered the daily surface 

maximum temperature (in °C), which was used in many related studies (e.g., 

Armstrong et al.[4]; Filleu et al.[14]; Guo et al.[19]; Rocklöv and Forsberg[35]). 

Daily values of relative humidity at 8:00 LST and 13:00 LST (in %) were 

obtained for each district, where the mean of the two values was calculated. We 

avoided unequal spacing of the observations by imputing missing values as the 

moving average of surrounding observations (e.g. Rocklöv and Forsberg[35]). 

Cyprus was considered as a total area, using the combined data from all the 

stations, but separate analyses were also performed for Nicosia (urban area) and 

Limassol (coastal area) for comparative purposes. 

 

 

4  Analysis and results 
 

Table 1 presents descriptive statistics for the main variables of the study, all-

cause (total) mortality counts, maximum temperature and relative humidity, by 

district, for the warm periods (April to September) of the years 2004-2009.   

 

District 
Total Mortality 

Maximum 

Temperature (
o
C) 

Relative 

Humidity (%) 

Mean SD Mean SD Mean SD 

Nicosia 4.56 2.19 32.84 5.48 43.02 13.66 

Limassol 3.33 1.91 30.41 4.25 63.22 10.30 

Larnaca 1.75 1.38 29.81 4.28 55.11 11.89 

Paphos 1.10 1.08 27.55 3.79 67.50 9.19 

Ammochostos 0.54 0.74 30.39 4.91 54.31 14.14 

Table 1. Descriptive statistics of the mortality and meteorological variables, per 

district, for the warm periods (April to September), 2004-2009. 

 

Figure 1 shows the relation between daily all-cause mortality and maximum 

temperature in Cyprus.  
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Fig. 1. Mortality vs. maximum temperature: Cyprus, warm periods, 2004-2009. 

 

Examination of figure 1 indicates a non-linear effect of temperature. More 

specifically, it appears to be constant up to one point (zero slope up to 

temperatures around 29
o
C) and then we have a V-shaped relation with a hot 

threshold, the common point where two linear terms are constrained to join, 

which corresponds to a change in the effect estimate and the temperature 

associated with the minimum mortality rate. Therefore, led by visual inspection, 

the non-linearity component of the temperature function in DLNM will be 

captured for our data by the “linear-thresholds” model (“hockey-stick” model), 

with a high threshold parameterization (see section 2.1). Similar plots were 

found for Nicosia (urban area) and Limassol (coastal area), when the respective 

data were examined separately.  

Based on figure 1, we tested a grid of temperatures from 31
o
C to 35

o
C, in 0.1

o
C 

increments, to identify the threshold temperature that satisfied our criteria for 

model choice (e.g., minimizing residual deviance and Akaike Information 

Criterion (AIC) (Armstrong[3]; Guo et al.[19]). The hot threshold temperature 

for Cyprus was found to be 33.7
o
C. Using similar procedures, the threshold 

temperatures for Nicosia and Limassol were found to be 32.5
o
C and 38

o
C 

respectively.  

The GLM model was then fit to the data, including the temperature function and 

the potential confounders of the temperature-mortality relation. The final 

estimated GLM model could be described by the following equation:  

 

ttttt HolidayDOWdSRHSYE 2132 )4,()3,())(log(  γβΤα lt,  

 

where t is the day of observation (days 151 up to 273 of each year, restricted to 

the periods from April to September), Yt is the observed daily death counts on 

day t, α is the intercept, ltT ,  is the temperature function (a matrix obtained by 
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applying DLNM to temperature), l  corresponds to lags of temperature,   is 

the vector of coefficients for ltT ,  ,  )3,(2 tRHS  is a natural cubic spline with 3 

degrees of freedom to smooth relative humidity, )4,(3 tdS  is a natural cubic 

spline with 4 degrees of freedom for long-term trends (day of the year), as a 

smooth function to capture the variation within the warm period, tDOW  is the 

indicator variable for “day of the week” effect (1=Sunday) on day t (γ1 is the 

corresponding coefficient), and tHoliday   is a dummy variable for the holiday 

effect (1=Public Holiday; γ2 is the corresponding coefficient). All the 

components of the model were significant (p-values<5%), except the Holiday 

effect. The model had a good fit, satisfying all model criteria and diagnostics 

tools: first, the abovementioned model had the minimum residual deviance 

(1032.5) among all models tried (e.g. when removing components such as the 

day of the week or holiday effect); second, there was no obvious trend in the 

residual plot and no lag was significantly large (exceeding the range of lower or 

upper limits) in the Autocorrelation Function (ACF) or Partial Autocorrelation 

Function (PACF). Therefore, all patterns (autocorrelation and trends) were 

captured effectively. The corresponding GLM models were also fit for the 

separate analyses for Nicosia and Limassol. The models similarly had a good fit, 

where the minimum residual deviance was found (1108.5 and 1162.3 for 

Nicosia and Limassol respectively) and the model residuals similarly showed 

that all patterns were captured, with satisfactory residual plots, ACF and PACF 

plots. The significance of the components was similar, although relative 

humidity was not found to be a significant confounder for the urban area of 

Nicosia.  

Table 2 shows the relative risk increment per degree of heat sustained per day 

(effect of lags in the same strata interval is equal), for Cyprus as a total area as 

well as for Nicosia and Limassol considered separately.  

 
Lags Relative risk: % per 

0
C above threshold- 

per lag 

(95% CI): Cyprus 

(threshold=33.7
0
C) 

Relative risk: % per 
0
C above threshold- 

per lag 

(95% CI): Nicosia 

(threshold=32.5
0
C) 

Relative risk: % per 
0
C above threshold- 

per lag 

(95% CI): Limassol 

(threshold=38
0
C) 

0-1 

2-5 

6-10 

4.24 (2.03 to 5.81) 

0.50 (-0.39 to 1.41) 

0.41 (-0.29 to 1.11) 

1.47 (0.41 to 2.54) 

0.49 (-0.09 to 1.08) 

0.30 (-0.15 to 0.76) 

21.18 (6.18 to 38.30) 

15.47 (5.79 to 26.03) 

-7.79 (-17.04 to 2.48) 

0-10 13.17 (8.50 to 18.05) 6.59 (3.49 to 9.79) 73.99 (-6.54, 223.91) 

 

Table 2. Results for relative risk (increase in mortality) from the Lag-stratified 

distributed lag linear threshold model - Cyprus, Nicosia, Limassol (2004-2009) 

 
The results in Table 2 show that the effect of heat in Cyprus is much more 

pronounced for lags 0-1 (4.2% in each of lags 0 and 1, compared to 0.5% in 
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each of higher lags, more than 8 times higher). In other words, during the same 

and next day of a heat event, a 1 degree increase in maximum temperature 

above the threshold of 33.7
0
C is associated with an estimated increase of around 

8.5% in all-cause mortality in Cyprus. Table 2 also provides the estimated 

overall effect of temperature over all 10 lags, which is the total effect from the 

lag-specific contributions, computed by summing the log relative risks of each 

lag and it is largely insensitive to constraints (Armstrong[3]; Gasparrini et 

al.[17]). Looking at the results for Cyprus, the total risk over the 10 lags is 

around 13% higher for every degree above 33.7
0
C.  

Figure 2 presents the overall effect of temperature on all-cause mortality in 

Cyprus, over lags 0-10. 
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Fig. 2. Overall effect (relative risk) over all 10 lags: Cyprus (2004-2009). 

 

As figure 2 indicates, the effect has zero slope up to the threshold temperature 

and increases after the threshold, with a significant increase in mortality risk at 

very high temperatures: at temperatures around 40
0
C the risk of dying is around 

3 times higher compared to temperatures close to the threshold. 

Figure 3 shows a three-dimensional graph of the exposure-response relationship 

along temperature and lags, with reference at 33.7
0
C, the threshold temperature 

and provides a general picture of the results. Slices of the 3D plot, for specific 

temperatures (35
0
C, 37

0
C, 40

0
C and 42

0
C), appear in the bottom part of the 

figure. 
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Fig. 3. 3-D plot of relative risk along temperature and lags (upper) and slices of 

the 3-D plot (lag-specific effects) for various temperatures (bottom): Cyprus 

 

Figure 3 shows that heat (i.e. temperatures above the threshold of 33.7
0
C) has a 

much stronger effect at lags 0 and 1, compared to lags 2-5 and 6-10, and the 

effect is much stronger at higher temperatures. For example, it is 40% higher at 

42
0
C compared to 35

0
C, where at the temperature of 35

0
C the risk is negligible 

at lags higher than 2. In addition, the effect at lower temperatures (e.g., 35
0
C 
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and 37
0
C) has a smoother shape, compared to the sudden drop for temperatures 

above 40
0
C, as we move further away from the event (e.g., a week away).  

Focusing on the results obtained from the separate analysis of the data from 

Nicosia (urban area), showed that, similar to the results for Cyprus, the effect of 

heat is much more pronounced for lags 0-1, however, the effect in Nicosia is 

much lower compared to considering Cyprus as a total area (Table 2). A 

comparison of the 3D plot of Nicosia (not shown) with the plot for Cyprus, 

showed that the change in effect from lags 0-1 to lags 2-5 is much smoother in 

Nicosia compared to Cyprus, with the effects in the two strata being very close. 

In addition, the effect on mortality is stronger at higher temperatures (e.g. 40
0
C 

and 42
0
C), around 10% higher compared to temperatures around 35

0
C, where 

the increase in mortality is actually close to zero compared to the threshold 

temperature of 32.5
0
C and it has an overall smoother shape, with a smaller 

decrease from lags 0-1 to higher lags. The results regarding Limassol (coastal 

area) shown in Table 2 similarly show that significant effects occurred within 0-

1 lags, which are much higher compared to the total area of Cyprus and the 

urban area of Nicosia for lags 0-1 and also quite high for lags 2-5 as well. The 

accumulated effect for Limassol is as high as 74%, but it is associated with a 

wide confidence interval that ranges from a negative effect to a highly positive 

effect, reflecting high variability/overdispersion within lags. The most 

noticeable result is that the relative risk for Limassol for lags 6-10 is highly 

negative, indicating a deficit of deaths in lags 6-10. 

 

5 Discussion 

 
The current study is the first to examine and quantify the effect of high 

temperatures on all-cause mortality in a Mediterranean island, Cyprus, using a 

methodology that captures simultaneously any non-linearities and lag effects, 

based on the general framework of distributed lag non-linear models, while also 

adjusting for the effect of potential confounders. 

The results showed that high temperatures have a significantly adverse effect on 

public health in Cyprus, irrespective of living in the inner part of the island or 

the coastal area. In addition, temperature had an effect on all-cause mortality, 

independent of the effect of relative humidity or seasonal factors, like day of the 

year (e.g. middle of July or August) or shorter-term effects, like the day of the 

week (e.g., after a prolonged exposure to the sun during the weekend). An 

immediate or direct health effect of heat was found, with higher risk within the 

current and next day of a severe heat event, as opposed to a lower effect in 

longer lags, as we move further from the event, where the risk drops 

significantly after two days. The delayed effect of heat could also be seen vice 

versa: a death due to high temperatures is not due only to the thermal stress of 

the same day, but also of the previous couple of days. The results of a 

pronounced direct effect of heat (lags 0-1) on all-cause mortality agree with 

previous studies that have shown that the heat effect is immediate 

(Armstrong[3]; Braga et al.[8]; Guo et al.[19]; Pattenden et al.[31]).  
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In addition to the immediate effect of heat, the results showed that the effect on 

public health is much more pronounced for higher temperatures, as opposed to 

temperatures close to the threshold, where the effect is smoother, with a sharp 

drop from lag 1 to lag 2. 

Focusing on the two areas, Nicosia and Limassol, provided similar results of an 

immediate short-term effect within the first two days, which is reduced in longer 

lags and for lower temperatures. However, the threshold temperatures 

corresponding to the lowest observed mortality varied. This variation by latitude 

and topographical features appeared in other studies (e.g., Baccini et al.[5]) and 

could reflect population differences in acclimatization or adaptation to high 

temperatures between coastal and inner-country areas. The meteorological 

indicator relative humidity should also be considered, since it appeared to play a 

significant role in the effect of high temperatures on mortality: the mean levels 

of relative humidity were, as expected, higher in coastal areas, compared to 

Nicosia, while it was not a significant confounder in the temperature-mortality 

relation for Nicosia, as opposed to Limassol (and Cyprus as a total area).  

In addition, differences in the level of the temperature effect between areas were 

observed in the study: the effect observed for Nicosia was less pronounced, 

much smaller and smoother, almost negligible at lags 2-10, indicating a lower 

risk of mortality in this urban area. The model for the coastal area of Limassol 

showed a deficit in deaths at longer lags (6-10), with negative relative risk. This 

reduction in mortality, one week or so after the event, suggests that the heat 

wave affected especially frail individuals whose health was already so 

compromised that would have died in the short term anyway (e.g., 2 or 3 weeks 

later) and whose events were only accelerated by a brief period of time by the 

effect of exposure. This so called “harvesting effect” or “mortality 

displacement”, has been observed in previous studies, where following heat 

waves there is a decrease in overall mortality in subsequent weeks, thus 

representing a short-term forward shift in mortality (Armstrong[3]; Guo et 

al.[19]; Braga et al.[8]; Hajat et al.[20]; Kinney et al.[26]).  

Although the effect of heat appeared to be strong during the first two days and 

disappeared gradually after this, the choice of including up to 10 lags in our 

model has led to capturing this harvesting phenomenon for Limassol. In fact, 

studies of the effect of high temperatures using short lags (up to 2 or 3 lags 

only) may overestimate the hot effect, as the harvesting effect could only be 

captured by using longer lags (Anderson and Bell[2]; Guo et al.[19]). To 

explore better the number of lags for the model, and ensure that any shorter or 

longer-term effects were captured, sensitivity analysis was additionally 

performed for the number of total lags, up to 27 lags. The results were very 

similar to the results for 10 lags, therefore no need for a change in the models 

was deemed necessary.  
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6  Conclusion 

 
The present study has examined the relationship between temperature and 

mortality in Cyprus, proposing a new statistical model. The proposed 

framework provides many advantages, compared to other alternatives for such 

time series data. For example, it describes simultaneously the two main features 

of these data, namely non-linearities and delayed dependencies, as opposed to 

separate models for capturing each of these characteristics: it is flexible and 

systematizes the linear thresholds models or any other curvilinear distributed lag 

model previously proposed (Armstrong[3]; Gasparrini and Armstrong[16]; 

Braga et al.[8]; Curriero et al.[9]; Welty and Zeger[40]).  

The adverse health effects of heat waves are largely preventable, especially if 

appropriate measures are implemented, which include, among others, the setting 

up of early warning systems (Hayhoe et al.[25]; WHO[41]). As a result, a 

number of cities across Europe have already begun to develop and implement 

hot-weather response plans (Rainham & Smoyer-Tomic[34]). The results of the 

current study can thus be used for the development of early Heat-Health 

warning systems for the population in Cyprus, targeting climatic variables. 

Overall the heat effect appears to increase the risk of mortality and requires 

special attention. The corresponding Governmental departments must shift their 

focus from surveillance and response to prediction and prevention, to link 

accurate forecasts of extreme events with effective public health measures and 

interventions, taking at the same time into consideration the special 

characteristics of urban and coastal areas. 
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Abstract. The aim of this work is the development of a simulation model capable to 

allow the comparison of different utilization policies for the rhodium catalyser, used in a 

complex process of industrial synthesis of an antibiotic – Minocycline. This study was 

carried out using statistical analysis and statistical modelling. The investigation focused 

on trying to understand the process, reaching to a possible model, in order to obtain 

higher yields with lower costs. Kolmogorov-Smirnov and Chi-Square tests were used to 

make comparisons related to the performance of the catalyzer. Probability distribution 

fitting and goodness of fit tests were also conducted to the samples of the yields. The 

purpose was generating pseudorandom numbers in order to help on the conceiving of the 

simulation model to optimize the synthesis process. 

 

Keywords: Minocycline, rhodium, catalyzer, non-parametric tests, statistical analysis, 

statistical modelling 
 

 

 

1 Introduction 
 

 

Minocycline is indicated for the treatment of infections caused by 

microorganisms sensitive to tetracyclines, as well as infections caused by certain 

strains of staphylococci resistant to tetracyclines. It is particularly indicated for 

the treatment of acne and rosacea. The Portuguese pharmaceutical company - 

Cipan, who kindly provided us the data set, is the world's largest producer of 

this antibiotic. The synthesis of minocycline is a process that involves multiple 

steps which are carried out sequentially in this company. The 2
nd

 step of the 

synthesis process involves a key piece - a metallic catalyzer in activated carbon 

that since the year when the process was initially developed until now has 
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revealed some inconsistent behavior: the process of synthesis varies greatly in 

its levels of income. For environmental reasons, in 2009 a change occurred in 

the solvent used in the process, which may have contributed to this variability. 

Minocycline synthesis is a 7 steps process. Our investigation was focused in the 

2
nd

 step which includes the intervention of a very expensive rhodium catalyzer.  

The 2
nd

 step starts with demethylchlorotetracycline (DMC) and ends up with 

demethyldeoxytetracycline (DOTB) production.  

When, after performing its action in the 2nd step, the catalyzer is reusable, we 

say that it’s going to perform another utilization. If, on the contrary, it is 

inactivated with water, both parts A and B are joined and it is reactivated with 

sulfuric acid. In this case, we say that it has started a new life. When the 

catalyzer is exhausted, it is permanently inactivated and it awaits transportation 

to England, where the recovery of the metal is made in a specialized company, 

and this implies very high costs. Our goal was to draw conclusions about the 

rhodium catalyzer performance, comparing the lives and utilizations yields and 

also comparing both parts A and B regarding the number of lives and 

utilizations, as well as the catalyzer behavior over the course of lives and 

utilizations. 

 

2 Material and Methods 

 

 
Our work was concentrated on the study of the lives and of the utilizations of 

rhodium metal piece that, after being prepared is divided into two parts to 

optimize the metal resource. The observed sample consists of 78 yields 

catalyzers, each having two parts, A and B and a comparison of the number of 

lives and of the utilizations of different catalyzers was carried out. This sample 

has been collected from 2007 to 2012 in the pharmaceutical company. The 

minocycline synthesis process was implemented in 1992, however, the 

computational data were collected only after 2007. Furthermore, only in 2009 

occurred the solvent change, which is why there was no apparent reason to 

collect the yields data before that. During our study, we tried to answer the 

following research questions: 

 

1 – Do the catalyzers perform the same number of lives and utilizations? 

 

2 – Did the solvent change cause variations on the 2nd step yields? 

 

3 – Does DOT production differs significantly between the two halves of the 

rhodium catalyzer? 

 

4 - Does DOT production experience major changes over the course of the lives 

and utilizations? 
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We used a sample of 78 catalyzers, parts A and B, collected between 2007 and 

2012 in the pharmaceutical company and a 2013 sample was used to validate the 

computational model that was developed. To determine whether the catalyzers 

performed the same number of lives and utilizations and also to determine if the 

2nd stage of minocycline synthesis process yield suffered oscillations, 

comparative charts were plotted. Kolmogorov-Smirnov tests and Chi-Square 

independence tests were conducted to test the hypothesis of parts A and B of the 

catalyzers being identical (Oliveira, 2004). 

From Cipan data files, it was possible to calculate the yield of the 2nd step of 

the synthesis of minocycline by the ratio between kg DOT.T obtained and the 

kg raw material used (DMC). These yields were organized by lives and 

utilizations and their theoretical distribution was determined. For the 

development of a simulation model, most of the time pseudorandom numbers 

(PRN) are necessary (Costa, 2002, Anu, 1995). To proceed with its generation 

concerning minocycline 2
nd

 step, it was necessary to fit a theoretical distribution 

(or empirical) to each of the samples (Huber, 1999). This procedure extended 

from life 1 to 3 and from first utilization to the third. These were the samples 

with significant dimension. After fitting distributions to data, goodness of fit 

tests were performed to validate the fitting process (Oliveira, 2004, Böhm, 

2010).  

 

3 Graphical Results – Main findings 

 

  
Fig. 1 - Number of utilizations life 1 of the 

sample’s first 10 catalyzers  

Fig. 2 - Yield  and number of utilizations life 

1 of the sample’s first 8 catalyzers 

 

 
Figures 1 and 2 represent some of the charts that were drawn to point out the 

oscillations presented by the number of lives and utilizations. Thus, it is possible 

to realize that some of the catalyzers performed only 2 utilizations, while others 

reached 6 utilizations. In the course of the remaining lives, this situation repeats 

itself, clearly answering our first research question.  
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Fig. 3 – Yield in the course of life 1 

catalyzers 1 to 8  

Fig. 4 - Yield  in the course of life 2 

catalyzers 1 to 7 

 
In figures 3 and 4 we can realize a decreasing tendency in the yields obtained 

over the course of lives and utilizations. In these charts we can easily compare 

the yields behavior in the course of lives and utilizations.  

 

  
Fig. 5 - Kg of DOTB produced before the 

solvent change 

 

Fig. 6 - Kg of DOTB produced after the 

solvent change 

 

 

Trying to determine whether the introduction of the new solvent in 2009 caused 

significant differences in the performance of the rhodium catalyzers, we set out 

comparative charts of the yields. As you can see in figures 5 and 6, the 

differences between both are evident. Before 2009, some of the yields reached 

600-700 kgs of DOTB produced, while after that, the production reduced 

substantially. So, changing from Me-Oxitol to methanol due to environmental 

reasons caused major decreasing to DOT.T yield. 

 

  
Fig.7 - Kg of DOTB 1st utilization, parts  

A and B 

Fig.8 - Kg of DOTB 2nd utilization, parts 

A and B 
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Comparing both charts in figures 7 and 8, there seems to be insignificant the 

differences in the performance of parts A and B of catalyzer. We decided to 

carry out Kolmogorov Smirnov tests to check this possibility. If this possibility 

was confirmed, the study could be conducted considering that instead of 78 

catalyzers, parts A and B, we could consider a sample of 78 x 2 catalyzers. 

 

  
Fig. 9- Kg of DOT.B Life 1 - 1st utilization 

 

Fig.10 – Kg of DOT.B Life 1– 2nd 

utilization 

 

 

 
                     Fig.11 - Kg of DOTB Life 1 – 3rd utilization 

 
Figures 9 to 11 show that there are evidences of discrepancies in the amount of 

DOT.B produced in the course of lives. The frequency is greatly reduced in 

classes with smaller amounts of produced DOT.B reaching the highest 

frequency (about 40%) in the 200-225 kg class, which represents the highest 

yields. This distribution is consistent with the expected scenario: higher yields 

in the 1st life were expected. 

 

 

4 Statistical Tests 
 

Kolmogorov-Smirnov tests were performed to investigate whether the samples 

A and B were collected from identical populations. This process has been 

carried out for the study of lives. To investigate if the same happened with the 

utilizations, we decided to use Chi-Square for independent samples (David, 

1958). 
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We also used K-S tests to investigate if was there any difference in the yields of 

the 2nd step over the course of lives and utilizations. To perform K-S Test, we 

began by the clustering the amount of DOT.T produced in classes of 50 kg 

range and calculating its respective frequency. For each of the three lives of the 

following hypotheses were formulated: 

 

H0: Samples are withdrawn from two identical continuous populations 

H1: Samples are not withdrawn from two identical continuous populations 

 

To a significance level of 0.05 we obtained  and in table 1 

the different D values for each life is presented: 

 

Life D 

1  0.1667 

2 0.0741 

3 0.0741 
             Table 1- D levels K-S Test (lives) 

 
Thus, there is no statistical evidence to the 5% significance level that allows to 

reject the null hypothesis: samples A and B are withdrawn from two identical 

continuous populations.  
Chi-Square Test was applied to the catalyzer parts A and B used in DOT.T 

productivity, also considering grouping data in equal range classes. However, 

some of the conditions for the use of this test were not fulfilled: there were 

classes with  frequency equal zero and also classes with expected frequencies 

less than 5. We overcame these irregularities proceeding to the fusion of 

adjacent classes. 

 

For each utilization(1
st
 and 2

nd
) of the sample catalyzers we formulated the 

following hypotheses: 

 

H0: part A and part B of the catalyzer are identical 

H1: part A and part B of the catalyzer are not identical 

 

The Statistical Chi Square test results are presented in table 2. 

 

 

Utilization χ
2 
(0.05) χ

2 
(calculated) 

1
st
 9.488 7.024 

2
 nd

  9.488 6.764 
                             Table 2 - Chi Square values 1st and 2nd utilizations 
 

For the 3
rd

 utilization, the DOT.T productivity was very low, making it difficult 

to set up classes to screen the necessary conditions for the application of the Chi 
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Square Test. Thus, we chose to perform Kolmogorov-Smirnov test for two 

independent samples. The following hypotheses were formulated: 

 

H0: The samples are withdrawn from two identical continuous populations 

H1: Samples are not withdrawn from two identical continuous populations 

 

Since D observed was 0.657, which is greater than D (α) = 0.28, we rejected the 

null hypothesis at 0.05 significance level. 

 

After conducting this test for lives and utilizations, it seems acceptable to 

consider at 0.05 significance level that the parts A and B of the sample 

catalyzers (after the change of solvent occurred in 2009) are identical, except for 

3
rd

 utilization.  

 

By observation of figures 9, 10 and 11, it appears that DOT.T levels are 

decreasing. To test this assumption we carried out a K-S Test. The following 

hypotheses were formulated: 

 

H01: DOT.T yield (in kg) of the 1
st
 utilization and 2

nd 
utilization of the 1

st
 life are 

identical 

H11: DOT.T yield (in kg) of the 1
st
 utilization and 2

nd
 utilization of the 1

st
 life are 

not identical 

 

H02: DOT.T yield (in kg) of the 1
st
 utilization and 3

rd
 utilization of the 1

st
 life are 

identical 

H12: DOT.T yield (in kg) of the 1
st
 utilization and 3

rd
 utilization of the 1

st
 life are 

not identical 

 

H03: DOT.T yield (in kg) of the 2
nd

 and 3
rd

 utilization the 1
st
 life are identical 

H13: DOT.T yield (in kg) of the 2
nd

 and 3
rd

 utilization the 1
st
 life are not identical 

 

 

 

Utilization 
  

U1-U2 0.1667 0.26 

U1-U3 0.9074 0.27 

U2-U3 0.1032 0.27 
                            Table 3 – comparing D calculated and Dα between utilizations 

 
As D(obs) between 1

st
 and 2

nd
 utilization and between 2

nd
 and 3

rd 
utilization are 

lower than Dα at a significance level of 5%, it is acceptable to consider that, 1
st 

and 2
nd

 utilization as well as the 2
nd

 and the 3
rd

 utilization of the 1st life do not 

differ significantly. However, at that significance level, there are significant 

differences between the 1
st 

and the 3
rd

 utilization. 
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5 Fitting distributions to data 
 

In order to develop a possible simulation model, it was necessary to generate 

pseudorandom numbers. With this purpose, we fit continuous distributions to 

the yields samples (Alves, 2010, Krishnamoorthy, 2006), starting in life one, 

first utilization and ending in the first utilization from life three.  

These were the fitting obtained: 

 

Life/Utilization Probability Distribution Parameters 

Life1,1
st
 Utilization Weibull  α=10.067,β=0.57909 

Life1,2
nd

 Utilization Weibull α =16.855,β=0.60243 

Life1,3
rd

 Utilization Weibull α =14.92,β=0.59354 

Life 2, 1
st
 Utilization Gumbel σ=0.05145, μ=0.54778 

Life 2, 2
nd

 Utilization Weibull a=15.041,β=0.57493 

Life 2, 3
rd

 Utilization Logistic σ=0.02053,μ=0.5291 

Life 3, 1
st
 Utilization Weibull α =17.458,β=0.5441 

Table 4 - Distribution fitting 

 
Distribution fitting has been performed using EasyFit, a software tool which 

allows us to perform theoretical distributions adjustments to datasets. 

 

Goodness of fit tests were also conducted to determine whether the fitting were 

suitable. We performed K-S Tests and Chi-Square as well. In some cases, 

Anderson-Darling Tests have been executed to obtain more accurate 

conclusions (Böhm, 2010, Justel, 1997). 

 

Discussion/Results 
 

Based on the analysis and tests carried out, we conclude that the number of lives 

and utilizations showed differences between the catalyzers in the sample. It was 

also possible to observe that the parts A and B of the rhodium catalyzer were 

identical, that is, after the cut performed, the amount of metal contained in both 

halves was approximately equivalent. The change of solvent due to 

environmental reasons led to an evident decrease in DOTB production. It has 

been also possible to realize that the production levels declined over the course 

of lives and utilizations. Continuous distributions fitting have been performed 

which enable the generation of pseudorandom numbers, allowing to design a 

simulation model regarding the comparison of different policies for the use of 

the rhodium catalyzer. Our investigation allowed to clarify the initial research 

questions.  

 

Conclusion 

 
We studied a pharmaceutical company problem connected with the antibiotic 

synthesis process which led to large financial losses for the company. Our main 
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goal was to develop a simulation model that allowed to compare different 

utilization policies for a very expensive process component - the rhodium 

catalyzer, in order to optimize it. Pseudorandom number generation and 

goodness of fit tests were performed allowing to develop a useful simulation 

model for the pharmaceutical (Jain, 2008). Statistical analysis and statistical 

modelling were the major tools used to carry out this study. The resultant model 

proved to be a very useful tool, which can be improved in the future by inserting 

more process variables, besides the yields. 
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1 Introduction 
 

Research on complex dynamic systems requires, in most cases, recourse to 

different simulation techniques in order to estimate models which allow to 

explore the system and their properties, and to determine the probability of 

occurrence of an event or of its consequences.  

The uncertainties present in a system, and which will propagate in the model 

simulation, jeopardizing the validity of the information that will be collected, 

may be due to different causes: the lack of knowledge regarding the true value 

of a variable, the lack of knowledge about the model that best describes the 

system or on which the probability distribution function that best represents an 

amount of interest (Frey et al, 2004). The lack of information about the 

properties of the system makes the modeling of uncertainties assume such 

importance that its quantification can become the dominant issue in the tasks 

modeling, simulation and applications.  

The quantification of uncertainty in simulation model can be addressed in two 

perspectives: one, in which it is assumed that the model and its components do 

not vary in time and space and, in this case, the uncertainty lies in whether and 

when the model can be applied to produce reasonable results or when it will fail; 

mailto:conceicao.leal2010@gmail.com
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another, in which there are variations in time and/or space, and, in this case, the 

process is a stochastic process, which requires the use of stochastic approaches 

to quantify uncertainty. Among the several methodologies that have been 

developed and applied to the propagation of stochastic uncertainty analysis, and 

that vary with the complexity of the system and the model, the Stochastic 

Response Surface Methodology (SRSM), is gaining ground for allowing to 

reduce the high computational cost associated with the numerical simulation of 

the full models. SRSM is based on the combination of response surface methods 

with sampling Monte Carlo simulation or Latin Hypercubes. 

The simulation of environmental and biological dynamic systems, such as the 

transport of fluids and gases and their impact on human health, the underground 

storage of gases like     and their environmental impact, or structural systems 

and analysis of associated risk, are areas with different applications of the 

methodology, namely for quantifying the associated uncertainty. 

In this study an application of SRSM in medicine is presented. An application in 

the area of survival analysis is performed in order to estimate the density 

function of the time to recur (TTR) and the associated hazard function in breast 

cancer patients who have undergone surgery for excise cancer. 

The Wisconsin Prognostic Breast Cancer (WPBC) database, on which the study 

was developed, has been used in many researches on the breast cancer diagnosis 

and prognosis with intelligent systems and machine learning. Stands out in this 

work the Recurrence Surface Approximation, machine learning technique based 

on linear programming, which allows to predict the expected survival free 

disease in patients undergoing surgery for excision of breast cancer, according 

to morphological characteristics of nuclei malignant cells: size, shape and 

texture. With this technique a hyperplane is estimated which optimizes the 

estimates time to recur in patients to whom the tumor was excised. Mangasarian 

et al. (1995), Street et al (1995), Street (1998), Wolberg et al. (1999), 

Mangasarian et al. (2000) discussed methodological approaches. 

Anagnostopoulos et al.(2006) use the database to improve the work of Street 

(1999) on the prediction of disease-free interval with neural networks models. 

Other researchers, as Veillard et al. (2013), study the same type of prognostic 

factors, with current data and other evaluation techniques of cell nuclei images. 

 

2 Stochastic Response Surface Methodology – polynomials 

chaos expansion 
 

It is common to use Polynomials Chaos to represent responses of models subject 

to uncertainties. A mechanical model subject to uncertainties, or a simulation 

model, can be seen as a function of random variables or stochastic processes, 

and its response is also a random variable or stochastic process. 

According to Isukapalli (1999), SRSM with polynomial chaos expansion, allows 

to generate a reduced response model, computationally less demanding than the 

full numerical model and it is statistically equivalent. The estimation of the 

reduced model coefficients is obtained with the results of a limited number of 

the full model simulations. 
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The basic idea of the methodology is to represent the response of a model to 

changes in input random variables, through a response surface defined with the 

help of a basis of orthogonal polynomials with respect to a probability measure 

on the space of parameters. 

The classical approach assumes that random variables whose probability density 

functions are square integrable, can be approximated by the expansion in 

stochastic series of independent random variables or by direct transformation of 

these variables (Balakrishnan et. al., 2003). 

In the classic form of the methodology, a vector of   independent random 

variables   (  )         , is selected, under  (   ) distribution, to 

represent uncertain variables of a model   (  ), in such that     (  ). This 

selection made, response variables are represented as a function of the same 

vector of random variables:    (   )  with   being the vector of coefficients 

to estimate. Estimates of the model coefficients are obtained through the 

response of the complete system model to various achievements of ξ. The 

coefficients    quantify the dependence of the response vector Y on the input 

vector ξ, for each realization of  . 

The form of the   function is the result of the expansion with P terms in 

polynomials chaos - polynomials    which form a base of orthogonal 

polynomials to a given probability measure, expressed by    (   ), being  

 (   )     ∑      (   )  ∑ ∑        (       )
  
    

    
 
    

 

  ∑ (
     

 
)

 
    is the number of terms retained in the truncated 

expansion up to terms of degree 𝑝, in an approximation with   random 

variables, which corresponds to the total number of expansion coefficients to 

estimate. 

In the most common form of the methodology application it is used a basis of 

Hermite polynomials and the Gaussian measure (Ghanem and Spanos, 1991). 

Since the proposal of Isukapalli and Georgopoulos (1998) and Isukapalli 

(1999), which present two case studies, other approach proposals have emerged. 

Xiu and Karniadakis (2002(a,b), 2003(a,b)) proposed the generalized 

polynomial chaos expansion. They showed that it is possible to obtain greater 

precision in the response using non-Gaussian variables and replacing the 

Hermite polynomials by bases of orthogonal polynomials with respect to 

probability measure of input variables. 

Ernst et. al. (2012) presented conditions on the probability measures involving 

the mean square convergence of the expansion in polynomials of generalized 

chaos. 

Oladyshkin and Nowak (2012) proposed a new methodology generalization 

called arbitrary polynomial chaos expansion. In this new approach, the 

probability distributions of the variables are arbitrary, as well as the probability 

measures. Statistical moments are the only source of information that is 

propagated in the stochastic model. Probability distributions of the variables can 
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be discrete, continuous or continuous discretized. Its specification can be done 

by analytic via (by PDF or by CFD) histogram representation or by using raw 

data. In this approach, all distributions are admissible for the input variables of a 

given model, being sufficient to have a finite number of moments in common. 

Thus, in the case of considering a truncated polynomial, is not necessary to have 

the complete knowledge of the probability density function or even of its 

existence, it suffices to know a finite number of moments. It frees the researcher 

from the need to take distributions that are not always supported by existing data 

and gives him freedom to choose the statistical assumptions on which it moves. 

Oladyshkin et al. (2011) applied the methodology to a problem of underground 

storage of     and compared the results with those obtained with the 

conventional method. 

Studies show that this expansion converges exponentially and faster than the 

classical expansion.  Estimation of the model parameters depends on their 

complexity (Isukapalli and Georgopoulos, 1998). If the model is invertible, the 

model parameters can be obtained directly from the random input variables 

(  )   
   If, despite the nonlinearities, the equations of the model are 

mathematically manipulable, the model coefficients are determined by an 

appropriate norm minimization of residuals, after replacing the input random 

variables by the respective transformations in terms of Gaussian variables 

  (   ) (Galerkin method). When the model equations are difficult to 

manipulate or the model is a "Black Box" model, the coefficients can be 

estimated by the collocation point methods or by regression. 

 

If the estimation is made based on collocation methods, each set of points is 

chosen so that the model estimates are accurate at these points, which causes a 

set of linear equations whose solution yields the   model parameters. 

Isukapalli and Georgopoulus (1998) present some parameter estimation 

methods, all based on the collocation points methods: Probabilistic Collocation 

Method, Efficient Collocation Method and regression-based method, and this 

authors discuss their advantages and disadvantages. In the first two cases, each 

coefficient of expansion is written as a multidimensional integral, which can be 

resolved by simulation (Monte Carlo, Latin Hypercube) or quadrature. In 

regression-based method, coefficients are estimated by minimizing the mean 

squared error response. This method is more robust than probabilistic methods. 

Blatman and Sudret (2010) provide detailed descriptions of these methods. 

Regardless of the approach, the polynomial chaos expansion is a simple but 

powerful tool for stochastic modeling. Using the expansion, it is possible to 

estimate probability density functions (PDF), probability distribution functions 

(CDF), or other statistics of interest, and quickly evaluate these estimates using 

Monte Carlo simulation (MCS), once the evaluation of a polynomial function 

with MCS is faster than the original equations model evaluation, that generally 

are more complex.  
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3 Literature applications   
 

Isukapalli and Georgopoulos (1998) applied the SRSM to four case studies 

covering a range of applications, both from the perspective of the model 

application (biology, air quality and groundwater) and of its complexity. 

Datta and Kushwaha (2011) applied the SRSM to study the role of various 

hydro geologic parameters in the uncertainty assessment of the chemical 

contaminant concentration in groundwater. This study provides a program of 

environmental monitoring in the nuclear industry. 

Oladyshkin et al. (2012) applied the SRSM, based on the expansion of arbitrary 

polynomial chaos, to a problem of contaminant transport in 3D heterogeneous 

aquifer and the risk to human health caused by exposure of the population.  

.   

Soubra and Ahmed (2012) combined subset simulation method with the SRSM 

to perform probabilistic analysis of a shallow strip footing.  

Bastug et al. (2013) applied the SRSM in a model of gas injection into an 

incompressible porous media, and showed its effectiveness in uncertainty and 

sensitivity analysis of complex numerical models. 

Sun et. al. (2013) applied the generalized SRSM to assess leakage detectability 

at geologic carbon storage sites under parameter uncertainty. They demonstrated 

how SRSM can be used to construct probability maps for assessing the detection 

of anomalies on the coverage of underground geological storage formations, in 

space and time. 

Li et al. (2014) applied the SRSM to analyze the reliability of an underground 

cavern, associated with deterministic finite element methods. More specifically, 

the SRSM was used to perform the probabilistic analysis serviceability 

performance of the cavern. 

 

4 Example of application in medicine 
 

Stochastic Response Surface Methodology will be applied to the Wisconsin 

Breast Cancer Prognostic (WPBC) database, which is constituted by data of 253 

patients with breast cancer who have undergone surgical excision of invasive 

cancer. Of these 253 cases, 69 will be used, those that correspond to patients 

that had remission till the end of the study.  

The objective of the study is the estimation of a response surface model with 

Hermite polynomials in which the response variable T is the time to recur (TTR) 

or disease free survival (DFS) and the uncertainty parameters are three of the ten 

available covariates, related with morphological characteristics of the nucleus of 

malignant cells: AREA, TEXTURE and SMOOTHNESS (on average). 

This model will be used to estimate the distribution of the response variable and 

the resulting survival and risk functions. The database is very well described by 

Mangasarian et al. (1999). In this work the database in regard to the assumptions 

of normality and independence of the covariates. Different models were 

simulated with respect to the degree of the polynomial and the number and 

nature of the covariates included. 
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Considering the sample size and that used covariates revealed small values of 

correlation coefficients, although the Shapiro-Wilk variable AREA reveals a 

significant departure from normality, we assumed this assumption (ecxluding four 

outliers solve this problem  - p-value = 0.1992). 

  
 

 
                     Matriz de correlações 

 

Various probability distribution models were adjusted to the response variable 

(R fitdistrplus package, fitdist function). The distribution with best 

behaviour was gamma distribution (lower values of statistics and criteria). The 

Weibull distribution showed very similar values for all statistics and criteria. 

 

The estimation of the model coefficients in the polynomial chaos can be 

obtained by using experimental design data points, resulting from the 

combination of roots of a Hermite polynomial of degree a unit higher than the 

degree of expansion and located closer to zero, because are points more likely. 

The experiment is implemented in these points, and it is obtained the 

deterministic model or regression model. It turns out that in this case it is not 

possible to use experimental points, so the estimation of the model coefficients 

will be made by regression on the sample data. 

To this end, data were prepared and the matrix MRTAS was built with the 

images of the Hermite polynomials up to the second degree, in the three 

variables: AREA, TEXTURE and SMOOTHNESS.  

 

The second data-frame contains the variable processed in accordance with 

appropriate transformation to a normal distribution:           . 
 

 

 

 

 

               AREAN     SMOOTHN   TEXTUREN 

AREAN     1.00000000 -0.08316723 -0.1584508 

SMOOTHN  -0.08316723  1.00000000 -0.1572859 

TEXTUREN -0.15845076 -0.15728589  1.0000000 

shapiro.test 

AREA       p-value = 7.995e-07   

TEXTURA        p-value = 0.0987 

SUAVIDADE      p-value = 0.8454 

Correlations Matrix 

Goodness-of-fit statistics 

                             1-mle-gamma 

Kolmogorov-Smirnov statistic  0.09362092 

Cramer-von Mises statistic    0.07370940 

Anderson-Darling statistic    0.40613205 

Goodness-of-fit criteria 

                               1-mle-gamma 

Aikake's Information Criterion    609.1817 

Bayesian Information Criterion    613.6499 

> PATSMO2005R<-data.frame(MCANCRO=P2005R$CODE_B,AREA=P2005R$AREA,SMOOTH=P2005R$SMOOTH 

, 

+ TEXTURE=P2005R$TEXTURE,Y=P2005R$TIME_A,Z=P2005R$TIME_B) 

> PATSMO2005RN<- data.frame(MCANCRO=P2005R$CODE_B,AREAN=(P2005R$AREA-

mean(P2005R$AREA))/sd(P2005R$AREA), 

+ SMOOTHN=(P2005R$SMOOTH-mean(P2005R$SMOOTH))/sd(P2005R$SMOOTH), 

+ TEXTUREN=(P2005R$TEXTURE-

mean(P2005R$TEXTURE))/sd(P2005R$TEXTURE),Y=P2005R$TIME_A,Z=P2005R$TIME_B) 

> PATSMO2005RNS<- data.frame(AREAN=(P2005R$AREA-mean(P2005R$AREA))/sd(P2005R$AREA), 

+ SMOOTHN=(P2005R$SMOOTH-mean(P2005R$SMOOTH))/sd(P2005R$SMOOTH), 

+ TEXTUREN=(P2005R$TEXTURE-mean(P2005R$TEXTURE))/sd(P2005R$TEXTURE)) 

> library(EQL) 

> x1<-hermite(PATSMO2005RNS,1,prob=TRUE) 

> x2<-hermite(PATSMO2005RNS,2,prob=TRUE) 

> MR1ATS<-matrix(c(x1[,1]*x1[,2],x1[,1]*x1[,3],x1[,2]*x1[,3]),69,3) 

> MRATS<-data.frame(x1,x2,MR1ATS,R= PATSMO2005RN) 
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Was adjusted a first order linear model. 

PCE1<-lm(Y~AREAN+SMOOTHN+TEXTUREN,data= PATSMO2005RN) 
Residuals: 

    Min      1Q  Median      3Q     Max  

-34.463 -18.451  -5.882   8.033  82.015  

 

Coefficients: 

            Estimate Std. Error t value Pr(>|t|)     

(Intercept)   30.101      3.096   9.723 2.69e-14 *** 

AREAN         -6.295      3.178  -1.981   0.0518 .   

SMOOTHN        4.130      3.178   1.300   0.1983     

TEXTUREN      -5.117      3.207  -1.596   0.1154     

--- 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1  

 

Residual standard error: 25.72 on 65 degrees of freedom 

Multiple R-squared: 0.1168,     Adjusted R-squared: 0.07608  

F-statistic: 2.866 on 3 and 65 DF,  p-value: 0.04326 
 

In the first order model, it is observed that only intersect and variable AREA, 

gave a significant contribution to the model.  

Adjusted the second order model it is observed that intersect and terms AREA, 

        and               are significant. 
 

> PCERATS<-lm(R~AREAN+TEXTUREN+SMOOTHN+AREAN.1+TEXTUREN.1+SMOOTHN.1+X1+ 

+ X2+X3,data=MRATS) 

Call: 

lm(formula = R ~ AREAN + TEXTUREN + SMOOTHN + AREAN.1 + TEXTUREN.1 +  

    SMOOTHN.1 + X1 + X2 + X3, data = MRATS) 

 

Residuals: 

    Min      1Q  Median      3Q     Max  

-40.559 -12.888  -2.928   8.751  79.375  

 

Coefficients: 

            Estimate Std. Error t value Pr(>|t|)     

(Intercept)  30.2256     3.0888   9.785 5.76e-14 *** 

AREAN       -13.5806     4.4800  -3.031  0.00361 **  

TEXTUREN     -4.3718     3.6611  -1.194  0.23720     

SMOOTHN       2.4267     3.1655   0.767  0.44636     

AREAN.1       3.9472     1.4073   2.805  0.00681 **  

TEXTUREN.1   -0.9645     2.6137  -0.369  0.71342     

SMOOTHN.1     4.7846     2.6628   1.797  0.07749 .   

X1           -2.4691     4.2400  -0.582  0.56256     

X2            2.2082     4.5419   0.486  0.62864     

X3           -0.8439     3.5143  -0.240  0.81105     

--- 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1  

 

Residual standard error: 24.12 on 59 degrees of freedom 

Multiple R-squared: 0.2946,     Adjusted R-squared: 0.187  

F-statistic: 2.738 on 9 and 59 DF,  p-value: 0.009666 
 

Fitting a Cox model, none of the three covariates has showed to be statistically 

significant: 
 

       coef   exp(coef)   se(coef)     z Pr(>|z|) 

AREA     3.297e-04  1.000e+00  2.040e-04  1.616    0.106 

TEXTURE  4.557e-02  1.047e+00  3.127e-02  1.457    0.145 

SMOOTH  -1.143e+01  1.088e-05  1.069e+01 -1.069    0.285 

 

The assumption test to proportional hazards reveals no statistical evidence that 

these are not proportional to each variable or to the overall model. 
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       rho  chisq    p 

AREA    -0.0443 0.0695 0.792 

TEXTURE  0.0707 0.3577 0.550 

SMOOTH  -0.0497 0.1355 0.713 

GLOBAL       NA 0.6582 0.883 

 

Using the second order model, adjusted with Hermite polynomials, it is possible 

to simulate the probability distribution of the response variable by Monte Carlo 

sampling (Fig.1). 
 

> Nsim<-10^4 

> t<-0 

> X<-0 

> for (i in 1:Nsim) { 

+ u1=rnorm(1) 

+ u2=rnorm(1) 

+ u3=rnorm(1) 

+ T<-function(a1,a2,a3) { 

+ PCE<- 30.2256 -13.5806  *a1 -4.3718  *a2+ 2.4267*a3+ 

+ 3.9472 *(a1^2-1)-0.9645*(a2^2-1)+4.7846*(a3^2-1)-2.4691 *(a1*a2)+2.2082   *a1*a3-0.8439 

*(a2*a3) } 

+   t<-T(u1,u2,u3) 

+   X[i]<-t  } 

>    X 

 

> X1<-X[X>0] # Eliminar os valores negativos) 

> length(X1) 

[1] 9866 

density(X1) 

>   plot(f) 

 

 

 

From the moment the estimated density function of the response T (Fig.1) is obt

ained, it is possible to estimate the survival function (disease-free survival time) 

by: 

  (𝑡)    𝐹(𝑡)= 1, where F is the distribution function of T (Fig.3).  

This function can be compared with the Cox model (Fig. 4). 
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Fig. 1. Simulated density function 

of the Time to Recur  (TTR)         
Fig. 2. Empirical density function of  

the  Time to Recur  (TTR)         

> mean(X1)     [1] 30.7739 
> sd(X1)       [1] 16.8787 
> kurtosis(X1) [1] 2.282831 
> skewness(X1) [1] 1.132363 

> mean(P2005R$TIME_A)      [1] 30.10145 
> sd(P2005R$TIME_A)        [1] 26.75496 
> kurtosis(P2005R$TIME_A)  [1] 1.182963  
> skewness(P2005R$TIME_A)  [1] 1.317374 
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To estimate the hazard function, it is necessary to get the distribution that best 

fits the survival function. It was concluded that the Gamma function or the 

Weibull function provides the best fit to the PDF because they result in lower 

values of statistics and criteria (Fig.5). 

 

                                   
 

Weibull Gama 

> gofstat(fs2) 

Goodness-of-fit statistics 

                             1-mle-weibull 

Kolmogorov-Smirnov statistic    0.03318575 

Cramer-von Mises statistic      4.45026661 

Anderson-Darling statistic     27.00488424 

 

Goodness-of-fit criteria 

                               1-mle-weibull 

Aikake's Information Criterion      82226.78 

Bayesian Information Criterion      82241.17 

> gofstat(fs3) 

Goodness-of-fit statistics 

                             1-mle-gamma 

Kolmogorov-Smirnov statistic  0.03932581 

Cramer-von Mises statistic    3.81328090 

Anderson-Darling statistic   25.14518037 

 

Goodness-of-fit criteria 

                               1-mle-gamma 

Aikake's Information Criterion    82352.04 

Bayesian Information Criterion    82366.43 
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Once identified the distribution that best fits the survival function and 

considering that the function that describes the time until the patient experiences 

remission, hazard function, is defined by  (𝑡)  
𝑓(𝑡)

𝑆(𝑡)
 , where   (𝑡) the density 

function of T, it is possible to estimate H and to obtain its graphical 

representation.  
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Fig. 6. Comparison of survival function adjusted with simulated data and the survival 

function obtained with the Weibull or Gamma PDF fitted to simulated data.  

> #Função Hazard com a PDF Gamma 

> {x<-runif(10000,0,220) 

+ g<-function(x){ 

+ g<-dgamma(x,2.92905465,0.09507186)} 

+ S<-function(x){ 

+ S<-1-pgamma(x,2.92905465,0.09507186)} 

+ h<-g(x)/S(x)} 

> H<-data.frame(x,h) 

> plot(H$x,H$h, main=" Hazard Function(Gamma)",xlab="Disease 

Free Survival", ylab="Risk") 
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It can be observed that these two functions differ significantly in predicting risk 

probability.  

In a recent work, Ardoino et. al. (2012) investigate a generalization of the 

gamma model proposed by Cox et al (2006), to study the dynamics of breast 

cancer and Wahed et. al. (2009) propose a generalization of the Weibull density 

function, the models are fitted to a previously analyzed breast cancer data set, 

and its performance is evaluated using conventional methods of assessing the 

model fit. 

 

5 Conclusion 

Application of Stochastic Response Surface Methodology has higher expression 

in the computational modeling of complex systems, since simulation of the 

complete model usually implies high computational costs. This methodology 

has been applied mainly to the analysis of environmental risk, in problems of 

transport of particles and fluids, and in structural reliability analysis. In this 

work its application was tested to a problem of survival analysis, in breast tumor 

data related with morphological features of cell nuclei. 

Stochastic Response Surface Methodology was used to fit a model, with 

Hermite polynomials, to estimate time to recur of breast cancer, after excision of 

the tumor, according to three characteristics of the nuclei of malignant cells: 

area, texture and smoothness. These characteristics were measured on average, 

since images collected allow highlight from 10 to 40 tumor cells and were 

selected from a set of 30 variables, after a study of the correlations and the 

adjustment to normal distribution. It was observed a significant lack of fit to 

normality of AREA variable which can be solved excluding four outliers. We 

opted to keep these observations, since the sample size is significant, but it is 
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suggested a study of these observations in future work. 

We opted to fit the model with the data for which there was recurrence, aware 

that the results would suffer from a bias. As indicated by Street et al (1999), 

most observed recurrences were at relatively short times (a mean of 24 months) 

and therefore a regression method, which uses only these data, result in low 

prediction of recurrence time, coinciding with the bias of this particular data set. 

In future work censored data will be considered for the model fit. 

By Monte Carlo simulation, the model allow to estimate the probability density 

function of the response variable  (𝑡)  and survival function  (𝑡) which 

represents the likelihood of a patient to remain free of disease versus time. 

The hazard function is obtained with the analytical expressions of  (𝑡) and  (𝑡) 
functions. Thus, it was necessary to seek a probability density function that 

would fit well  (𝑡). The gamma function revealed a better fit. The generalized 

models used by Ardoino et al (2012) and Wahed et. al. (2009) can be explored in 

future work. 
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Abstract. In recent years, several attempts to improve the efficiency of the Canon-
ical Genetic Algorithm (CGA) have been presented. One of such attempts was the
introduction of the elitist non-homogeneous genetic algorithm whose advantage over
the CGA is that variations in the mutation probabilities are allowed. Such variations
permit the algorithm to broaden/restrict its search space as the mutation probability
increases/deacreases. The problem with this approach is that the way such changes
will happen has to be defined before the algorithm is initiated. In general such changes
happen in a decreasing way. Another way to vary the mutation probability is to use
controllers. Fuzzy controllers have been widely used to adjust the parameters of a
genetic algorithm. In this paper a stochastic controller is introduced along with a
convergence proof of the genetic algorithm which uses such controller to adjust the
mutation probability and a way to construct a stochastic controller from a fuzzy con-
troller. Numerical comparisons between the two types of controllers and the CGA are
performed. The general case with several input variables and two output variables
(mutation and crossover probabilities) is work in progress.

Keywords: Stochastic controller, Fuzzy controller, Genetic Algorithms..

1 Introduction

The Canonical Genetic Algorithm (CGA), introduced in Holland[8], is a com-
putational tool that mimics the natural genetic evolutionary process of a popu-
lation that undergoes three stages: selection, crossover (mating) and mutation.
In the CGA, a population of N individuals or chromossomes, (u1, u2, ..., uN ), is
considered. An evaluation function f : E → (0,∞) assigns to each individual
ui, i = 1, . . . , N a fitness value 0 < f(ui) < ∞. In the selection stage, the
actual population will be resampled, individuals with higher fitness are more
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likely to be selected and those with low fitness tends to be eliminated (elitist
selection). Following the natural evolutionary process, biological reproduction
(crossover) and eventual mutation occur. In the crossover stage, individuals are
independently chosen for crossover with a prescribed probability pc. Mutation
also operates independently on each individual with a prescribed probability
pm. In order to be easier for implementation, each individual is represented
by a binary vector of lenght l, where l depends on the desired precision. For
more details as well as implementation procedures see, for example, Campos
et al.[2], Pereira and Andrade [12], Goldberg[7] .

In optimization, CGAs are used to solve problems of the type max{f(x), x ∈
E} with the objective function satisfying 0 < f(x) < ∞. The individuals
represent the feasible solutions and the selection stage preserves with higher
probability the best fitted/searched points. In the crossover stage, neighboring
points are searched, allowing a refined comparison in the surrounding. In the
mutation stage, random points, possibly away from the preserved ones, are vis-
ited and constitute a strategy to avoid being trapped in local optimum points.

The non-homogeneous Genetic Algorithms (NHGA) was analysed in Cam-
pos et al.[1] focusing on the improvement of eficiency upon the CGA, by allow-
ing the mutation and crossover probabilities to vary under certain conditions.
The elitist genetic algorithm (EGA), which was introduced in Rudolph[15], was
a modification in the CGA that solved the problem of eficiency of the CGAs. A
non-homogeneous version of the EGA, called elitist non-homogeneous genetic
algorithm (ENHGA), was introduced in Rojas Cruz and Pereira[14] in order
to improve the eficiency of the EGA. Other attempts to improve the eficiency
of the CGA, without changing the mutation and crossover probabilities can be
seen in [3,5], some numerical comparisons between ENHGA and EGA, can be
seen in Campos et al.[2], and the proper way of running the ENHGA can be
seen in Pereira and Andrade[12].

The advantage of the ENHGA over the EGA is that variation of the mu-
tation probabilities (starting high and decreasing) permits the algorithm to
broaden its search space at the start and restrict it later on. The way in which
the mutation probabilities vary is defined before the algorithm is initiated. The
ideal would be for the parameters to vary, rather than only diminish, depending
on a certain measure of dispersion of the elements of the current population,
as well as the number of iterations of the algorithm. To this end, controllers
are introduced in the intermediate stages of the algorithm in order to adjust
such changes. Various types of controllers can be used for this task, ranging
from deterministic methods to those that employ fuzzy logic. Many simulation
studies have used fuzzy controllers to adjust the parameters in order to improve
the performance of the genetic algorithm. However, it has been only recently
[13] discussed the conditions that must be met by the controller in order to
ensure convergence of the genetic algorithm.

In [6] the authors describe a series of parameters of the GA and simulations
were developed to illustrate that variations on those parameters interfere with
the output of the algorithm. In [10] it is reported that, based on [6], one at-
tempt of defining the way of varying the parameters in order to improve the
performance of the algorithm was unsuccessfully tried. For this reason a fuzzy
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controller was proposed as a tool to control the parameters substantiated only
by simulations. In [14] sufficient conditions are given on the crossover and mu-
tation probabilities in order to guarantee the convergence of the GA. In many
others papers GA and fuzzy controllers are used but in a different way than
the one that is presented in this work: The GA is used to obtain a rule basis
and membership functions in a dynamic way, so that the performance of the
fuzzy controller is improved. An example of that use can be seen in [9] where a
GA, called “improved GA”, is used to adjust the rules and functions mentioned
above. However, no additional piece of information is given to explain why that
GA is better, but in [14] it is explained that an elitist version of this GA con-
verges. The contribution of our work is to define a naive stochastic controller,
to give sufficient conditions to the stochastic controller that is used to adjust
the mutation probability, has to satisfy in order to guarantee the convergence
of the GA. It also shows that this kind of controller is statistically as efficient
as the fuzzy one.

In this work, a fuzzy controller and a stochastic controller were constructed
where the input variable is the number of iterations Ng and the output variable
is the mutation probability (pm) . The convergence of the genetic algorithm us-
ing fuzzy controller can be seen in [13] while the convergence of the stochastic
controller is presented in this work. The stochastic controller will be con-
structed in the simplest way possible, using a Uniform distribution. This work
thus illustrates that if the input variable is the number of interations, although
the use of fuzzy controllers improves, in some sense, the genetic algorithm it
is not worth using it because the same improvement can be obtained using a
faster and lighter controller such as a stochastic controller. Many other input
variables can be used in a fuzzy controller as those presented in [10] and in the
references therein.

In Section 2 definitions and results concerning the non-homogeneous Markov
Chains that will be used in the rest of the paper are presented. In Section 3
the fuzzy controller with Ng as input variable and pm as output variable is
shortly described (which is extensively done in [4]). The stochastic controller is
lighter but expresses the relevant characteristics of fuzzy controllers by means
of statistical distributions. In addition convergence results are obtained. In
Section 4, numerical comparisons between the elitst non-homogeneous genetic
algorithm that uses a fuzzy controller and a stochastic controller for five special
functions are presented and statistical properties are obtained.

2 Preliminaries

Following notation from the previous section let f : E → (0,∞) be a function
subject to a genetic algorithm in order to find

x∗ = argmax{f(x), x ∈ E},

where E is a discretization of the domain of the function f . To proceed the
following steps of the algorithm, such points are represented as binary vectors
of length l, where l depends on the desired precision. A population of size N
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is considered, let Z = {(u1, u2, ..., uN );ui ∈ E, i = 1, 2, ..., N} be the set of all
populations of size N . Z is the state space of the Markov Chain that is used to
prove the convergence of the algorithm (see Campos et al.[1], Dorea et al.[5],
Rojas Cruz and Pereira[14] and Rudolph[15]).

The evolution of the ENHGA is different from the evolution of the EGA
just in the update of the values of the parameters pm and pc. Thus, the elitist
algorithm can be summarized in the following sketch:

a)Choose randomly an initial population having N elements, each one being
represented by a binary vector of length l, and create one more position,
the (N + 1)-th entry of the population vector, which will keep the best
element from the N previous elements.

b)Repeat

1. perform selection with the first N elements

2. perform crossover with the first N elements

3. perform mutation with the first N elements

4. If the best element from this new population is better than that of
the (N + 1)-th position, change the (N + 1)-th position by this better
element, otherwise, keep the (N + 1)-th position unchanged

5. perform pc and pm changes, as previously planned.

c) until some stopping criterion applies.

Denote this new state space by Z̃.
In Rojas Cruz and Pereira[14], it is shown that the ENHGA is a non-

homogeneous Markov Chain, with a finite state space Z̃, whose transition ma-
trices are given by Pn = SCnMn,∀n ∈ N, where S,Cn,Mn are transition
matrices which represent the selection, crossover and mutation stages respec-
tively. Here the Mn is composed by the third and fourth steps described in the
above sketch. In the same paper it is shown that there is a sequence {αn}n∈N
such that

inf
i∈Z̃,j∈Z̃∗

Pn(i, j) ≥ αn,

where Z̃∗ ⊂ Z̃, which contains all populations that have the optimum point
as one of its points. The following results were obtained as corollaries to their
main result.
Corollary 1: Let {Xn}n∈N be the Markov Chain which models the elitist non-
homogeneous genetic algorithm, if the sequence above is such that

∑
k≥1 αk =

∞ then

P ( lim
n→∞

Xn ∈ Z̃∗) = 1. (1)

A simpler condition to verify in actual implementations which guarantee the
above result is
Corollary 2: Let {Xn}n∈N be the Markov Chain which models the elitist
non-homogeneous genetic algorithm, if the mutation probabilities {pm(n)}n∈N
are such that pm(n) > γ > 0 for all n ∈ N or

∑
n pm(n)l <∞ then (1) holds.
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Figure 1. Fuzzy controler scheme

3 The Fuzzy Controller/The Stochastic Controller

A fuzzy controller has the ability to associate an output value with an input
value. Its implementation involves four essential components: fuzzification, the
inference method, the base rule and defuzzification, as shown in Figure 1 [11].

Fuzzification is the first part of the process, and it consists of converting
the numerical input into fuzzy sets. The second part involves definition of the
inference method that provides the fuzzy output (or control) to be adopted by
the controller, from each fuzzy input. The third step in the process (the rule
base) involves a mathematical ”translation” of the information comprising the
knowledge base of the fuzzy system. Finally, defuzzification is an operation
that converts a fuzzy set to a numerical value, which can be achieved using a
technique such as the Center of Gravity method described by the formula (of
weighted average of the membership function ϕ(A) of set A)

C(A) =

∫
uϕ(A)(u)du∫
ϕ(A)(u)du

(2)

Consider the following construction of fuzzy sets for the variables Ng and
pm, using the state variables: low (L), average (A), and high (H). These sets
were characterized by their membership functions, which define the extent to
which a determined element does or does not belong to the set. Figures 2 and
3 show the membership functions for Ng and pm.
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Figure 2. Membership function for Ng
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Figure 3. Membership function for pm

It was proved in [13] that
Theorem 1: If we use membership functions like those presented in figures 2
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Figure 4. Fuzzy controler outcome

and 3 and the Mamdani inference method, based on max-min operators and
the base rule consisting of three rules:

1. If Ng is low (L), then pm is high (H);

2. If Ng is average (A), then pm is average (A);

3. If Ng is high (H), then pm is low (L).

Then the non-homogeneous genetic algorithm controlled by this fuzzy controller
converges.
Now, let’s observe more closely the possible outcomes of this controller. As
time goes by, the number of iterations makes the rules be triggered, starting
with Ng = L what implies that pm = H is triggered, then Ng = L and Ng = A
are trigged together and that implies pm = H and pm = A are triggered
together too, and so on. Taking these rules into consideration and calculating
(2) we obtain the outcome of the fuzzy controller as a function of the number
of iterations illustrated in Figure 4.
Let us set up the following stochastic controller based on the outcome of the

fuzzy controller

out(n) =


0.8, 0 < n < 100
U1, 100 ≤ n < 200
0.4, 200 ≤ n < 500
U2, 500 ≤ n < 700
0.1, n ≥ 700

where U1 ∼ U [0.4, 0.8] and U2 ∼ U [0.1, 0.4].
Remark. We note that the numbers in the definition of the stochastic con-

troller are obtained by the membership functions. If the membership functions
change, then these values are likely to change too.

Using this stochastic controller to adjust the mutation probability in the
elitist non-homogeneous genetic algorithm, by corollary 2 of the former section,
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it converges. More generally

Theorem 2: If a stochastic controller is set up to adjust the mutation prob-
ability of an elistist non-homogeneous genetic algorithm, if its output satisfies
the hypothesis of corollary 2, then (1) holds.

Remark. In Theorem 2, the input variable(s) were not estabilished, that is
because we just need the output to satisfy the hypotheses of corollary 2.

4 Numerical Evaluations

We have used five test functions to compared the performance of three versions
of the GA: (i) the EGA; (ii) the ENHGA using a fuzzy controller on the mu-
tation probability pm and (iii) the ENHGA using a stochastic controler on pm.
The functions are:

1. f : [−2, 1]× [−2, 1]→ R given by

f(x) = 6 + x2 − 3 cos(2πx) + y2 − 3 cos(2πy)

2. f : [− 1280
63 , 124063 ]× [− 1280

63 , 124063 ]→ R given by

f(x) = 0.5− sin(
√
x2 + y2)2 − 0.5

(1 + 0.001(x2 + y2))2

3. f : [−4, 2]× [−4, 2]→ R given by

f(x) =
1

0.3 + x2 + y2

4. f : [−2, 2]× [−2, 2]→ R given by

f(x) = [1 + (19− 14x+ 3x2 − 14y + 6xy + 3y2)(x+ y + 1)2]

×[30 + (18− 32x+ 12x2 + 48y − 36xy + 27y2)(2x− 3y)2]

5. f : [−5, 10]× [0, 15]→ R given by

f(x) =

(
y − 5.1x2

4π2
+

5x

π
− 6

)2

+ 10

(
1− 1

8π

)
cos(x) + 10

All of the above domains were discretized so that x would lie in a grid of 212

points. The maximum is known for each function within the respective grid. In
the simulations we considered population sizes N of 10, 30 and 50 individuals.
For each N and each function we run 1000 trials and we recorded the number
of trials in which the optimum was found within 1000 interations. These counts
are displayed in the fourth column of Table 1. We also report in Table 1 the
maximum number of interations needed to reach the optimum (worst case) for
those instances where all 1000 trials were succesful. For example: given the
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first function, with N = 10, the EGA was succesful (before our fixed limit of
1000 interations) in 813 out of 1000 trials; still with the first function, with
N = 30, the ENHGA with the fuzzy controller was succesful in all 1000 trials
and all of them reached the maximum before the 716th interation.

Figures 5–9 show the evolution of our simulations and generally suggest
that either form of controller provides an improvement over the simple EGA.
Statistics from those simulations are provided in Table 1. The results in Table
1, specifically the third column (S), show an enormous gain in performance
when using a controller (either fuzzy (ii) or stochastic (iii)) over the standard
algorithm, except for function 3 and perhaps 4 where all versions seem equally
good. In other words, except for functions 3 and 4, the successes under algo-
rithm (i), Si, is much smaller than Sii and Siii. For function 1 with N = 10
the counts S seem less distant but a χ2 test for equality of those three propor-
tions (.813, .976, .980) reveal a significant difference (p-value < 0.001) which
we attribute to Si being smaller than Sii and Siii. The same test for equality
of two proportions was carried out for those cases where neither Sii nor Siii is
equal to 1000. These cases occurred in (Function, N) = (1, 10), (2, 10), (2, 30)
and (5, 10). The corresponding χ2 tests resulted in p-values bounded below
by 0.18 so we can safely conclude that there is no statistical difference between
the performances of algorithms (ii) and (iii) in terms of proportion of succesful
trials. In addition, the worst-case statistic (Table 1, fourth column) strongly
indicates that GA with the stochastic controller (iii) seems to require less inter-
ations to reach the maximum then the GA the fuzzy controller (ii): most such
cases favour (iii) over (ii); the largest difference – 299 iterations – favouring
(iii) was observed in case (3, 50) and the largest difference – 87 interations –
favouring (ii) was observed in case (1, 30). Finally, there is an enormous gain
in execution time when comparing (iii) with (ii) given the simplicity of the
stochastic controller over the fuzzy controller. Since our functions were rather
simple we did not experience prohibite execution times but this can be an issue
in larger problems.
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Figure 5. Number of succesful trials across 1000 simulations each limited to 1000
iterations using function 1 and different population sizes N . Dotted line represents
scheme (i)–no controller, dashed line scheme (ii)–fuzzy, and full line scheme (iii)–
stochastic.
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Figure 6. Number of succesful trials across 1000 simulations each limited to 1000
iterations using function 2 and different population sizes N . Dotted line represents
scheme (i)–no controller, dashed line scheme (ii)–fuzzy, and full line scheme (iii)–
stochastic.

5 Conclusions

The literature has many studies in which fuzzy controllers have been used to
adjust the parameters of a genetic algorithm, some of them using the number
of iterations of the algorithm as input variable. This work presents a very
light stochastic controller to adjust the mutation probability which does not
require any expensive calculation in its evolution. The idea was to compare this
stochastic controller with a fuzzy one. We have given conditions under which
such controllers make the elitist non-homogeneous genetic algorithm converge.
Our simulations using five test functions suggest that the elitist genetic algo-
rithm is greatly improved by the use of the two controllers considered. Most
interestingly is the fact that we observed no statistical difference between the
fairly expensive fuzzy controller and the much simpler stochastic one. In fact,
the performance was even better under the simple stochastic controller in many
cases. Thus, when the input variable is the number of interations, the computa-
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Figure 7. Number of succesful trials across 1000 simulations each limited to 1000
iterations using function 3 and different population sizes N . Dotted line represents
scheme (i)–no controller, dashed line scheme (ii)–fuzzy, and full line scheme (iii)–
stochastic.

tional effort can be reduced by using the light stochastic controller to adjust the
mutation rate instead of the fuzzy controller without any loss in performance.
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Figure 8. Number of succesful trials across 1000 simulations each limited to 1000
iterations using function 4 and different population sizes N . Dotted line represents
scheme (i)–no controller, dashed line scheme (ii)–fuzzy, and full line scheme (iii)–
stochastic.
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Table 1. Simulation results considering the five functions described in the text and
three versions of the GA: (i) the EGA, (ii) the ENHGA using a fuzzy controller on
pm and (iii) the ENHGA using a stochastic controler on pm.

Function N GA Successes Worst case
(S) (iterations)

(i) 813 -
10 (ii) 976 -

(iii) 980 -
(i) 986 -

1 30 (ii) 1000 716
(iii) 1000 803
(i) 998 -

50 (ii) 1000 416
(iii) 1000 398

(i) 96 -
10 (ii) 894 -

(iii) 859 -
(i) 232 -

2 30 (ii) 996 -
(iii) 998 -
(i) 304 -

50 (ii) 1000 779
(iii) 1000 574

(i) 964 -
10 (ii) 1000 904

(iii) 1000 795
(i) 1000 945

3 30 (ii) 1000 660
(iii) 1000 426
(i) 1000 517

50 (ii) 1000 593
(iii) 1000 294

(i) 887 -
10 (ii) 1000 776

(iii) 1000 686
(i) 976 -

4 30 (ii) 1000 445
(iii) 1000 398
(i) 997 -

50 (ii) 1000 125
(iii) 1000 126

(i) 280 -
10 (ii) 926 -

(iii) 941 -
(i) 421 -

5 30 (ii) 1000 833
(iii) 999 -
(i) 516 -

50 (ii) 1000 453
(iii) 1000 459
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Abstract. As a branch of Block Designs, research on Balanced Incomplete Block
Designs (BIBD) arose several interesting and defying problems within Combinatory
Mathematics. Hadamard Matrices are present in our daily life and it give rise to
a class of block designs named Hadamard configurations. It is easy and current
to find different applications of it based on new technologies and codes of figures
such as Quick Response Codes (QR Codes). These are bi-dimensional barcodes that
can be easily read by common devices which have image capture function, such as
mobile phones. Risk is the potential of losing something of value, weighed against
the potential to gain something of value. There are several types of risk and we will
focus on information security risk, namely on the information loss for QR Codes.
Connections between the various methodologies and QR Codes will be discussed.
Keywords: BIBD, Combinatorial Designs, Hadamard Matrices, QR Codes.

1 Introduction

Models with orthogonal block structure, OBS, are mixed models with the fam-

ily ν =
{∑m

j=1 γjQj ; γ ∈ Rm+
}
, of variance-covariance matrices where the

Q1, ..., Qm are pairwise orthogonal orthogonal projection matrices, POOPM,
summing to the identity matrix, In. These designs were introduced by [10]
and [11], and continue to play an important part in the theory of randomized
block designs, see for instance [1] and [2]. Refer to [6] and [13] for historical
developments of the mixed model. The inference for these models is centered
on the estimation of treatment contrasts, see [7].
We will consider a special class of models with OBS, the commutative orthogo-
nal block structure, COBS, in which T, the orthogonal projection matrix on the
space Ω spanned by the mean vector commutes with the matrices in principal
basis of a CJA A, pb(A), see [4].

Imbedded orthogonality will be within a submodel or submodels of a larger
model. We will consider two situations in which the submodel or submodels

Stochastic Modeling, Data Analysis and Statistical Applications (pp. 315-323)
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have COBS. A model has such a structure if it has variance-covariance matrix

V =

m∑
j=1

γjQj , (1)

where γ1, ..., γm will be the canonical variance components.
As we shall see it may worthwhile to use results on COBS in developing the
inference for the full model.
The first situation we will consider, in section 3, will be L extensions of COBS.
Then the full model will have observations vector

Y = LY o + e, (2)

where L is a matrix with linearly independent column vectors and Y o will cor-
respond to a model with COBS and e will be an error vector with null mean
vector and variance covariance matrix σ2In assumed to be independent from
Y o.

The second situation, in section 4, is that of structured families of COBS.
Given a fixed effects orthogonal models we will have for each of its treatments
a model with COBS. These submodels will have the same space spanned by
their mean vectors and the same variance covariance matrix. Then their family
will be isomorphic.
In the first situation Y o will be at the core of the global model so we will call
it the core model. In the second situation we have two strata. The first strata
will correspond to the fixed effects model which we will call the base model
while the second strata will correspond to the family of COBS.
When analyzing L extensions we will be generalizing the treatment we have
for the core model which is quite different of our purpose for the third section.
Then we will study the factors of the base design on the estimable vectors of
the models of the family. Thus our purpose will be quite distinct in the two
situations. Nevertheless the algebraic structure of COBS will provide, in both
cases, the base for inference.

2 Mixed models with COBS

A mixed model

Y =

w∑
i=0

Xiβi, (3)

where β0 is fixed and the β1, ..., βw are random, independent, with null mean
vectors and variance-covariance matrices θ1Ic1 , ..., θwIcw , will have mean vector
µ = X0β0 and variance-covariance matrix

U =

w∑
i=1

θiIci , (4)
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where the matrices Mi = XiX
>
i , i = 1, ..., w. The orthogonal projection matrix

on the space spanned by µ will be

T = X0(X>0 X0)+X>0 , (5)

where (X>0 X0)+ is the MOORE-PENROSE inverse of X>0 X0. Moreover, see
for instance [8],

ψ = Gβ0 (6)

is estimable if and only if G = CX0 and it’s Least Square Estimator, LSE, will
be

ψ̃ = Gβ̃0 (7)

where
β̃0 = (X>0 X0)+X>0 Y. (8)

When the matrices T,X1, ..., Xw commute there will be POOPM Q1, ..., Qm,
see [5], such that 

T =
∑z
j=1Qj

Mi =
∑m
j=1 bi,jQj , i = 1, ..., w.

(9)

Let R(W ) be the range space of W. If

R[X1, ..., Xw] = Rn (10)

we have

R(

w∑
i=1

Mi) = R([X1, ..., Xw]) = Rn (11)

and since
w∑
i=1

Mi =

m∑
j=1

(
w∑
i=1

bi,j

)
Qj (12)

we must have
m∑
j=1

Qj = In, (13)

otherwise
∑w
i=1Mi would not be invertible. Moreover we will have

V =

m∑
j=1

γjQj (14)

with

γj =

w∑
i=1

bi,jσ
2
i , j = 1, ...,m. (15)

Then when the matrices T,M1, ...,Mw commute and R[X1, ..., Xw] = Rn the
model is COBS.
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Since, then, T and V commute the Least Square Estimator, LSE, will be, see
[15], Best Linear Unbiased Estimator, BLUE.

Considering

γ(1) =

 γ1...
γz

 , γ(2) =

γz+1

...
γm

 , σ2 =

 σ
2
1
...
σ2
w

 ,
and partitioning matrix B = [bi,j ] on

B = [B(1) B(2)], (16)

where B(1) has z columns, we get

γ(l) = B(l)>σ2. (17)

We now point out that

R(Qj) ⊂ R(T ), j = 1, ..., z, (18)

and so we can only directly estimate the γz+1, ..., γm, which correspond to the
components of γ(2). But, when the row vectors of B(2), that are the column
vectors of B(2)>, are linearly independent we will haveσ2 = (B(2)>)+γ(2)

γ1 = B(1)>(B(2)>)+γ(2).
(19)

In this case γ(2) and σ2, the relevant parameters for the random effects part
of the model determine each other. Then this part segregates a submodel and
we say there is segregation.

Let the row vectors of Aj constitute an orthonormal basis for R(Qj), j =
1, ...,m, and put 

ηj = Ajµ, j = 1, ...,m

η̃j = AjY, j = 1, ...,m,
(20)

then ηj = 0, j = z + 1, ...,m, since the row vectors of Aj , j = z + 1, ...,m, are
orthogonal to Ω = R(X0) and µ ∈ Ω. The η̃j = 0, j = 1, ...,m, will have mean
vectors ηj , j = 1, ...,m, and variance-covariance matrix

AjV A
>
j = γjQj , j = 1, ...,m, (21)

since
AjQj′A

>
j = 0gj×gj′ , j 6= j

′
, (22)

where gj =rank Aj =rank (Qj), j = 1, ...,m. Thus, with

Sj = ‖AjY ‖, j = 1, ...,m, (23)
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we have
E(Sj) = gjγj , j = z + 1, ...,m, (24)

and, consequently, the unbiased estimators

γ̃j =
Sj
gj
, j = z + 1, ...,m. (25)

Moreover, if ψ = Gβ is estimable we have G = CX0 as well as

ψ = Cµ0 = CTµ0. (26)

Now Qj = A>j Aj , j = 1, ...,m, and T =
∑z
j=1Qj =

∑z
j=1A

>
j Aj so that

ψ = C

z∑
j=1

A>j ηj =

z∑
j=1

Cjηj , (27)

with Cj = CA>j , so the estimable vectors are generalized linear combinations
of the canonical estimable vectors η1, ..., ηm. The η̃1, ..., η̃m are the LSE of the
η1, ..., ηm and

ψ̃ =

z∑
j=1

Cj η̃j . (28)

3 L extensions

The orthogonal projection matrix on 	 = R(L) is

P = LL+ = L(L>L)+L>. (29)

Given
Y = LY o + e, (30)

we take Z = L+Y having, since the column vectors of L are linearly inde-
pendent, Z = Y o + eo, where eo has null mean vector and variance-covariance

matrix σ2L+L+>
and is independent of Y o. Then Z will have mean vector µ

and variance-covariance matrix

m∑
j=1

γjQj + σ2L+L+>. (31)

But now the LSE for ψ will be

ψ̃
o

= Gβ̃
o

0 (32)

with
β̃
o

0 = (X>0 X0)+X>0 Z. (33)
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With 
ηj = Ajµ, j = 1, ...,m

η̃oj = AjZ, j = 1, ...,m,
(34)

where in the expression of the η̃oj we replaced Y o by Z, j = 1, ...,m, we have

ψ̃ =

z∑
j=1

Cj η̃
o
j . (35)

Moreover η̃oj will have mean vector ηj and variance-covariance matrix

m∑
j=1

γjQj + σ2AjL
+L+>

A>j , j = 1, ...,m, (36)

so,

Soj = ‖η̃oj‖2, j = z + 1, ...,m, (37)

will have mean value gjγj + tjσ
2, j = z + 1, ...,m when tj is the trace of

AjL
+L+>

A>j , j = z + 1, ...,m. (38)

Then for applying the previous results on estimation of variance components we
have only to estimate σ2. The orthogonal projection matrix on the orthogonal
complement 	⊥ of 	 is

P⊥ = In − P (39)

where n is the number of components of Y. Since

P⊥Y = P⊥e (40)

and P⊥e has null mean vector and variance covariance matrix σ2P⊥, the mean
value of

S = ‖P⊥Y ‖2 (41)

will be gσ2, with g = n− n, where n is the number of components of Y. Thus
we have the unbiased estimators

σ̃2 = S
g

γ̃j =
So
j−tj σ̃

2

gj
, j = z + 1, ...,m,

(42)

from which we estimate the components of σ2 and γ(1) if there is segregation.
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4 Families and Regressional Families

Let us consider COBS

Y (u) =

w∑
i=0

Xiβi(u), u = 1, ..., u (43)

with the same model matrices, and also the same covariance components σ2
i , i =

1, ..., w. The observation vectors Y (u), u = 1, ..., u, are assumed to be indepen-
dent.
These models will have mean vectors

µ(u) = X0β0(u), u = 1, ..., u, (44)

so there estimable vectors will be the

ψ(u) = Gβ0 = Cµ(u), u = 1, ..., u, (45)

since we must have G = CX0, for ψ(u), u = 1, ..., u to be estimable.
The orthogonal projection matrix on Ω = R(X0) will be

T = X0(X>0 X0)+X>0 , (46)

the same for all these COBS, as well as their variance-covariance matrix

V =

w∑
j=1

σ2Mi, (47)

with, as before, Mi = XiX
>
i , i = 1, ..., w. Since these models are COBS,

T,M1, ...,Mw (48)

commute and there will be POOPM Q1, ..., Qm, such that
T =

∑z
j=1Qj

Mi =
∑m
j=1 bi,jQj , i = 1, ..., w.

(49)

So, as before

V =

m∑
j=1

γjQj (50)

with

γj =

w∑
i=1

bi,jσ
2
i , j = 1, ...,m, (51)

this is the variance components, both usual and canonical, are the same for
all the COBS. Moreover assuming that the row vectors of Aj constitute an
orthonormal basis for R(Qj) we can define the

ηj(u) = Ajµ(u), u = 1, ..., u

η̃j(u) = AjY (u), u = 1, ..., u
, (52)
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continuing to have ηj(u) = 0, j = z + 1, ...,m, as well as

ψ(u) =

z∑
j=1

Cjηj(u), (53)

where Cj = CA>j , j = 1, ..., u. The ηj(u) = 0, j = 1, ..., z, u = 1, ..., u will be
the estimable vectors for the COBS. As before, the

Sj(u) = ‖η̃j(u)‖2, j = z + 1, ...,m, u = 1, ..., u, (54)

will have mean vectors gjγj , with gj =rank (Qj), j = z + 1, ...,m. Since the
Y (u), u = 1, ..., u, are independent so the Sj(u), u = 1, ..., u, j = z+1, ...,m will
be independent. So we are led to use the unbiased estimators

γ̃j =

∑u
u=1 Sj(u)

ugj(u)
, j = z + 1, ...,m, (55)

for the components of γ(1). If the COBS are segregated we will also have the
unbiased estimators  σ̃2 = (B(2)>)+γ̃2

γ̃1 = B(1)>(B(2)>)+γ̃2

. (56)

Let us now assume that the COBS in the family correspond to the rows of
a model matrix K = [kl,h] with linearly independent row vectors. We can
consider the columns of K as containing levels of h quantitative factors. Our
purpose in the joint analysis of the COBS will be to study the action of these
factors on the estimable vectors of the COBS. To do this we will consider linear
regression with model matrix K for dependent variables with values

λ̃(u) = a>ψ̃(u), u = 1, ..., u, (57)

so we may say that the COBS constitute a regressional family. It is easy to
see that all conditions required for adjusting linear regression hold for these
families.

5 Final Remarks

The two situations we considered are quite distinct. In the first of these there
was an unique COBS located ”up-stream” while in the second one we had
several COBS located ”down-stream.” The COBS orthogonality was relevant
in both cases so it is not location bounded.
Then imbedded orthogonality may be relevant in many cases.
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Abstract. The determination of optimal designs for models with correlated errors
is substantially more difficult and for this reason not so well developed. Stochas-
tic process with parametrized mean and covariance is observed over a compact set.
The information obtained from observations is measured through the information
functional (defined on the Fisher information matrix). In this paper we will focus on
efficient designs for the parameters of correlated processes observed on plane. We will
discuss the role of equidistant designs for the correlated process. Such designs have
been proven to be optimal for parameters of trend of stationary Ornstein-Uhlenbeck
process. More complex geometry of planes allows us to construct monotonic and
space-filling designs. In the first case we relate to non-reversibility of diffusion, natu-
rally modeled by Ornstein-Uhlenbeck sheet. In the manuscript a comparison between
space filling designs and monotonic designs is made.
Keywords: monotonic design, Latin hypercube design, Ornstein-Uhlenbeck sheet.

1 Introduction

The determination of optimal designs for models with correlated errors is sub-
stantially more difficult and for this reason not so well developed. Stochastic
process with parametrized mean and covariance is observed over a compact
set. The information obtained from observations is measured through the in-
formation functional (defined on the Fisher information matrix). We focus on
efficient designs for parameters of correlated processes and discuss the role of
equidistant designs for the correlated processes. Such designs have been proven
to be optimal for parameters of trend of stationary Ornstein-Uhlenbeck pro-
cess (see Kisělák and Stehĺık[5]). For such a process we provided a study of
small samples and asymptotical comparisons of the efficiencies of equidistant
designs whilst taking both the parameters of trend as well as the parameters
of covariance into account. If only trend parameters are of interest, the de-
signs covering more or less uniformly the whole design space will rather be
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efficient when correlation decreases exponentially (see Kisělák and Stehĺık[5]).
Some other issues on designs for spatial processes, i.e. identifiablity and ex-
istence of optimal designs, are given in Dette et al.[4], Müller and Stehĺık[7]
and Stehĺık et al.[9]. For the case of a complicated setup we shall introduce
a compound criterion (see Müller and Stehĺık[6]) and an integrated compound
criterion to discuss their potential of optimal designing for parameters of cor-
related processes. The role of heteroscedasticity is studied in Boukouvalas et
al.[3]. Finally, the application in troposphere methane modelling will illustrate
the developed methods (see Rodŕıguez-Dı́az et al.[8]). In this paper we provide
a comparison between monotonic and space-filling designs, introduced in the
case of Ornstein-Uhlenbeck sheets in Baran et al.[2] and Baran and Stehĺık[1].

2 Calculation of Fisher Information

Fisher information (FIM hereafter), obtained from observations and measured
through the information functional, was the parameter of interest in this sim-
ulation study. It was calculated on basis of the following equations (1) and
(2). The first approach (1) assumes equidistant design points on the diagonal
of a square [0,1]x[0,1]. With the aid of equation (2) FIM can be calculated,
e.g. for factorial design with points in [0,1]x[0,1]. The third approach is done
on the basis of Latin Hypercube designs, whereby Fisher information matrix
calculation is based on equation (2). However, the third approach can be split
in two procedures where the first is built on S-optimality and the second on
optimal euclidean distances between the points. The following equations show
the differences in the computation of Mθ(n), representing FIM of θ with respect
to n, the number of design points.

Mθ(n) = 1 +

n−1∑
i=1

1− qi
1 + qi

, where qi = exp(−αdi − βδi) (1)

Mθ(n) = 1nC
−1(n, r)1n, with (2)

C(ε(s1, t1), ε(s2, t2)) =
σ̃2

4αβ
· exp(−α · |t1 − t2| − β|s1 − s2|)

and α > 0, β > 0, σ̃ > 0. The parameters α and β were set 1 and σ̃ = 2 such
that the fraction of the covariance matrix equals to 1, wherefore no influence
on behalf of this term is given.

The results of the computations for several design points are listed in Ta-
ble 1. Obviously, Mθ(n) increases with increasing number of design points.
Different starting values for FIM were calculated in addition to different mag-
nitudes of the increase between the approaches, however, the parameter of
interest does not exceed 2.18 for any design. As the header of the table shows,
the first column displays the number of generated design points and the second
one FIM with equidistant design points. In the third column FIM resulting
from factorial design is shown and the last two columns present the results
for the two different optimizing options with Latin Hypercube designs. Fisher
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information for the factorial design equals to 2.1378 for every n, because this
computation can only be performed for the four possible points on a [0,1]x[0,1]
square {(0,0), (0,1), (1,0), (1,1)}. Further computations of this design are
impossible in this setup without additional conditions.

n Equidistant Factorial LHS Impr. LHS
2 1.7616 2.1378 1.5883 1.4209
3 1.9242 2.1378 1.7496 1.7804
4 1.9645 2.1378 1.6522 1.6809
5 1.9797 2.1378 1.7203 1.8714
6 1.9869 2.1378 1.8007 1.8282
7 1.9908 2.1378 1.7953 1.8324
8 1.9933 2.1378 1.9036 1.9029
9 1.9948 2.1378 1.8871 1.8816

10 1.9959 2.1378 1.9135 1.9291
15 1.9983 2.1378 1.9773 2.0257
20 1.9991 2.1378 2.0223 2.0324
30 1.9996 2.1378 2.0668 2.0797
40 1.9998 2.1378 2.1189 2.1131
50 1.9999 2.1378 2.1100 2.1294

100 2.0000 2.1378 2.1742 2.1789

Table 1. FIM for different number of design points (n) and the introduced designs

In order to have a graphical overview of the development of FIM concerning
the number of generated design points, the results are plotted in the Figures 1
and 2. Figure 1 shows that equidistant design leads to higher FIM with less
than 15 design points. The calculated FIM for the two LHS designs are over-
taking equidistant design at a threshold between 10 and 20 and keep increasing
slightly. However, FIM for equidistant design is increasing rarely (from n = 10
to n = 100, ∆ = 0.0041; see Table 1), hence, the higher the number of obser-
vations the larger is the difference in terms of FIM to the other approaches.
In Figure 2 we highlight the development of FIM for the first 15 observations
which enables a comparison for the LHS designs with different optimization
rules. Thereby, optimizing with respect to euclidean differences results in a
higher Fisher information, however, the difference decreases with increasing
observation numbers. Moreover, it is shown that more than 15 observations
are needed to compute higher FIM from Latin Hypercube designs compared to
equidistant design.

3 Computation and Comparison for different Parameters

Aim of this section is to emphasize the impact on Fisher information for the
four introduced designs due to changes in the parameters, i.e. β in the following
simulation study.
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Fig. 2. Development of FIM for number of
design points. Zoom to 2 ≤ n ≤ 15

3.1 Analysis for α = 1, β = 10, σ̃ = 1

The values of the parameters α, β, σ̃ have changed to 1, 10 and 1. Therefore, the
effect of an increase in β on the Fisher information can be observed. Moreover,
this leads to the fact that the fraction in the correlation structure is unequal
to 1. Table 2 and Figure 3 show the Fisher information calculated with the
defined designs given the introduced change in β, which enables checking the
four designs against each other and with respect to the number of observations.
In this setup it can be seen that FIM is higher for the LHS designs than
for equidistant design, beginning with 4 generated design points. Recall that
for β = 1 the FIM of LHS designs overtake FIM of equidistant design with
more than 15 observations. Hence, it can be assumed that an increase in β,
ceteris paribus, leads to the fact that fewer observations (4 instead of 15 due
to an increase of β from 1 to 10) are needed to compute higher FIM for Latin
Hypercube than for equidistant design. The differences between the two LHS
approaches are rarely noticeable (not exceeding 0.04), wherefore in Figure 3
Latin Hypercube designs optimized with respect to euclidean difference also
represent S-optimality. Moreover, the difference between LHS and equidistant
design by comparing FIM is increasing with increasing number of design points.

3.2 Simulation Study for different β and n

Table 3 shows the calculations of FIM for the introduced designs, where α re-
spectively σ̃ are equal to 1 and β uses every integer between 1 and 10. Hence,
10 calculations for every number of observations are necessary, whereby the
first column for each designs is a calculation with β = 2. The purpose behind
this sensitivity check is to see the impact of a misclassification of β, given the
known true parameter is 2. The main result of this comparison is that an in-
crease in β leads to larger increases in LHS designs compared to equidistant
design, regardless of the number of observation. Equidistant design leads to
higher FIM for small numbers of design points, although, by increasing β and
n one will compute higher FIM from Latin Hypercube designs. The underlying
randomness in the computation of the LHS design points is responsible for the
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Equidistant factorial LHS Impr. LHS
2 2.0000 3.9147 1.9866 1.9850
3 2.9837 3.9147 2.9192 2.9402
4 3.8505 3.9147 3.8603 3.8578
5 4.5193 3.9147 4.7733 4.7796
6 5.0025 3.9147 5.6652 5.6703
7 5.3459 3.9147 6.5539 6.5220
8 5.5918 3.9147 7.3766 7.3605
9 5.7710 3.9147 8.2137 8.1866
10 5.9042 3.9147 9.0017 8.9738
15 6.2335 3.9147 12.7110 12.7123
20 6.3514 3.9147 16.0476 16.0391
30 6.4350 3.9147 21.7060 21.7431
40 6.4638 3.9147 26.4036 26.4125
50 6.4770 3.9147 30.3338 30.3173
100 6.4943 3.9147 43.1648 43.1954

Table 2. FIM for different number of design points (n), α = 1, β = 10, σ̃ = 1
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Fig. 3. Development of FIM for number of Design Points, α = 1, β = 10, σ̃ = 1

fact that in this simulation example 40 observations, defined as n∗, would be
needed to compute higher FIM of LHS than for equidistant design, given β = 1.
Increasing β leads to a monotonic decrease in n∗ such that only 8 observations
for β = 2 and solely 4 observations for β = 10 are needed.
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Table 4 shows the calculated differences, defined as ∆, between FIM with
true parameters β = 2, α = 1 and misclassifications of α = 1 and β = 1 − 10
(except for 2). Obviously, larger differences are observed for larger deviations
from the true parameter β. The same effect can be observed for increasing
number of observations.

4 Conclusions

In this paper we illustrated that monotonic design should be taken as an inter-
esting benchmark design for cases when researchers expect non-reversibility of
time (process cannot step back in time). In fact we have seen that efficiencies
for monotonic designs are comparable (if not better in certain setups) to the
efficiency of space-filling designs. More discussion and statistical derivation can
be found in Baran and Stehĺık[1].
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7. W.G. Müller and M. Stehĺık. Issues in the Optimal Design of Computer Simulation
Experiments, Applied Stochastic Models in Business and Industry, 25, 163–177,
2009.
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Abstract Experimental design with blocks was first presented by Sir Ronald A.
Fisher in the beginning of the 20th century, considering applications in agriculture.
It became one of the areas of mass development for research in various fields, from
agriculture to medicine, playing a central role not only on the research process but
also on the new technological advances.

As a branch of block designs, research on Balanced Incomplete Block Designs
(BIBD) arose several interesting and defying problems within combinatory mathe-
matics.

BIBD designs can be constructed and analysed more easily with the aid of com-
puter tools, such as the The R Project for Statistical Computing, which, as will be
shown, contains several different tools just for this purpose.

Hadamard matrices are present in our daily life, they give rise to a class of block
designs named Hadamard configurations. It is easy and current to find their different
applications based on new technologies and codes of figures such as Quick Response
Codes (QR Codes). These are bi-dimensional bar codes that can be easily read by
common devices which have image capture function, such as mobile phones. The use
of such codes is very popular nowadays in simple things like to send a simple text
message, a picture or for a batch of information regarding a product or more.

Risk is the potential of losing something of value, weighed against the potential
to gain something of value. There are several types of risk, one of them is the infor-
mation loss for QR Codes and that will be presented in this paper. QR Codes can get
damaged, and their data can be lost. Data recovery mechanisms for QR Codes are
implemented as a compromise between error correction level and data storage capac-
ity. The more the recovery capability the less data that can be stored. Connections
between the various methodologies and QR Codes will be discussed.

Keywords: BIBD, R Statistics, Hadamard Matrices, Quick Response Codes (QR
Codes), Risk.
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1 Introduction

Jacques Salomon Hadamard was a french mathematician that during his life
has tirelessly published papers and books of high quality. One of the works for
which he is remembered is the Hadamard matrices.

The foundations of block designs were laid down by Sir Ronald Fisher in
the early 1930’s. It became one of the areas of mass development for research in
various fields from agriculture to medicine, as well as to other areas of research.

Following his seminar work, several techniques were presented in order to
analyse data and to present new kinds of designs of experiments.

Research on block designs began with randomized block designs which play
an important role in the design and analysis of experiments, see e.g., Caliński &
Kageyama (2000)[3], (2003)[4], Research in this area was followed by develop-
ments considering Incomplete Block Designs (IBD). Balanced Incomplete Block
Designs (BIBD) and Partially Balanced Incomplete Block Designs (PBIBD).
The adjective incomplete refers to the block size (k) and the variety set (v),
with k < v, while balanced refers to each pair of varieties occurring in the same
number of blocks. In BIBD every pair of varieties concur in the same number of
blocks. A review of some main concepts associated to BIBD will be presented.

The Hadamard matrices are a class of matrices introduced by Jacques
Hadamard in 1893. In this class of matrices, entries are +1 and −1 so that
rows are mutually orthogonal. A Hadamard matrix, H, is said to be skewed if
the relation H> + H = 2I holds, where H> stands for the matrix transpose of
H and I represents the identity matrix. Besides this condition, the matrix rows
are mutually orthogonal, which will have direct impact to their use, namely if
one thinks in geometric terms, this means that every pair of rows (i, j), with
i 6= j, will represent two perpendicular vectors. To better understand these
matrices the concept of tensors is crucial. These are geometrical entities intro-
duced in mathematics and physics to generalize the notion of scalars, vectors
and matrices. A tensor is a form of representation associated with a set of op-
erations like sum and product. A finite body with q elements is denominated
a Galois Field, GF (q). If the order of a is q − 1 then a is a primitive element
of GF (q).

The notation BIBD (v, b, r, k, λ|b∗) is used to describe a BIBD (v, b, r, k, λ)
with precisely b∗ distinct blocks. Oliveira (2010)[15] presents some develop-
ments on this matter.

The most primeval of all block designs is the completely randomized design
(complete blocks design). However, in many practical situations, the adoption
of a design like that is not appropriate and in some cases, is not at all feasible.
This fact led to the development of various types of incomplete block designs,
which in turn have been used extensively for experiments in many areas. It was
observed by Fisher that the random allocation of treatments to experimental
units, eliminates the bias in the evaluation of differences between treatments.
In certain experimental situations there may exist systematic variations present
in the experimental units.

For example, in an agricultural field experiment, the experimental units are
typically ground portions (parcels). In this kind of experiment, there may be a
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fertility gradient such that portions having the same level of fertility are more
homogeneous than those which have a different level of fertility. In experiments
with pigs, which were considered the experimental unit, it is very likely that the
pigs belonging to the same litter are genetically closer to each other than those
belonging to different litters. Similarly, in experiments with cattle, several
breeds may be involved and animals that belong to the same race are expected
to be statistically more similar than those belonging to different races. In
clinical trials with patients, these form the experimental units. The assays
can be performed in different centers, and patients in the same center may
be more similar than those from other centers due to differences in treatment
practices and management procedures followed in different centers. In the
situations of the previous examples using totally random experimental design is
not appropriate. In fact one must take advantage of a priori information about
the systematic variations, so that this information can be used to eliminate the
effect of this variability, which will be reflected in a smaller experimental error,
thus increasing the accuracy of the experiment. Incomplete block designs are
used when it is impractical to use all treatments in each block. In incomplete
block designs no variety occurs more than once in the same block. Due to
the wide application of experimental design using incomplete block designs on
areas of cutting edge research, and also on many questions still open in the
theoretical framework, these designs are of particular interest.

The QR Codes are two-dimensional barcodes that can be easily read by a
device capable of image capture, as is the case of most existing mobile phones.
These codes can represent text, an address for a web site (URL), a phone
number, a geo-referenced location, an email, a contact or an SMS. They were
initially used for cataloging parts in vehicle production. Nowadays many QR
codes are used for several different tasks such as inventory management and
stock control, from industry to trade. Recently mobile applications, were de-
veloped so that they can allow their users to read these codes using a camera
phone. QR Codes are common in magazines and advertisements, where they
are used to encode different kinds of information, or for instance to provide
contact information, as detailed as if they were a personal or business card.
QR Codes have become a focus of advertising companies, since they provide an
effortless way to access the advertised brand’s website. On a personal computer
these codes can be read with the aid of a scanner. QR codes have, as the base
of their error correcting structure, Hadamard matrices.
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2 Objectives

This paper proposes to illustrate error correction on QR Codes through the
use of Hadamard matrices as error correction promoters and their connection
to incomplete block designs.

These Hadamard matrices form an important part of the family of error
correction codes, denominated ReedMuller codes. These are used in practice
on the QR Codes, CDs, DVDs, DSL internet, digital tape devices, digital tv
and satellite transmission of signals. This paper will focus in particular on the
error correction applied to QR Codes.

In the next section will be presented the basic foundations of BIB designs,
followed by a review of Paley Hadamard matrices and how these two are related.
Then it will be illustrated how these matrices are used on the Reed-Solomon
error correction code, and how these apply to QR Code error correction. Some
examples will be presented.

3 BIBD and R Project for Statistical Computing

A Balanced Incomplete Block Design is an arrangement of v treatments (vari-
eties) in b blocks, each of size k(< v), where each variety occur exactly r times
and every pair of varieties concur in exactly λ blocks. The necessary, but not
sufficient conditions for the existence of a BIBD are: v < b

vr = bk
λ(v − 1) = r(k − 1)

A balanced incomplete block design consists of five parameters, such that:

v represents the number of varieties
b represents the number of blocks
r is the number of occurrences of each variety
k the block length
λ the number of blocks each pair occurs in

In order to generate balanced incomplete block designs with the aid of the
computational statistical program ’R’, we can use the extra ’package’, ’cross-
des’. This ’package’ includes several functions that assist in building balanced
designs. Each BIBD produced with the aid of this ’package’, has five param-
eters described above. To install the ’package’ the command ’install.packages
(”crossdes”)’ is used. To load the ’package’ in order to be able to use the
functions contained herein, the command ’library (”crossdes”)’ is used. The
’find.BIB’ function is used to generate a block design with a specific number of
treatments, blocks (which correspond to the lines of the generated plan) and
elements per block (corresponding to the columns of the generated plan). It
is also possible to use another function to test if the generated plan meets the
conditions to be a BIBD. For instance, to create a design with five treatments
in four blocks of three elements the function is as follows:
> find.BIB(5, 4, 3)

The R output is:
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Figure1. Output of instruction find.BIB(5,4,3).

The resulting structure is not a BIBD because the treatments are not all re-
peated the same number of times. This observation can be confirmed by using
the ’isGYD’ function as follows: ’isGYD (find.BIB (5, 4, 3))’. The result of
executing this function in ’R’ is:

Figure2. Output of instruction isGYD(find.BIB(5,4,3)).

Consider now another example, this time with seven treatments and seven
blocks of three elements:

Figure3. Output of instruction find.BIB(7,7,3)
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It is confirmed through the use of the ’isGYD’ function that this experi-
mental design is indeed a BIBD:

Figure4. Output of instruction isGYD(find.BIB(7,7,3)).

Another useful ’package’ to generate outlines plans for balanced incomplete
block designs, is the ’dae’. As the one above, this package has several different
functions targeted to aid in obtaining experimental designs. The following
example illustrates the use of one of the features of ”dae”, the ”fac.layout ’
to generate an experiment of balanced incomplete block design consisting of
randomized factors:

Figure5. Randomized factors BIBD with 3 treatments and 4 blocks.

A page from CRAN - The Comprehensive R Archive Network, aggregates all
the existing information about the various ’packages’ related to experimental
design with the aid of the ’R’. This page can be found at the url: http://cran.r-
project.org/web/views/ExperimentalDesign.html. This page presents first the
general-purpose packages and proceeds to those that perform more specific
tasks such as the ones used in the design of experiments for agriculture, industry
and clinical trials among others.
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4 Hadamard Matrices

A Hadamard matrix is a square matrix Hn of order n with entries ±1 if
HnH

>
n = nIn. If Hn is Hadamard matrix then HnH

>
n = nIn. A Hadamard

matrix remains so when any row or column is multiplied by −1. Having this
into consideration, one can always write a Hadamard matrix with its first row
and first column having only +1’s, that it is a normal form an Hadamard ma-
trix.
If, Hn exists for n = 1 then H2, can be written like the one bellow:

H2 =

[
1 1
1 −1

]
.

More examples of Hadamard Matrices:

H4 =


1 1 1 1
1 −1 1 −1

1 1 −1 −1
1 −1 −1 1

 ; H8 =



1 1 1 1 1 1 1 1
1 −1 1 −1 1 −1 1 −1
1 1 −1 −1 1 1 −1 −1
1 −1 −1 1 1 −1 −1 1

1 1 1 1 −1 −1 −1 −1
1 −1 1 −1 −1 1 −1 1
1 1 −1 −1 −1 −1 1 1
1 −1 −1 1 −1 1 1 −1


4× 4 Hadamard matrix 8× 8 Hadamard matrix

The necessary condition for the existence of a Hadamard matrix Hn, n > 2
is that n ≡ 0(mod4); more about this can be found on Hall (1986)[7]. Hadamard
matrices for all permissible values of n ≤ 100, with the exception of n = 92
can be found on Plackett and Burman (1946)[16]. Only later on Baumert et
al. (1962)[1], presented a Hadamard matrix of order 92.

According to Hedayat and Wallis (1978)[8] and Sawade (1985)[19] Hadamard
matrices have their existence confirmed for all permissible values of n ≤ 424.
If Hm and Hn are Hadamard matrices of orders m e n, respectively, then their
tensor product Hm⊗Hn is a Hadamard matrix of order mn. So, in particular,
a Hadamard matrix Hn of order n where n = 2s and s ≥ 2 is an integer, can be
built by taking the s-fold tensor product of H2 with itself, as it is given above:

H2s = H2 ⊗H2 ⊗ · · · ⊗H2︸ ︷︷ ︸
s times

5 Relationship between Hadamard matrices and BIBD

Consider a Hadamard matrix H4u, which without loss of generality, is assumed
to be in its normal form. Delete from H4u, its first row and first column of all
ones to obtain a matrix A of order (4u− 1)× (4u− 1).

Define, N = 1
2 (A + J4u−1).
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This means that N is obtained from A, by replacing the −1’s in A by zero
and keeping +1’s unaltered. Then, it is not hard to see that N is the incidence
matrix of a BIB design with parameters:

v = 4u− 1 = b ; r = 2u− 1 = k ; λ = u− 1 (1)

Conversely, if M is the incidence matrix of a BIB design with parameters
given by (1), then by replacing the zeros in M by−1 and bordering the resultant
matrix by a row and column of all ones, a Hadamard matrix of order 4u is
obtained.

Theorem 1. The existence of a Hadamard matrix of order 4u is equivalent to
the existence of a BIB design with parameters given by (1).

Example 1 - Consider a Hadamard matrix H16 which can be obtained by
forming the tensor product H4 ⊗H4, where H4 is as below:

H4 =


1 1 1 1
1 −1 1 −1
1 1 −1 −1
1 −1 −1 1


Following the construction method described above, a solution of a BIBD

structure with parameters v = 15 = b, r = 7 = k, λ = 3 is obtained.

6 Application of Hadamard Matrices to Error
Correction

ReedMuller codes are a family of linear error-correcting codes used in commu-
nications. Special cases of ReedMuller codes include the Hadamard code, the
Walsh-Hadamard code and the ReedSolomon code.

The Hadamard code is an error-correcting code that is used for error detec-
tion and correction when transmitting messages over very noisy or unreliable
channels. A famous application of the Hadamard code was the NASA space
probe Mariner 9 in 1971, where the code was used to transmit photos of Mars
back to Earth.

Generalized Hadamard codes are obtained from a n× n Hadamard matrix
H. To obtain a code over the alphabet {0, 1}, the mapping 1 7→ 1, 1 7→ 0, or,
equivalently, x 7→ (1x)/2, is applied to the matrix elements.

To get the punctured Hadamard code with n = 2k−1 the chosen Hadamard
matrix H has to be of Sylvester type, which gives rise to a message length of
log2(2n) = k. QR-Codes contain codewords that are 8 bits long and use the
ReedSolomon error correction algorithm with four different error correction
levels. The higher the error correction level, the less the available storage
capacity there is.

The Reed-Solomon algorithm was created by Irving Reed and Gustave
Solomon, both engineers at MIT’s Lincoln Labs. It was published in the paper:
“Polynomial Codes over Certain Finite Fields”. Reed-Solomon codes are of the
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same family of error correcting codes as the Hadamard codes. The rows of a
k × v generating matrix, for a generalised Reed Solomon (RS) code GRk(c, 1),
where c = (1, c, . . . , cv−1) for some c ∈ GF (q), of order v, are rows of a cocyclic
matrix. For v = p, an odd prime number, the resulting Reed-Solomon codes
are cocyclic Hadamard codes. Reed-Solomon codes are thus closely related to
Hadamard matrices as well.

7 Risk

Risk is a probability or threat of damage, injury, liability, loss, or any other
negative occurrence that is caused by external or internal vulnerabilities, and
that might be avoided through a preemptive action. There are several types
of risk, meaning different classes or various forms of risk such as, project risk
which are the factors that could cause a project to fail, business risk which are
associated with the level of exposure a business will face if a project fails, pro-
duction system risk which considers the running costs of a project, economic
risk which can be manifested in lower incomes or higher expenditures than
expected, health, safety, and environmental risk even though these are sepa-
rate areas, they are often linked because a single risk event may have impacts
in all these three areas. Other types of risk are security risk which concerns
the protection of assets from harm caused by deliberate acts and information
technology and information security risk, among many others. The one that
concerns QR Codes the most, is the information security risk in its area of
information loss risk. Here, information loss risk refers to the problematic of
losing important data, contained in the QR Code.
Risk assessment is the process of identifying potential hazards and analyze
what could happen if a hazard occurs. A hazard is a recognized threat. There-
fore risk assessment is the determination of quantitative or qualitative value of
risk related to a concrete situation and a recognized threat. There are various
methods for performing risk assessment, however there is one believed to be
the most straightforward for most organisations. This method consists of five
steps: identify the hazards, decide who might be harmed and how, evaluate
the risks and decide on precaution, record the findings and implement them
and the final step is to review the assessment and update it if necessary.
For QR Codes there is a significant risk of damage and therefore risk of loss
of the information contained in it. As an exemplification a risk assessment
can be determined for a QR Code. This particular QR Code is assumed to be
part of a publicity campaign and it is assumed to be exposed to the elements,
therefore the chance of damage to this code is enlarged. Here the exposure
factor is assumed to be .30, meaning the code endures a damage of 30%. The
asset is assumed to be really valuable for the company conducting the publicity
campain, therefore the single loss expectancy or SLE is, considering the previ-
ous factors, also high. Therefore it is really important to try and maintain the
information contained on the QR Code as retrievable as possible,even under
this risky conditions. To prevent the loss of information on this QR Code a
greater error correction level should be used when the code is created. As said
previously there are four levels of error correction that can be used: Level L −
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up to 7% damage, Level M − up to 15% damage, Level Q − up to 25% damage
and Level H − up to 30% damage. This values are described on the ISO/IEC
18004:2000(E) setion 8.5.1, table 12[20]. In this conditions where the QR Code
is exposed to the environmental elements, such as rain, wind, sun, dirt, etc. the
H level should be used, so even though there was 30% of damage to this QR
Code, the information contained in it would still be totally readable. Examples
of damaged QR Codes are presented in figures 6., 7. and 8. As such, when
creating QR Codes for example for business cards, the chances of it getting
dirty are rather low and it is desirable to have a QR code as small as possible.
Here a standard 7% error threshold is enough and very suitable for cards and
other printed matter. However if QR codes are going to be used outdoors, on
cars and trucks or any place where data may be obscured by dirt then setting
the error correction to a higher setting is advisable. Unfortunately the higher
the error correction level that is used the less information that can be written
on to the QR Code. So there is a compromise between risk mitigation and
information providing.

Figure6. QR Code exposed to the environmental elements
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Figure7. Damaged QR code, is still decodable thanks to error correction. Image
source: WikiPedia.

Figure8. Another example of a damaged QR Code.

This QR code contains the url to the SMTDA Conference, even with the
paint on it, the code is still readable.

8 Final considerations and Conclusions

This work explores connections between BIBD, Hadamard matrices and QR
Codes. Nowadays BIB Designs find the most diverse applications in various
fields and it is important to explore new applications and also to improve
the existing ones using this knowledge area as a new challenge to innovation.
Hadamard matrices are of extreme importance and we can find them in various
aspects of our daily life. It is quite easy and current to see their different
applications based on new technologies mainly on computational level. QR
codes can fully take advantage of the classical concepts, by combining and
exploring theoretical and practical connections, they are related also with error-
correcting codes and with visual cryptography. The relation between BIBD and
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Hadamard matrices can be explored as there are so many optimal properties
in these designs and several open issues to explore. QR Codes are sometimes
exposed to conditions where their data can be lost, therefore it is very important
to limit that risk by the use of error-correcting strategies. Links to risk analysis
should not be ignored. This has been illustrated through the use of several
examples.
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Abstract. The paper describes the various types of combinatorial designs applied in Statistical
Design of Experiments. We give more detailed information about Balanced Incomplete Block
Designs (BIBDs) and Orthogonal Arrays (OAs). The ”difference matrix”- method for achieve-
ment of OAs is also described. Based on it two new constructions of orthogonal arrays (6,15)
and (6,20) are obtained. They are non-isomorphic to the already known constructions of such
arrays. The known (7,12)−OA is also discussed.

Keywords: balanced incomplete block design, difference matrix, orthogonal array, quasi-
difference matrix.

1 Introduction

Orthogonal arrays(OAs), first introduced by Rao in 1947, are essential combinato-
rial structures. Their mathematical theory is inspiring, beautiful and closely related
to combinatorics, geometry, finite fields and error-correcting codes. They are used
in various scientific fields such as computer science, cryptography and statistics. The
Statistical Design of Experiments is that branch of the statistics, where these structures
are widely applied and that is the reason to be immensely important in areas, where
a lot of research interests are concentrated, like manufacturing, medicine, agriculture
and many others. More detailed information can be found in [1].
The statistical theory of the Experimental design was mainly initiated by R.A.Fisher
[2] in the 1935s at the Rothamsted Experimental Station as a performance of agri-
cultural experiments, but later it has been applied successfully in the military and
industry. For example, Besse Day, working at the U.S. Naval Experimentation Labo-
ratory, used the methods to solve problems such as finding the cause of bad welds at a
naval shipyard during World War II [3].
Many experiments involve the study of the effects of two or more factors. The most
efficient way to see the relationship between the independent variables(factors) is so
called factorial design. By this technique, we mean that in each complete trial or
replication of the experiment all possible combinations of the levels of the factors
are investigated. But in many cases the number of treatments to be tested is large,
which need more materials and respectively will increase the cost of experimentation
in terms of labor, time and moreover money. In certain situations, we may not be able
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to run all the treatment combinations in each block. In incomplete block designs, the
block size is smaller than the total number of treatments to be compared. But when
all comparisons are equally important, the combinations used in each block should be
selected in so called balanced manner, that is, we must construct such block that any
pair of treatments occur together in the same number of times as any other pair. These
are the balanced incomplete block designs (BIBD), in which any two treatments occur
together an equal number of times. Such designs are introduced by Yates in 1936 [6]
and are similar to the construction of the orthogonal arrays, as we will see below.
Consider two sets T and B, whose elements are t treatments and b blocks respectively
in a BIBD, that satisfy the following conditions:
(i) each block contains exactly k members
(ii) each treatment occurs in exactly r blocks(or is replicated r times)
(iii) each pair of treatments occurs in the same block exactly λ times.
A balanced incomplete block design has five parameters t,b,r,k,λ and can be defined
as a collection of b subsets of size k from a set of t treatments, such that (i),(ii) and (iii)
are satisfied. The parameter λ must be an integer. If we denote by n the total number
of observations, we have the following relations between the parameters:
(i) r.t = b.k = n
(ii) λ (t−1) = r(k−1)
If t = b, the BIBD is said to be a symmetric BIBD.
The statistical model for the BIBD is

yi j = µ + τi +β j + εi j

where yi j is the i−th observation in the j−th block, µ is the overall mean, τi is the ef-
fect of the i− th treatment, β j is the effect of the j− th block and εi j is the NID(0,σ2)
random error component.
The second part of the article gives detailed information about the technique for find-
ing difference matrix and quasi-difference matrix, which will help us to construct
orthogonal array. As we mentioned, they are used extensively in factorial designs be-
cause of their similar structure to the block designs.
The last section demonstrates some results, derived by computer realization of the
methods, described in the previous part.

2 On the Construction of Difference Matrices

The purpose of this section is to describe some different techniques for finding com-
binatorial designs. It will be discussed various approaches with so called difference
matrix(DM) and quasi-difference matrix(QDM). Such matrices are constructed via
algebraic arguments. More detailed information is given in [4,5].
One of the relevant and interesting questions in the theory of Latin squares is how
to determine the maximum possible number, denoted by N(ν), of mutually orthog-
onal Latin squares of order ν (MOLS(ν)). It is well known that for each ν ≥ 2,
N(ν)≤ ν−1. Summarized results for N(ν) can be found in [7].
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Let S be a non-empty set of order ν . A Latin square of order ν is a ν × ν matrix
L, in which ν distinct symbols are arranged so that each element of S appears once
in each row and column. Let L1 and L2 be Latin squares of same order, say ν ≥ 2.
We say that L1 and L2 are orthogonal if, when superimposed, each of the possible ν2

ordered pairs occur exactly once. A set {L1, ...,Lt} of t ≥ 2 Latin squares of order ν

is orthogonal if any two distinct Latin squares are orthogonal. We call this a set of
mutually orthogonal Latin squares(MOLS).
The existence of k−2 MOLS((ν)) is equivalent to the existence of an orthogonal array
OA(k,ν), which is defined as a k×ν2 matrix

A = {(ai j), i = 1, ...,k, j = 1, ...,ν2}

over a ν-set S, such that any two rows contain all the ordered pairs of elements from
S exactly once. In this case, it is customary to say that the orthogonal array has index
unity (λ = 1) and strength k. It is known that k ≤ ν + 1. A k× ν sub-matrix of an
OA(k,ν) is called a parallel class, if every row in it is a permutation of the elements of
S. An OA(k,ν) is called resolvable, if its columns can be split into ν disjoint parallel
classes. The existence of an OA(k,ν) possessing a parallel class is equivalent to the
existence of k− 2 idempotent MOLS((ν)). The existence of a resolvable OA(k,ν) is
equivalent to the existence of k− 1 MOLS((ν)) [4,5]. Orthogonal arrays are combi-
natorial designs, that can be obtained from difference and quasi-difference matrices,
which will be defined below.
Let Γ = {1,g2, ...,gν} be a group of order ν . A k×λν matrix

D = {(di j), i = 1, ...,k, j = 1, ...,λν}

with entries from Γ is called a (ν ,k;λ )-difference matrix over Γ and is denoted by
DM(ν ,k, ;λ ) if it satisfies the difference property: for each 1≤ i < j≤ k, the multi-set

{dild−1
jl ;1≤ l ≤ λν}

(the difference list) contains every element of Γ λ times. When Γ is abelian, i.e.
Γ = {0,g2, ...,gν}, typically additive notation is used, so that differences dil−d jl are
employed. Removing any row from a (ν ,k;λ )-difference matrix gives a (ν ,k−1;λ )-
difference matrix, i.e. the difference property still holds. A DM(ν ,k;λ ) does not exist
if k > λν . A (ν ,k)-difference matrix over Γ gives rise to a resolvable OA(k,ν) and
hence to an OA(k+1,ν).
In the case when λ = 1 a (ν ,k;1)-difference matrix, denoted by DM(ν ,k), gives rise
to OA(k,ν) by developing it through the group Γ in the following way:

OA(k,ν) = (DM|DM.g2| . . . |DM.gν)

In many cases MOLS are obtained from quasi-difference matrices, that is a matrix
which contains an additional to the group elements point often denoted by ∞. Below
we discuss the construction of these matrices.
Extend the group Γ by an additional element {∞}(point infinity) and denote it by
Γ∞ = Γ ∪{∞}= {1,g2, ...,gn,∞}. Consider a k×λ (ν +2) matrix over the group Γ∞,
so that:
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(i) each row contains the point {∞} exactly λ times and each column contains it at
most once
(ii) for any two distinct rows, the difference property stay in force, i.e. for every
i, t ∈ {1,2, ...,k}, i 6= t the list of differences {di jd−1

t j } contains each element of Γ ex-
actly λ times (differences with the additional element ∞ are undefined).
Such matrix is called (ν ,k;λ ) quasi-difference matrix over (Γ∞,G) and is denoted
by QDM(ν ,k;λ ). In case when λ = 1, denote it by QDM(ν ,k).An orthogonal ar-
ray OA(k,ν + 1) can be obtained developing QDM(ν ,k;λ ) over the subgroup G and
adding an additional column consisting of points infinity - (∞,∞, ...,∞)T in the
following way:

OA(k,ν +1) =

QDM QDM.u2 . . . QDM.un

∞

∞

...
∞


Another way of deriving orthogonal arrays and MOLS from difference matrices with
λ > 1 was introduced in [8]. Let Γ be a group of order ν = λ .n and let G= {1,u2, ...,un}
be a subgroup of Γ (G ≤ Γ ) of order n, where n = ν

λ
. A (ν ,k;λ )-difference matrix

DM = (di j) is said to be a difference matrix over (Γ ,G), and denoted by DM(ν ,k;λ ),
if the difference property stay true, but is of the form: di jd−1

t j = disd−1
ts yields d−1

i j dis 6∈
G, i.e. di j,dis are from different left cosets of G. In this case OA(k,ν) is obtained from
DM(ν ,k;λ ), developing it over the subgroup G in the following way:

OA(k,ν) = (DM|DM.u2| . . . |DM.uν)

3 Some Results on MOLS of order 12,15 and 20

3.1. The case ν = 12
A construction of a resolvable DM(12,6) over the group C6×C2 was obtained in [8],
which leads to the existence of 5 MOLS(12). We try to improve this result by investi-
gation of DM(12,k;2). There exist 5 groups of order 12, but from the Proposition 1 in
[10], it is sufficient to consider Z12 and S3×C2 only. After being developed C Sharp
project, the exhaustive computer search for (12,6;2)-difference matrix, over these
groups with respect to their order 6 subgroups, shows that there exists no DM(12,k;2)
when k > 6. Moreover all the resolvable DM(12,6;2) found this way give no new
OA(7,12), i.e. under the above restrictions the construction of 5 MOLS(12) obtained
in [8] is unique.

3.2. The case ν = 15
Four MOLS of order 15 were obtained in [9] by a construction of DM(15,6) over the
group Z15. We performed an exhaustive computer search, using self-prepared C Sharp
project, for QDM(14,k;2) over Z14 ∪{∞}. All of the obtained QDM(14,4;2) were
developed to the orthogonal array OA(4,15). None of these arrays can be extended to
OA(7,15) for 5 MOLS(15). Using Todorov′s program package OADM for OAs and
DMs processing it was shown that this construction is not isomorphic to the one in
[9].
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Below is given one example of QDM(14,4;2) and its extension to 4 MOLS(15).

QDM(14,4;2)

∥∥∥∥∥∥∥
∞ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ∞ 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
0 0 1 2 3 4 5 6 7 8 9 10 11 12 13 ∞ 1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 ∞

0 ∞ 0 3 11 1 10 8 2 12 5 13 9 4 6 7 1 7 ∞ 1 4 12 2 11 9 3 13 6 0 10 5 8
0 10 6 ∞ 2 8 0 4 13 11 3 7 12 5 1 9 1 2 11 7 ∞ 3 9 1 5 0 12 4 8 13 6 10

∥∥∥∥∥∥∥

Extension to 4 MOLS(15)

∞ 0 3 11 1 10 8 2 12 5 13 9 4 6 7
7 ∞ 1 4 12 2 11 9 3 13 6 0 10 5 8
6 8 ∞ 2 5 13 3 12 10 4 0 7 1 11 9
12 7 9 ∞ 3 6 0 4 13 11 5 1 8 2 10
3 13 8 10 ∞ 4 7 1 5 0 12 6 2 9 11
10 4 0 9 11 ∞ 5 8 2 6 1 13 7 3 12
4 11 5 1 10 12 ∞ 6 9 3 7 2 0 8 13
9 5 12 6 2 11 13 ∞ 7 10 4 8 3 1 0
2 10 6 13 7 3 12 0 ∞ 8 11 5 9 4 1
5 3 11 7 0 8 4 13 1 ∞ 9 12 6 10 2
11 6 4 12 8 1 9 5 0 2 ∞ 10 13 7 3
8 12 7 5 13 9 2 10 6 1 3 ∞ 11 0 4
1 9 13 8 6 0 10 3 11 7 2 4 ∞ 12 5
13 2 10 0 9 7 1 11 4 12 8 3 5 ∞ 6
0 1 2 3 4 5 6 7 8 9 10 11 12 13 ∞

10 6 ∞ 2 8 0 4 13 11 3 7 12 5 1 9
2 11 7 ∞ 3 9 1 5 0 12 4 8 13 6 10
7 3 12 8 ∞ 4 10 2 6 1 13 5 9 0 11
1 8 4 13 9 ∞ 5 11 3 7 2 0 6 10 12

11 2 9 5 0 10 ∞ 6 12 4 8 3 1 7 13
8 12 3 10 6 1 11 ∞ 7 13 5 9 4 2 0
3 9 13 4 11 7 2 12 ∞ 8 0 6 10 5 1
6 4 10 0 5 12 8 3 13 ∞ 9 1 7 11 2

12 7 5 11 1 6 13 9 4 0 ∞ 10 2 8 3
9 13 8 6 12 2 7 0 10 5 1 ∞ 11 3 4
4 10 0 9 7 13 3 8 1 11 6 2 ∞ 12 5

13 5 11 1 10 8 0 4 9 2 12 7 3 ∞ 6
∞ 0 6 12 2 11 9 1 5 10 3 13 8 4 7
5 ∞ 1 7 13 3 12 10 2 6 11 4 0 9 8
0 1 2 3 4 5 6 7 8 9 10 11 12 13 ∞

0 1 2 3 4 5 6 7 8 9 10 11 12 13 ∞

12 11 ∞ 7 6 0 5 4 10 1 3 8 13 2 9
7 2 13 9 10 4 11 5 0 8 ∞ 6 1 12 3
2 10 7 12 3 8 0 13 5 11 1 9 4 ∞ 6
9 7 8 10 2 6 1 11 12 5 13 ∞ 3 0 4
11 3 10 1 8 7 4 ∞ 13 2 5 12 9 6 0
4 13 6 8 ∞ 1 10 0 9 12 7 5 2 3 11
6 0 12 4 1 9 ∞ 8 11 3 2 10 5 7 13
10 4 11 2 0 ∞ 3 9 1 13 6 7 8 5 12
5 8 0 13 7 11 9 6 3 ∞ 12 4 10 1 2
∞ 5 1 11 12 10 13 3 4 6 9 2 0 8 7
1 9 5 ∞ 13 2 8 12 6 0 4 3 7 11 10
13 ∞ 3 5 9 12 7 1 2 4 11 0 6 10 8
8 12 9 6 5 3 2 10 ∞ 7 0 13 11 4 1
3 6 4 0 11 13 12 2 7 10 8 1 ∞ 9 5

0 1 2 3 4 5 6 7 8 9 10 11 12 13 ∞

13 10 9 4 7 1 0 3 ∞ 6 5 12 2 8 11
6 13 12 5 1 ∞ 9 10 7 11 3 0 8 4 2
1 3 13 8 0 9 11 5 12 ∞ 2 7 10 6 4
3 9 7 13 6 10 5 2 0 8 11 4 ∞ 12 1
8 7 5 ∞ 13 3 12 0 4 10 6 2 1 11 9
2 6 ∞ 0 11 13 7 8 10 1 12 3 4 9 5
5 4 3 11 10 2 13 ∞ 6 12 9 8 7 1 0
9 0 1 7 2 12 4 13 11 3 8 5 6 ∞ 10

11 5 10 9 ∞ 4 8 1 13 2 7 6 0 3 12
7 2 0 12 5 11 1 6 9 13 4 ∞ 3 10 8

12 ∞ 4 10 8 0 2 9 3 5 13 1 11 7 6
∞ 8 11 1 12 6 10 4 5 7 0 13 9 2 3
4 11 6 2 9 8 3 12 1 0 ∞ 10 13 5 7

10 12 8 6 3 7 ∞ 11 2 4 1 9 5 0 13

3.3. The case ν = 20
Here we give our version of four MOLS(20), which are constructed in [11] and [12] in
a QDM(19,6;1) form. We investigate DM(20,k;2) over Z20 with respect to its order
10 subgroup. It was supposed that corresponding orthogonal array admits an order 3
automorphism. An example of DM(20,6;2) is given below, but no DM(20,7;2) was
obtained. By the construction, it is obviously that the corresponding OA(6,20) pos-
sesses an order 5 automorphism and since the constructions in [11] and [12] admit no
such automorphism, our example is non-isomorphic to them.
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DM(20,6;2)∥∥∥∥∥∥∥∥
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
12 2 17 7 13 10 5 4 8 16 15 1 0 9 11 18 3 6 19 14
18 19 6 17 15 1 5 11 13 12 3 2 9 0 14 8 10 7 4 16
9 4 10 12 16 19 2 0 6 18 11 3 5 18 1 13 7 14 17 15
5 6 15 7 12 13 1 14 17 11 9 3 18 10 8 4 16 0 2 19

∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

11 1 0 15 6 18 16 9 12 3 4 10 5 19 17 13 2 8 14 7
3 16 4 11 19 10 15 8 0 9 18 13 2 12 1 7 17 6 14 5
2 16 6 14 10 5 9 17 3 15 4 13 12 0 11 19 1 18 8 7
3 16 19 2 14 15 17 0 4 7 11 12 10 9 6 1 18 8 5 13

∥∥∥∥∥∥∥∥
4 Conclusion

These two examples for ν = 15 ν = 20 were put to computer extension(again using
own program project) without preserving the ”difference” property. Unfortunately,
the derived constructions are not resolvable, which means that they do not lead to
obtaining more orthogonal Latin squares. Therefore, the question of their existence is
still open.
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Abstract. This paper investigates the generalized Fisher’s entropy type information
measure with respect to the multivariate γ–order Normal distribution and certain
boundaries are obtained. Also the Rényi and Shannon entropies are evaluated and
discussed.
Keywords: Fisher’s entropy type information measure, γ–order Normal distribution,
Rényi entropy.

1 Introduction

In principle, the information measures are divided to three main categories:
parametric (typical example Fisher’s information), non parametric (with Shan-
non information measure to be the most well known) and entropy type, see
Cover and Thomas [1], which are adopted at this paper. The introduced new
entropy type measure of information Jα(X) is a function of the density fX of
the p-variate random variable X, see Kitsos and Tavoularis [2], defined as

Jα(X) := E (‖∇ log f(X)‖α) =

∫
Rp

f(x) ‖∇ log fX(x)‖a dx. (1)

Notice that, J2 = J, with J being the known Fisher’s entropy type informa-
tion measure.

Moreover, the known entropy power N(X), defined through Shannon en-
tropy H(X), has been extended to

Nα(X) = να exp{αpH(X)}, (2)

with

να = (α−1
e )π−α/2

[
Γ (p2 + 1)

Γ (pα−1
α + 1)

]α
p

, α > 1,

see Kitsos and Tavoularis [2] for details. Notice that, ν2 = (2πe)
−1

and N2 =
N, where N the known Shannon entropy power for the normal distribution.
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Moreover, it can be proved that

Jα(X)Nα(X) ≥ p, (3)

which extends the well known result with α = 2, see Kitsos and Tavoularis [2].
The so called Information Inequality, is generalized due to the introduced

information measures, Kitsos and Tavoularis [2]. The Generalized Information
Inequality (GII) is given by[

2πe
p Var(X)

]1/2 [
1
pναJα(X)

]1/α
≥ 1.

When α = 2 we have Var(X)J2(X) ≥ p, and therefore, the Cramer–Rao in-
equality (Cover and Thomas [1], Th. 11.10.1) holds. The lower boundary Bpα
for the introduced generalized information Jα(X) is

Jα(X) ≥ Bpα := p
να

[
2πe
p Var(X)

]−α/2
. (4)

In Fig. 1 the lower boundariesBpα across α are depicted, assuming Var(X) =
1 and for all dimensions p. Moreover, Fig. 2 depicts the boundaries B1

α across
Var(X) and for parameter values α = 1, 2, . . . , 100.

Fig. 1. Graphs of the boundaries Bpα across α, with fixed VarX = 1 for every
dimension p ≥ 1.

Let H denote the Shannon (differential) entropy of a r.v. X with p.d.f. fX ,
i.e.

H(X) :=

∫
Rp

fX(x) log f(x)dx. (5)

For any multivariate random variable X with zero mean and covariance matrix
Σ, it holds

H(X) ≤ 1
2 log{(2πe)p |det Σ|}, (6)

while the equality in (6) holds if and only if X is a normally distributed variable,
i.e X ∼ Np(µ,Σ), see Cover and Thomas [1]. Moreover, the Normal distribu-
tion, according to Information Measures Theory, is adopted for the noise, acting
additively to the input variable when an input–output time discrete channel is
formed.
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Fig. 2. Graphs of the boundaries Bpα across VarX for parameters α = 1, 2, . . . , 100.

Kitsos and Tavoularis in ([2] and [3]) introduced and studied the multivari-
ate (and elliptically contoured) γ–ordered Normal distribution, i.e. N p

γ (µ,Σ),
see also Kitsos and Toulias [4] and Kitsos et al. [5] for further reading. Recall
the definition of Nγ :

Definition 1. The p–dimensional random variable X follows the γ–order Nor-
mal, N p

γ (µ,Σ) with mean vector µ ∈ Rp and positive definite scale matrix
Σ ∈ Rp×p, when the density function, fX , is of the form

fX(x; µ,Σ) = Cpγ |det Σ|−1/2
exp

{
−γ−1

γ Q(x)
γ

2(γ−1)

}
, x ∈ Rp, (7)

with Q the quadratic form Q(x) = (x−µ)Σ−1(x−µ)T, x ∈ Rp. We shall write
X ∼ N p

γ (µ,Σ). The normality factor Cpγ is defined as

Cpγ = π−p/2
Γ
(
p
2 + 1

)
Γ(pγ−1

γ + 1)
(γ−1
γ )

p γ−1
γ . (8)

Notice that, for γ = 2, N p
2 (µ,Σ) is the well known multivariate normal dis-

tribution. Moreover, the function φ(α) = fα(µ,Σ)1/α with Σ = (σ2/α)2(α−1)/αIp,
corresponds to extremal function for an inequality extending LSI due to Del
Pino et al. [6]. The essential result is that the defined γ-ordered Normal distri-
bution works as an extremal function to a generalized form of the Logarithmic
Sobolev Inequality.

The family of N p
γ (µ,Σ), i.e. the family of the elliptically contoured γ–

ordered Normals, provides a smooth bridging between the multivariate (and
elliptically countered) Uniform, Normal and Laplace r.v. U , N and L, i.e.
between U ∼ Up(µ,Σ), Z ∼ N p(µ,Σ), and L ∼ Lp(µ,Σ) respectively, with
density functions

fU (x; µ,Σ) =


Γ (
p
2 +1)

πp/2
√
|det Σ|

, x ∈ Rp, with Q(x) ≤ 1,

0, x ∈ Rp, with Q(x) > 1,
(9)

fZ(x; µ,Σ) =
1

(2π)
p/2
√
|det Σ|

exp
{
− 1

2Q(x)
}
, x ∈ Rp, (10)
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fL(x; µ,Σ) =
Γ (p2 + 1)

p!πp/2
√
|det Σ|

exp
{
−
√
Q(x)

}
, x ∈ Rp, (11)

respectively. That is, the N p
γ family of distributions, not only generalizes the

Normal one but also two other very significant distributions, as the Uniform
and Laplace distributions, are induced. Indeed:

Theorem 1. The multivariate γ-ordered Normal distribution, N p
γ (µ,Σ), for

order values of γ = 0, 1, 2,±∞ coincides with

N p
γ (µ,Σ) =


Dp(µ), γ = 0 and p = 1, 2,
0, γ = 0 and p ≥ 3,
Up(µ,Σ), γ = 1,
N p(µ,Σ), γ = 2,
Lp(µ,Σ), γ = ±∞.

(12)

2 Entropy and Information Measures

Besides the generalized entropy power Nα, another significant entropy measure
that generalizes the Shannon entropy is the Rényi entropy. For a p–variate
continues random variable with p.d.f. fX , the Rényi entropy Rα(X) is defined,
through the α–norm of fX ∈ L α(Rp), by

Rα(X) := − α
α−1 log ‖fX‖α = 1

1−α log

∫
Rp

|fX(x)|αdx, α > 0, α 6= 1. (13)

For the limiting case of α→ 1 the Rényi entropy converges to the usual Shannon
entropy H(X) as in (5). Notice that we use the minus sign for Rα to be in
accordance with the definition of (5).

Considering now a r.v. from the γ–GND family, the following holds.

Theorem 2. For the p–variate, spherically contoured γ–order normally dis-
tributed Xγ ∼ N p

γ (µ, σ2Ip), the Rényi entropy of Xγ is given by

Rα(Xγ) = p γ−1
γ(α−1) logα− log(Cpγσ

−p). (14)

Proof. Consider the p.d.f. fXγ as in (7). From the definition (13) it is

Rα(Xγ) = α
1−α log(Cpγσ

−p) + 1
1−α log

∫
Rp

exp
{
−α(γ−1)

γ ‖x−µσ ‖
γ
γ−1

}
dx,

and applying the linear transformation z = (x − µ)σ−1 with dz = d{(x −
µ)/σ} = σ−pdx, the Rα above is reduced to

Rα(Xγ)= α
1−α log

(
Cpγσ

−p)+ 1
1−α log

σp ∫
Rp

exp
{
−α(γ−1)

γ ‖z‖
γ
γ−1

}
dz


= α

1−α log(Cpγσ
p 1−α

α ) + 1
1−α log

∫
Rp

exp
{
−α(γ−1)

γ ‖z‖
γ
γ−1

}
dz.
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Switching to hyperspherical coordinates, we get

Rα(Xγ) = α
1−α logK(σ) + 1

1−α log

∫
R+

exp
{
−α(γ−1)

γ ρ
γ
γ−1

}
ρp−1dρ,

where K(σ) = Cpγσ
p(1−α)/αω

1/α
p−1 with ωp−1 = 2πp/2/Γ(p/2) denoting the vol-

ume of the (p − 1)–sphere. Transforming du := d(γ−1
γ ργ/(γ−1)) = ρ1/(γ−1)dρ

we obtain successively

Rα(Xγ) = α
1−α logK(σ) + 1

1−α log

∫
R+

e−αuρ
(p−1)(γ−1)−1

γ−1 du

= α
α−1 logK(σ) + 1

1−α log

∫
R+

e−αu
(
ρ

γ
γ−1

) (p−1)(γ−1)−1
γ

du

= α
1−α logK(σ) + 1

1−α log( γ
γ−1 )p

γ−1
γ −1 + 1

1−α log

∫
R+

e−αuup
γ−1
γ −1du

= α
1−α logK(σ) + 1

1−α log( γ
γ−1 )p

γ−1
γ −1 − pγ−1

γ ·
logα
1−α + 1

1−α log Γ(pγ−1
γ ).

Finally, by substitution of the expressions for K(σ), ωp−1 and the normalizing
factor Cpγ , we obtain

Rα(Xγ) = p log σ − α
1−α logCpγ + 1

1−α logCpγ + pγ−1
γ ·

logα
α−1 ,

and hence (14) holds true.

Corollary 1. For the special cases of α = 0, 1, 2,+∞ Rényi entropy of Xγ ∼
Nγ(µ,Σ) reduces to

Rα(Xγ) =


+∞, α = 0, (Hartley entropy )

pγ−1
γ − log(Cpγ/σ

p), α = 1, (Shannon entropy )

pγ−1
γ log 2− log(Cpγ/σ

p), α = 2, (collision entropy )

− log(Cpγ/σ
p), α = +∞. (min–entropy )

Rényi entropy Rα(Xγ), as in (14), is an decreasing function of parameter
α, and hence

R+∞(Xγ) < R2(Xγ) < R1(Xγ) < R0(Xγ).

Example 1. For the multivariate and spherically contoured Uniform random
variable U ∼ U(µ, σ2Ip), the Hartley, Shannon, collision and the min– entropies
coincide as,

Rα(U) = log
πp/2σp

Γ(p2 + 1)
, α ∈ R+,

while for the univariate case of U ∼ U(µ− σ, µ− σ) we are reduced to

Rα(U) = log(2σ), α ∈ R+.
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Notice that for a uniformly distributed r.v. the Rényi entropy Rα is α–
invariant, depending only on the dimension p ∈ N and the scale parameter
σ.

Example 2. For the multivariate and elliptically contoured Laplace random
variable L ∼ L(µ, σ2Ip), the Hartley, Shannon, collision and the min– entropies
are given by,

Rα(L) =


+∞, α = 0, (Hartley entropy)
p+ log{p!πp/2σp Γ(p2 + 1)−1}, α = 1, (Shannon entropy)
log{2pp!πp/2σp Γ(p2 + 1)−1}, α = 2, (collision entropy)
log{p!πp/2σp Γ(p2 + 1)−1}, α = +∞. (min–entropy)

Example 3. According to the classification Theorem 1 and Corollary 1, we can
evaluate the usual Shannon entropy for the multivariate (and spherically con-
toured) Uniform, Normal and Laplace distributions with Σ = σ2Ip, i.e.

H(X) =


log πp/2

Γ(
p
2 +1)

√
|det Σ|, for X ∼ N p

1 (µ,Σ) = Up(µ,Σ),

1
2 log{(2πe)p |det Σ|}, for X ∼ N p

2 (µ,Σ) = N p(µ,Σ),

p+ log p!πp/2

Γ(
p
2 +1)

√
|det Σ|, for X ∼ N p

±∞(µ,Σ) = Lp(µ,Σ),

see also (6) for the Normal case, while for the univariate case p = 1, we are
reduced to

H(X) =


log 2σ, for X ∼ N 1

1 (µ, σ2) = U1(µ, σ2) = U(µ− σ, µ− σ),

log
√

2πeσ, for X ∼ N 1
2 (µ, σ2) = N (µ, σ2),

1 + log 2σ, for X ∼ N 1
±∞(µ, σ2) = L1(µ, σ2) = L(µ, σ).

where U(µ − σ, µ − σ), N (µ, σ2) and L(µ, σ) are the usual notations for the
univariate Uniform, Normal and Laplace distributions respectively.

Now, we shall evaluate the generalized Fisher’s entropy type information of
a random variable following the multivariate γ-order Normal, N p

γ .

Theorem 3. The generalized Fisher’s information Jα of a r.v. Xγ ∼ N p
γ (µ, λΣ∗)

where λ ∈ R+ \ 0 and Σ∗ is a real matrix with unit orthogonal vectors, i.e.
Σ∗ ∈ Rp×p⊥ , is given by

Jα(Xγ) = ( γ
γ−1 )

α
γ

Γ
(
α+p(γ−1)

γ

)
λα/2 Γ

(
pγ−1

γ

) . (15)

Proof. From (1) we have

Jα(Xγ) = αα
∫
Rp

∥∥∥∇f1/α
Xγ

(x)
∥∥∥α dx,
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while from the definition of the density function fXγ , in (7), we have

Jα(Xγ) = ααCpγ

∫
Rp

∥∥∥∇ exp
{
−γ−1

αγ Q(x)
γ

2(γ−1)

}∥∥∥α dx
= αα(γ−1

αγ )αCpγ

∫
Rp

exp
{
−γ−1

γ Q
γ

2(γ−1) (x)
}∥∥∥∇Q γ

2(γ−1) (x)
∥∥∥α dx. (16)

For the gradient of the quadratic form Q(x) we have ∇Q(x) = λ−1∇{(x −
µ)Σ∗−1(x − µ)T} = 2λ−1Σ∗−1(x − µ)T, while from the fact that Σ∗ is an
orthogonal matrix we have ‖Σ∗−1(x− µ)T‖ = ‖x− µ‖. Therefore, (16) can be
written as

Jα(Xγ) = λ−αCpγ

∫
Rp

exp
{
−γ−1

γ Q
γ

2(γ−1) (x)
}
Q

αγ
2(γ−1)

−α(x) ‖x− µ‖α dx.

Applying the linear transformation z = (x−µ)(λΣ∗)−1/2 in the above integral,
it is dx = d(x−µ) =

√
λp |det Σ∗|dz = λp/2dz, the quadratic form Q is reduced

to

Q(x) = (x−µ)(λΣ)∗−1(x−µ)T = (x−µ)(λΣ∗)−1/2[(x−µ)(λΣ∗)−1/2]T = ‖z‖2 ,

and thus,

Jα(Xγ) = λ(p−α)/2Cpγ

∫
Rp

‖z‖
α
γ−1 exp

{
−γ−1

γ ‖z‖
γ
γ−1

}
dz.

Switching to hyperspherical coordinates, we get

Jα(Xγ) = λ(p−α)/2Cpγωp−1

+∞∫
0

ρ
α
γ−1 exp

{
−γ−1

γ ρ
γ
γ−1

}
ρp−1dρ,

where ωp−1 = 2πp/2

Γ(p/2) is the volume of the (p− 1)–sphere, Sp−1, and hence

Jα(Xγ) = 2
πp/2

Γ(π2 )
λ(p−α)/2Cpγ

+∞∫
0

ρ
α+(p−1)(γ−1)

γ−1 exp
{
−γ−1

γ ρ
γ
γ−1

}
dρ.
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From the fact that d(γ−1
γ ρ

γ
γ−1 ) = ρ

1
γ−1 dρ and the definition of the gamma

function, we obtain successively

Jα(Xγ) = 2
πp/2

Γ(π2 )
λ(p−α)/2Cpγ

+∞∫
0

ρ
α+(p−1)(γ−1)

γ−1 − 1
γ−1 exp

{
−γ−1

γ ρ
γ
γ−1

}
d(γ−1

γ ρ
γ
γ−1 )

= 2
πp/2

Γ(π2 )
λ(p−α)/2Cpγ

+∞∫
0

ρ
α+pγ−γ−p

γ−1 exp
{
−γ−1

γ ρ
γ
γ−1

}
d(γ−1

γ ρ
γ
γ−1 )

= 2
πp/2

Γ(π2 )
λ(p−α)/2( γ

γ−1 )
α−γ+p(γ−1)

γ Cpγ×

+∞∫
0

(γ−1
γ ρ

γ
γ−1 )

α−γ+p(γ−1)
γ exp

{
−γ−1

γ ρ
γ
γ−1

}
d(γ−1

γ ρ
γ
γ−1 )

= 2
πp/2

Γ(π2 )
λ(p−α)/2( γ

γ−1 )
α−γ+p(γ−1)

γ Cpγ Γ(α+p(γ−1)
γ ),

and, finally, applying the normalizing factor Cpγ as in (8), we derive (15) and
the Theorem has been proved.

For the defined generalized Fisher’s information measure and the γ–ordered
Normal, it is clear that the values of Jα(Xγ) depends on the two parameters α
and γ. Therefore, we shall investigate under what values of α and γ there are
bounds for Jα(Xγ).

In the following Proposition we provide some inequalities for the gener-
alized Fisher’s entropy type information measure Jα for the family of the
γ–order Normal distributions with positive order γ, i.e. for Jα(Xγ) where
Xγ ∼ N p

γ (µ, σ2Ip), considering parameters α > 1 and γ > 2.

Proposition 1. The generalized Fisher’s information measure Jα of a ran-
dom variable Xγ following the multivariate and spherically contoured γ–order
Normal distribution, i.e. Xγ ∼ N p

γ (µ, σ2Ip), α, γ ≥ 2, satisfy the inequalities

Jα(Xγ)

> pσ−α, for α > γ,
= pσ−α, for α = γ,
< pσ−α, for α < γ.

(17)

Proof. For the spherically contoured r.v. Xγ ∼ N p
γ (µ, σ2Ip) we are reduced

to (15) where λ = σ2. Thus, for the proof the first branch of (17) we assume

α > γ, i.e. α
γ > 1. Then, we have α+p(γ−1)

γ > 1 + pγ−1
γ . This implies,

Γ(α+p(γ−1)
γ ) > Γ(1 + pγ−1

γ ) = pγ−1
γ Γ(pγ−1

γ ), (18)

if 1 + pγ−1
γ ≥ Γ0, where Γ0 ≈ 1.4628 denotes the point of minimum for the

positive gamma function, Γ(x), x > 0. That is, if the inequality x = 1+pγ−1
γ ≥

Γ0 holds, then Γ(x) ≥ Γ(Γ0), as the gamma function is an increasing function
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for x ≥ Γ0. Inequality, 1 + pγ−1
γ ≥ Γ0, is equivalent to, γ ≥ p

p+1−Γ0
≈

p
p−0.4628 > 1, which is true as γ ≥ 2 in our assumption for the values of

parameter γ. Thus, (18) holds indeed, for orders γ ≥ p
p+1−Γ0

, and so,

Γ(α+p(γ−1)
γ )

Γ(pγ−1
γ )

> pγ−1
γ . (19)

Our assumption, α
γ > 1, together with the fact that, γ

γ−1 > 1 for all defined

orders γ ∈ R\[0, 1], leads us to ( γ
γ−1 )

α/γ
> γ

γ−1 . Then, inequality (19) provides

(
γ
γ−1

)α
γ Γ(α+p(γ−1)

γ )

Γ(pγ−1
γ )

> γ
γ−1p

γ−1
γ = p,

and, using (15), we derive that, Jα(Xγ) > p
√
|det Σ| for α > γ, i.e. the first

branch of (17) holds. Similarly the other two branches also hold.

Corollary 2. The generalized Fisher’s information Jα of a spherically con-
toured r.v. Xγ ∼ N p

γ (µ, σ2Ip), with α/γ ∈ N∗, is reduced to

Jα(Xγ) = σ−α(γ − 1)−αγ
α/γ∏
k=1

{α− p+ (p− k)γ}.

The following Fig. 3 depicts the generalized Fisher’s information Jα of the
bi–variate (and spherically contoured) γ–order normally distributed random
variables Xγ ∼ N 2

γ (µ, I2) across the parameter α > 1, and for various shape
parameters γ = 1, 1.1, . . . , 1.9, 2, 3, . . . , 10. The usual Normal distribution case
of γ = 2 is also highlighted.

Fig. 3. Graphs of Jα(Xγ) across parameter α > 1, with Xγ ∼ N 2
γ (µ, I2), and for

various γ values.
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3 Discussion

In this paper we considered the generalized form of the multivariate normal
distribution, namely the γ–order Normal distribution, N p

γ . This generalization
is obtained as an extremal of the LSI corresponding a power–generalization of
the entropy type Fisher’s information Jα. This generalized entropy type infor-
mation measure, which extends the known entropy type Fisher’s information, is
discussed and evaluated for the γ–order normally distributed random variable,
say Xγ .

Moreover, the corresponding Rényi and Shannon entropy were evaluated for
Xγ , including the specific cases of the multivariate (and elliptically contoured)
Uniform, Normal and Laplace distributions, resulting from N p

γ . Finally, certain
boundaries of the Jα were obtained for the spherically contoured N p

γ family of
distributions.
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Abstract. This paper presents and discusses two generalized forms of the Shannon
entropy, as well as a generalized information measure. These measures are applied on
a exponential–power generalization of the usual multivariate Normal distribution, i.e.
the γ–order Normal distribution Nγ , which is linked to the generalized Fisher’s en-
tropy type information measure. Finally, three univariate Nγ–based extensions were
also given, i.e the γ–order Lognormal distribution LN γ , the left/right truncated cases
of Nγ and LN γ distributions, and a two–way asymmetric for of the Nγ distribution.
Keywords: Fisher’s entropy type information measure, γ–order Normal distribution,
Rényi entropy.

1 Introduction

A fundamental concept in Information Theory is the so–called information
measures (or information). There are several kinds of information measures
which all quantify the uncertainty of an outcome of a random experiment, and
therefore, in principal, information is a measure of the reduction of uncertainty.
Signal Processing and Cryptography are two main fields of applicable aspects
of information measures, see Bauer [1], Hoffstein et al. [8] and Stinson [17].

In principle, the information measures are divided into three main cate-
gories: parametric (Fisher’s information being a typical example), non para-
metric (with Shannon information measure being the most well known) and
entropy type, see Cover and Thomas [4], and Ferentinos and Papaioannou [6],
which are adopted in this paper.

Let X be a multivariate random variable (r.v.) with parameter vector
θ = (θ1, θ2, . . . , θp) ∈ Rp and p.d.f. fX = fX(x; θ), x ∈ Rp. The parametric
type Fisher’s Information Matrix IF(X; θ) (also denoted as Iθ(X)) defined as
the covariance of ∇θ log fX(X; θ) (where ∇θ is the gradient with respect to
the parameters θi, i = 1, 2, . . . , p) is a parametric type information measure,
expressed also as

Iθ(X) = Cov (∇θ log fX(X; θ)) = Eθ
[
∇θ log fX · (∇θ log fX)T

]
= Eθ

[
‖∇θ log fX‖2

]
,

Stochastic Modeling, Data Analysis and Statistical Applications (pp. 365-383)
Lidia Filus - Teresa Oliveira - Christos H Skiadas (Eds)
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where ‖ · ‖ is the usual L 2(Rp) norm, while Eθ[·] denotes the expected value
operator applied to random variables, with respect to parameter θ.

In the same vein, the Fisher’s entropy type information measure IF(X),
or J(X), of a r.v. X with p.d.f. f on Rp is defined as the covariance of the
r.v. ∇ log f(X), i.e. J(X) := E[‖∇ log f(X)‖2], with E[·] denoting the usual
expected value operator of a random variable with respect to the its p.d.f.
Hence, J(X) can be written as

J(X) =

∫
Rp

f(x)‖∇ log f(x)‖2dx =

∫
Rp

f(x)−1‖∇f(x)‖2dx

=

∫
Rp

∇f(x) · ∇ log f(x)dx = 4

∫
Rp

∥∥∥∇√f(x)
∥∥∥2

dx. (1)

Generally, the family of the entropy type information measures I(X), of a
p–variate r.v. X with p.d.f. f , is defined through the score function of X, i.e.

U(X) := ‖∇ log f(X)‖,

as

I(X) := I(X; g, h) := g (E[h(U(X))]) ,

where g and h are real–valued functions. For the case of g = i.d. and h(X) = X2

we obtain the entropy type Fisher’s information measure of X as in (31), i.e.

IF(X) := E[‖∇ log f(X)‖2]. (2)

Besides IF, other entropy type information measures as the Vajda’s, Mathai’s
and Boeke’s information measures, denoted with IV, IM and IB respectively,
are defined as:

IF(X) := I(X), with g := id. and h(U) := U2,
IV(X) := I(X), with g := id. and h(U) := Uλ, λ ≥ 1,
IM(X) := I(X), with g(X) := X1/λ and h(U) := Uλ, λ ≥ 1,

IB(X) := I(X), with g(X) := Xλ−1 and h(U) := U
λ
λ−1 , λ ∈ R+ \ 1.

Consider now the Vajda’s parametric type measure of information IV(X; θ, α),
which is a generalization of IF(X; θ), defined by Vajda [18],

IV (X; θ, α) := Eθ[‖∇θ log f(X)‖α], α ≥ 1. (3)

Similarly, the Vajda’s entropy type information measure Jα(X) generalizes
Fisher’s entropy type information J(X), and is defined as

Jα(X) := E[‖∇ log f(X)‖α], α ≥ 1, (4)

see Kitsos and Tavoularis [9]. We shall refer to Jα(X) as the generalized Fisher’s
entropy type information measure or α–GFI. The second–GFI is reduced to the



Entropy and Information Measures 367

usual J, i.e. J2(X) = J(X). Equivalently, from the definition of the α–GFI
above we can obtain

Jα(X) =

∫
Rp

‖∇ log f(x)‖αf(x)dx =

∫
Rp

‖∇f(x)‖αf1−α(x)dx

= αα
∫
Rp

‖∇f1/α(x)‖αdx. (5)

The Shannon (or relative) entropy H(X) of a continuous r.v. X with p.d.f.f
is a also a fundamental concept in Information Theory, applied heavily in Cryp-
tography, Stinson [17], and defined as,

H(X) := E[log f(X)] =

∫
Rp

f(x) log f(x)dx, (6)

Cover and Thomas [4], where we omit here the usual minus sign. For any
multivariate random variable X with zero mean and covariance matrix Σ, it
holds

H(X) ≤ 1
2 log{(2πe)p |det Σ|}, (7)

while the equality in (7) holds if and only if X is a normally distributed variable,
i.e X ∼ Np(µ,Σ), Cover and Thomas [4].

The corresponding entropy power N(X) is defined by

N(X) := νe
2
pH(X), (8)

where ν := (2πe)−1. The generalized entropy power Nα(X), introduced in
Kitsos and Tavoularis [9], is of the form

Nα(X) := ναe
α
pH(X), (9)

with normalizing factor να given by the appropriate generalization of ν, namely

να :=
(
α−1
αe

)α−1
π−

α
2

[
Γ
(
p
2 + 1

)
Γ
(
pα−1

α + 1
)]αp , α ∈ R \ [0, 1]. (10)

For the parameter case of α = 2, (9) is reduced to the known entropy power
N(X), i.e. N2(X) = N(X) and ν2 = ν.

The known information inequality J(X)N(X) ≥ p still holds under the gen-
eralized entropy type Fisher’s information, as Jα(X)Nα(X) ≥ p, α > 1, see Kit-
sos and Tavoularis [9]. As a result the Cramér–Rao inequality, J(X) Var(X) ≥ p
(Cover and Thomas [4], Th. 11.10.1), can be extended to[

2πe
p Var(X)

]1/2 [
να
p Jα(X)

]1/α
≥ 1, α > 1, (11)

see Kitsos and Tavoularis [9]. Under the normality parameter α = 2, (11) is
reduced to the usual Cramér–Rao inequality.



368 T. L. Toulias

A lower boundary Bpα for the introduced generalized information Jα(X) is
then found, as

Jα(X) ≥ Bpα := p
να

[
2πe
p Var(X)

]−α/2
. (12)

In Fig. 1 the lower boundariesBpα across α are depicted, assuming Var(X) =
1 and for all dimensions p. Moreover, Fig. 2 depicts the boundaries B1

α across
Var(X) and for parameter values α = 1, 2, . . . , 100.

Fig. 1. Graphs of the boundaries Bpα across α, with fixed VarX = 1 for every
dimension p ≥ 1.

Fig. 2. Graphs of the boundaries Bpα across VarX for parameters α = 1, 2, . . . , 100.

Through the generalized entropy power Nα a generalized form of the usual
Shannon entropy can be produced, as the Shannon entropy whose entropy
power is Nα (instead of the usual N), i.e.

Nα(X) = ν exp{ 2
pHα(X)}, α ∈ R \ [0, 1], (13)

called the generalized Shannon entropy, or α–Shannon entropy. Therefore, from
(9) a linear relation between the generalized Shannon entropy Hα(X) and the
usual Shannon entropy H(X) is obtained, i.e.

Hα(X) = p
2 log να

ν + α
2 H(X), α ∈ R \ [0, 1]. (14)
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Essentially, (14) represents a linear transformation of H(X), which depends on
the parameter α and the dimension p ∈ N. It is also clear that the generalized
Shannon entropy for α = 2 is the usual Shannon entropy, i.e. H2 = H.

2 Entropy and information of the generalized Normal
distribution

The Normal distribution, according to Information Theory, is adopted for the
noise, acting additively to the input variable when an input–output time dis-
crete channel is formed. Kitsos and Tavoularis in [9,10] introduced and studied
a three parameter entropy–power generalization of the multivariate Normal
distribution, and its construction is related to the generalized entropy power.
See also Kitsos and Toulias [11], and Kitsos et al. [14] for further reading. We
recall its definition:

Definition 1. The p–dimensional random variable X follows the γ–order Nor-
mal distribution N p

γ (µ,Σ) with location parameter vector µ ∈ Rp and positive
definite scale matrix Σ ∈ Rp×p, when the density function, fX , is of the form

fX(x; µ,Σ, γ) = Cpγ |det Σ|−1/2
exp

{
−γ−1

γ Qθ(x)
γ

2(γ−1)

}
, x ∈ Rp, (15)

with the p–quadratic form Qθ(x) := (x − µ) Σ−1(x − µ)T, x ∈ Rp, and θ :=
(µ,Σ) ∈ Rp×p×p. We shall write X ∼ N p

γ (µ,Σ). The normality factor Cpγ is
defined as

Cpγ := π−p/2
Γ
(
p
2 + 1

)
Γ(pγ−1

γ + 1)
(γ−1
γ )

p γ−1
γ . (16)

Notice that, for γ = 2, N p
2 (µ,Σ) is the well known multivariate normal

distribution. It can be also easily noticed that the parameter vector µ is in
fact the mean vector of the N p

γ distribution, i.e. µ = E[X] for all parameters
γ ∈ R \ [0, 1].

Denote now with Eθ the area of the p–ellipsoid Qθ(x) ≤ 1, x ∈ Rp. The
family of N p

γ (µ,Σ), i.e. the family of the elliptically contoured γ–order Nor-
mals, provides a smooth bridging between the multivariate (and elliptically
countered) Uniform, Normal and Laplace r.v. U , Z and L, i.e. between
U ∼ Up(µ,Σ), Z ∼ N p(µ,Σ) and Laplace L ∼ Lp(µ,Σ) r.v. as well as
the multivariate degenerate Dirac distributed r.v. D ∼ Dp(µ) (with pole at
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the point µ), with density functions

fU (x) = fU (x; µ,Σ) :=


Γ(p2 + 1)

πp/2
√
|detΣ|

, x ∈ Eθ,

0, x /∈ Eθ,
(17)

fZ(x) = fZ(x; µ,Σ) :=
1

(2π)p/2
√
|det Σ|

exp
{
− 1

2Qθ(x)
}
, x ∈ Rp, (18)

fL(x) = fL(x; µ,Σ) :=
Γ(p2 + 1)

p!πp/2
√
|det Σ|

exp
{
−
√
Qθ(x)

}
, x ∈ Rp, (19)

fD(x) = fD(x; µ) :=

{
+∞, x = µ,
0, x ∈ Rp \ µ, (20)

respectively. That is, the N p
γ family of distributions, not only generalizes the

usual Normal but also two other very significant distributions, as the Uniform
and Laplace distributions, are induced. The above discussion is summarized in
the following Theorem, see Kitsos et al. [14].

Theorem 1. The elliptically contoured p–variate γ–order Normal distribution
N p
γ (µ,Σ) for order values of γ = 0, 1, 2,±∞ coincides with

N p
γ (µ,Σ) =


Dp(µ), for γ = 0 and p = 1, 2,
0, for γ = 0 and p ≥ 3,
Up(µ,Σ), for γ = 1,
N p(µ,Σ), for γ = 2,
Lp(µ,Σ), for γ = ±∞.

(21)

Remark 1. Considering the above Theorem, the definition values of the shape
parameter γ of N p

γ distributions can be extended to include the limiting extra
values of γ = 0, 1,±∞ respectively, i.e. γ can now be considered as a real
number outside the open interval (0, 1). Particularly, when Xγ ∼ N p

γ (µ,Σ),
γ ∈ R \ (0, 1) ∪ {±∞} then the r.v. X0, X1 ∼ Up(µ,Σ) and X±∞ ∼ Lp(µ,Σ)
can be defined as

X0 := lim
γ→0−

Xγ , X1 := lim
γ→1+

Xγ , X±∞ := lim
γ→±∞

Xγ . (22)

Eventually, the Uniform, Normal, Laplace and also the degenerate distribution
N p

0 (like Dirac for dimensions p = 1, 2) can be considered as members of the
“extended” N p

γ family of generalized Normal distributions, with γ ∈ (R ∪
{±∞}) \ (0, 1).

Notice also that N 1
1 (µ, σ) coincides with the known (continuous) Uniform

distribution U(µ − σ, µ + σ). Specifically, for every Uniform distribution ex-
pressed with the usual notation U(a, b), it holds that U(a, b) = N 1

1 (a+b
2 , b−a2 ) =

U1(µ, σ). AlsoN2(µ, σ2) = N (µ, σ2),N±∞(µ, σ2) = L(µ, σ) and alsoN0(µ, σ) =
D(µ). Therefore the following holds.

Corollary 1. The univariate γ–ordered Normal distributions N 1
γ (µ, σ2) for or-

der values γ = 0, 1, 2,±∞ coincides with the usual (univariate) Dirac D(µ),
Uniform U(µ − σ, µ + σ), Normal N (µ, σ2) and Laplace L(µ, σ) distributions
respectively.
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For the multivariate normally distributed X ∼ N p(µ,Σ) it is clear, from
(15), that the maximum density value max fX = fX(µ) = (2π)−p/2|det Σ |−1/2

decreases as dimension p ∈ N rises, providing “flattened” probability densi-
ties. This is also true for the multivariate Laplace distributed X ∼ Lp(µ,Σ) =
N p
±∞(µ,Σ). In fact, from 19, it holds that max fX = π−p/2 1

p! Γ(p2 +1)|det Σ |−1/2

and therefore, the high–dimensional Laplace distributions densities are “flat-
tened”, since the maximum density values decreases as p ∈ N increases. This
is true because, for dimensions 2p, the maximum density is

max fX = Cp±∞|det Σ |−1/2 = π−p/2
1

(p+ 1)(p+ 2)...2p
|det Σ |−1/2.

Hence, as in the Normal distribution case, X obtains, in principle, heavy tails as
the dimension increases. However, this is not the case for the multivariate (and
elliptically contoured) Uniform distributed X ∼ Up(µ,Σ) = N p

1 (µ,Σ), because
the volume of the corresponding p–elliptical–cylinder shape of their density
functions, as in (17), must always equal 1, although Up have no tails to “ab-
sorb” probability mass when dimension increases, as the Normal or the Laplace
distributions does. Considering the above Remark, the following Proposition
shows that, among all elliptical multivariate Uniform distributions Up(µ,Σ)
with fixed scale matrix Σ, the U5(µ,Σ) has the minimum max fX , see Kitsos
et al. [14].

Theorem 2. For the elliptically contoured Uniformly distributed X ∼ Up(µ,Σ),
we have

min
p∈N
{max fX} = 15

6π2 |det Σ |−1 = maxU5(µ,Σ),

i.e. the 5–dimensional Uniform distribution provides the least of all maximum
density values among all Up(µ,Σ) with fixed scale matrix Σ.

Recall now the cumulative distribution function (c.d.f.) ΦZ(z) of the stan-
dardized normally distributed Z ∼ N (0, 1), i.e.

ΦZ(z) = 1
2 + 1

2 erf( z2 ), z ∈ R, (23)

with erf(·) being the usual error function. Similarly, for the generalized Nγ
family of distributions, the generalized error function Erfγ/(γ−1), Gradshteyn
and Ryzhik [7], is involved. Indeed, the following holds.

Theorem 3. Let X be a univariate γ–order normally distributed random vari-
able, i.e. X ∼ N p

γ (µ, σ2) with p.d.f. fX . Then the c.d.f. FX of X is the c.d.f.

ΦZ of the standardized r.v. Z = 1
σ (X − µ) ∼ Nγ(0, 1), and is given by

FXγ (x) = ΦZ(x−µσ ) = 1
2 +

√
π

2 Γ(γ−1
γ ) Γ( γ

γ−1 )
Erf γ

γ−1

{
(γ−1
γ )

γ−1
γ x−µ

σ

}
(24)

= 1− 1

2 Γ(γ−1
γ )

Γ
(
γ−1
γ , γ−1

γ (x−µσ )
γ
γ−1

)
, x ∈ R, (25)

with Γ(·, ·) being the upper (complementary) incomplete gamma function.



372 T. L. Toulias

Applying the Shannon entropy on a γ–order normally distributed random
variable we obtain the following.

Proposition 1. The Shannon entropy of a random variable X ∼ N p
γ (µ,Σ),

with p.d.f. fX , is of the form

H(X) = pγ−1
γ − log{Cpγ |det Σ |−1/2} = pγ−1

γ − log max fX . (26)

Proof. Let C(Σ) := Cpγ det Σ |−1/2. From (15) and the definition (6) we have
that the Shannon entropy of X is

H(X) = − logC(Σ) + C(Σ)γ−1
γ

∫
Rp

Qθ(x)
γ

2(γ−1) exp
{
−γ−1

γ Qθ(x)
γ

2(γ−1)

}
dx.

Applying the linear transformation z = (x − µ)T Σ−1/2 with dx = d(x − µ) =√
|det Σ|dz, the H(X) above is reduced to

H(X) = − logC(Σ) + Cpγ
γ−1
γ

∫
Rp

‖z‖
γ
γ−1 exp

{
−γ−1

γ ‖z‖
γ
γ−1

}
dz.

Switching to hyperspherical coordinates, we get

H(X) = − logC(Σ) + Cpγ
γ−1
γ ωp−1

∫
R+

ρ
γ
γ−1 exp

{
−γ−1

γ ρ
γ
γ−1

}
ρp−1dρ,

where ωp−1 := 2πp/2/Γ
(
p
2

)
is the volume of the (p− 1)–sphere. Applying the

variable change du := d(γ−1
γ ργ/(γ−1)) = ρ1/(γ−1)dρ we obtain successively

H(X) = − logC(Σ) + Cpγωp−1

∫
R+

ue−uρ
(p−1)(γ−1)−1

γ−1 du

= logC(Σ)− Cpγωp−1

∫
R+

ue−u
(
ρ

γ
γ−1

) (p−1)(γ−1)−1
γ

du

= − logC(Σ) + Cpγωp−1( γ
γ−1 )p

γ−1
γ −1

∫
R+

up
γ−1
γ e−udu

= − logC(Σ) + pγ−1
γ Γ(pγ−1

γ )Cpγωp−1.

Finally, by substitution of the volume ωp−1 and the normalizing factor C(Σ)
and Cpγ , as in (16), relation (26) is obtained.

Corollary 2. According to the classification Theorem 1, one can evaluate the
Shannon entropy for the multivariate (and elliptically contoured) Uniform, Nor-
mal and Laplace distributions, i.e.

H(X) =


log πp/2

Γ(
p
2 +1)

√
|det Σ|, for X ∼ N p

1 (µ,Σ) = Up(µ,Σ),

1
2 log{(2πe)p |det Σ|}, for X ∼ N p

2 (µ,Σ) = N p(µ,Σ),

p+ log p!πp/2

Γ(
p
2 +1)

√
|det Σ|, for X ∼ N p

±∞(µ,Σ) = Lp(µ,Σ),

(27)



Entropy and Information Measures 373

while for the univariate case p = 1, the Shannon entropy is reduced to

H(X) =


log 2σ, for X ∼ N 1

1 (µ, σ2) = U1(µ, σ2) = U(µ− σ, µ− σ),

log
√

2πeσ, for X ∼ N 1
2 (µ, σ2) = N (µ, σ2),

1 + log 2σ, for X ∼ N 1
±∞(µ, σ2) = L1(µ, σ2) = L(µ, σ).

where U(µ − σ, µ − σ), N (µ, σ2) and L(µ, σ) are the usual notations for the
univariate Uniform, Normal and Laplace distributions respectively.

Proof. Let Xγ ∼ N p
γ (µ,Σ) and recall (22). Applying Theorem 1 into (26) the

top branch of (27) for γ = 1 is obtained (in limit), i.e. H(X1) := limγ→1+ H(Xγ),
the middle branch of (27) for γ = 2 (normality), while the last branch of (27)
is obtained for γ = ±∞ (in limit), i.e. H(X±∞) := limγ→±∞H(Xγ).

Besides the generalized entropy power Nα (Section 1), another significant
entropy measure that generalizes the Shannon entropy is the Rényi entropy.
For a p–variate continuous random variable with p.d.f. fX , the Rényi entropy
Rα(X) is defined, through the α–norm of fX ∈ L α(Rp), by

Rα(X) := − α
α−1 log ‖fX‖α = 1

1−α log

∫
Rp

|fX(x)|αdx, α ∈ R∗+ \ 1, (28)

where R∗+ := {α ∈ R : α > 0}. For the limiting case of α → 1 the Rényi
entropy converges to the usual Shannon entropy H(X) as in (6). Notice that
the minus sign is used in (28) to be in line with the definition of (6).

Considering now a r.v. from the Nγ family of distributions, the following
holds.

Theorem 4. For the p–variate, spherically contoured γ–order normally dis-
tributed Xγ ∼ N p

γ (µ, σ2Ip), the Rényi entropy of Xγ is given by

Rα(Xγ) = p γ−1
γ(α−1) logα− log(Cpγσ

−p), α ∈ R∗+ \ 1. (29)

Proof. Consider the p.d.f. fXγ as in (15). From the definition (28) it is

Rα(Xγ) = α
1−α log(Cpγσ

−p) + 1
1−α log

∫
Rp

exp
{
−α(γ−1)

γ ‖x−µσ ‖
γ
γ−1

}
dx,

and applying the linear transformation z = (x − µ)σ−1 with dz = d{(x −
µ)/σ} = σ−pdx, the Rα above is reduced to

Rα(Xγ)= α
1−α log

(
Cpγσ

−p)+ 1
1−α log

σp ∫
Rp

exp
{
−α(γ−1)

γ ‖z‖
γ
γ−1

}
dz


= α

1−α log(Cpγσ
p 1−α

α ) + 1
1−α log

∫
Rp

exp
{
−α(γ−1)

γ ‖z‖
γ
γ−1

}
dz.
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Switching to hyperspherical coordinates, it holds

Rα(Xγ) = α
1−α logK(σ) + 1

1−α log

∫
R+

exp
{
−α(γ−1)

γ ρ
γ
γ−1

}
ρp−1dρ,

where K(σ) := Cpγσ
p(1−α)/αω

1/α
p−1, with ωp−1 := 2πp/2/Γ(p/2) denoting the

volume of the (p−1)–sphere. Transforming du := d(γ−1
γ ργ/(γ−1)) = ρ1/(γ−1)dρ,

it holds successively

Rα(Xγ) = α
1−α logK(σ) + 1

1−α log

∫
R+

e−αuρ
(p−1)(γ−1)−1

γ−1 du

= α
α−1 logK(σ) + 1

1−α log

∫
R+

e−αu
(
ρ

γ
γ−1

) (p−1)(γ−1)−1
γ

du

= α
1−α logK(σ) + 1

1−α log( γ
γ−1 )p

γ−1
γ −1 + 1

1−α log

∫
R+

e−αuup
γ−1
γ −1du

= α
1−α logK(σ) + 1

1−α log( γ
γ−1 )p

γ−1
γ −1 − pγ−1

γ ·
logα
1−α + 1

1−α log Γ(pγ−1
γ ).

Finally, by substitution of the expressions for K(σ), ωp−1 and the normalizing
factor Cpγ , the Rényi entropy entropy is then given by

Rα(Xγ) = p log σ − α
1−α logCpγ + 1

1−α logCpγ + pγ−1
γ ·

logα
α−1 ,

and hence (29) holds true.

The collision and the mean–entropy are certain entropy measures often used
in Cryptology. There measures are provided by the Rényi entropy, for specific
parameter values, through the following:

Corollary 3. For the special cases of α = 0, 1, 2,+∞, the Rényi entropy of
Xγ ∼ Nγ(µ,Σ) is reduced to

Rα(Xγ) =


+∞, α = 0, (Hartley entropy )

pγ−1
γ − log(Cpγ/σ

p), α = 1, (Shannon entropy )

pγ−1
γ log 2− log(Cpγ/σ

p), α = 2, (collision entropy )

− log(Cpγ/σ
p), α = +∞. (min–entropy )

Rényi entropy Rα(Xγ), as in (29), is an decreasing function of parameter
α, and therefore

R+∞(Xγ) < R2(Xγ) < R1(Xγ) < R0(Xγ), γ ∈ R \ [0 1].

Example 1. For the multivariate and spherically contoured Uniform random
variable U ∼ U(µ, σ2Ip), the Hartley, Shannon, collision and the min– entropies
coincide as,

Rα(U) = log
πp/2σp

Γ(p2 + 1)
, α ∈ R+ \ 1,
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while for the univariate case of U ∼ U(µ−σ, µ−σ) the Rényi entropy is reduced
to

Rα(U) = log(2σ), α ∈ R+ \ 1.

Notice that for a uniformly distributed r.v. the Rényi entropy Rα is α–
invariant, depending only on the dimension p ∈ N and the scale parameter
σ.

Example 2. For the multivariate and spherically contoured Laplace random
variable L ∼ L(µ, σ2Ip), the Hartley, Shannon, collision and the min– entropies
are given by,

Rα(L) =


+∞, α = 0, (Hartley entropy)
p+ log{p!πp/2σp Γ(p2 + 1)−1}, α = 1, (Shannon entropy)
log{2pp!πp/2σp Γ(p2 + 1)−1}, α = 2, (collision entropy)
log{p!πp/2σp Γ(p2 + 1)−1}, α = +∞. (min–entropy)

Now, the generalized Fisher’s entropy type information of a random variable
following the multivariate N p

γ , is evaluated.

Theorem 5. The generalized Fisher’s information Jα of a r.v. Xγ ∼ N p
γ (µ, λΣ∗)

where λ ∈ R∗+ and Σ∗ is a real matrix with unit orthogonal vectors, i.e.

Σ∗ ∈ Rp×p⊥ , is given by

Jα(Xγ) = ( γ
γ−1 )

α
γ

Γ
(
α+p(γ−1)

γ

)
λα/2 Γ

(
pγ−1

γ

) , α ∈ R+ \ 1. (30)

Proof. From (5),

Jα(Xγ) = αα
∫
Rp

∥∥∥∇f1/α
Xγ

(x)
∥∥∥α dx,

while from the definition of the density function fXγ , as in (15),

Jα(Xγ) = ααCpγ

∫
Rp

∥∥∥∇ exp
{
−γ−1

αγ Q(x)
γ

2(γ−1)

}∥∥∥α dx
= αα(γ−1

αγ )αCpγ

∫
Rp

exp
{
−γ−1

γ Q
γ

2(γ−1) (x)
}∥∥∥∇Q γ

2(γ−1) (x)
∥∥∥α dx.(31)

For the gradient of the quadratic form Q(x) it holds that ∇Q(x) = λ−1∇{(x−
µ)Σ∗−1(x − µ)T} = 2λ−1Σ∗−1(x − µ)T, while from the fact that Σ∗ is an
orthogonal matrix we have ‖Σ∗−1(x − µ)T‖ = ‖x − µ‖. Therefore, (5) can be
written as

Jα(Xγ) = λ−αCpγ

∫
Rp

exp
{
−γ−1

γ Q
γ

2(γ−1) (x)
}
Q

αγ
2(γ−1)

−α(x) ‖x− µ‖α dx.
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Applying the linear transformation z := (x−µ)(λΣ∗)−1/2 in the above integral,
it is dx = d(x−µ) =

√
λp |det Σ∗|dz = λp/2dz, the quadratic form Q is reduced

to

Q(x) = (x−µ)(λΣ)∗−1(x−µ)T = (x−µ)(λΣ∗)−1/2[(x−µ)(λΣ∗)−1/2]T = ‖z‖2 ,

and thus,

Jα(Xγ) = λ(p−α)/2Cpγ

∫
Rp

‖z‖
α
γ−1 exp

{
−γ−1

γ ‖z‖
γ
γ−1

}
dz.

Switching to hyperspherical coordinates, it holds

Jα(Xγ) = λ(p−α)/2Cpγωp−1

+∞∫
0

ρ
α
γ−1 exp

{
−γ−1

γ ρ
γ
γ−1

}
ρp−1dρ,

where ωp−1 := 2πp/2

Γ(p/2) is the volume of the (p− 1)–sphere, Sp−1, and hence

Jα(Xγ) = 2
πp/2

Γ(π2 )
λ(p−α)/2Cpγ

+∞∫
0

ρ
α+(p−1)(γ−1)

γ−1 exp
{
−γ−1

γ ρ
γ
γ−1

}
dρ.

From the fact that d(γ−1
γ ρ

γ
γ−1 ) = ρ

1
γ−1 dρ and the definition of the gamma

function, we obtain successively

Jα(Xγ) = 2
πp/2

Γ(π2 )
λ(p−α)/2Cpγ

+∞∫
0

ρ
α+(p−1)(γ−1)

γ−1 − 1
γ−1 exp

{
−γ−1

γ ρ
γ
γ−1

}
d(γ−1

γ ρ
γ
γ−1 )

= 2
πp/2

Γ(π2 )
λ(p−α)/2Cpγ

+∞∫
0

ρ
α+pγ−γ−p

γ−1 exp
{
−γ−1

γ ρ
γ
γ−1

}
d(γ−1

γ ρ
γ
γ−1 )

= 2
πp/2

Γ(π2 )
λ(p−α)/2( γ

γ−1 )
α−γ+p(γ−1)

γ Cpγ×

+∞∫
0

(γ−1
γ ρ

γ
γ−1 )

α−γ+p(γ−1)
γ exp

{
−γ−1

γ ρ
γ
γ−1

}
d(γ−1

γ ρ
γ
γ−1 )

= 2
πp/2

Γ(π2 )
λ(p−α)/2( γ

γ−1 )
α−γ+p(γ−1)

γ Cpγ Γ(α+p(γ−1)
γ ),

and, finally, applying the normalizing factor Cpγ as in (16), we derive (30) and
the Theorem has been proved.

For the defined generalized Fisher’s information measure and the γ–ordered
Normal, it is clear that the values of Jα(Xγ) depends on the two parameters α
and γ. Therefore, we shall investigate for which values of α and γ the Jα(Xγ)
is bounded.
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In the following Proposition we provide some inequalities for the gener-
alized Fisher’s entropy type information measure Jα for the family of the
γ–order Normal distributions with positive order γ, i.e. for Jα(Xγ) where
Xγ ∼ N p

γ (µ, σ2Ip), considering parameters α > 1 and γ > 2.

Proposition 2. The generalized Fisher’s information measure Jα of a ran-
dom variable Xγ following the multivariate and spherically contoured γ–order
Normal distribution, i.e. Xγ ∼ N p

γ (µ, σ2Ip), α, γ ≥ 2, satisfy the inequalities

Jα(Xγ)

> pσ−α, for α > γ,
= pσ−α, for α = γ,
< pσ−α, for α < γ.

(32)

Proof. For the spherically contoured r.v. Xγ ∼ N p
γ (µ, σ2Ip) we are reduced to

(30) where λ = σ2. Thus, for the proof of the first branch of (32) we assume

α > γ, i.e. α
γ > 1. Then, we have α+p(γ−1)

γ > 1 + pγ−1
γ . This implies,

Γ(α+p(γ−1)
γ ) > Γ(1 + pγ−1

γ ) = pγ−1
γ Γ(pγ−1

γ ), (33)

if 1 + pγ−1
γ ≥ Γ0, where Γ0 ≈ 1.4628 denotes the point of minimum for the

positive gamma function, Γ(x), x > 0. That is, if the inequality x = 1+pγ−1
γ ≥

Γ0 holds, then Γ(x) ≥ Γ(Γ0), as the gamma function is an increasing function
for x ≥ Γ0. Inequality, 1 + pγ−1

γ ≥ Γ0, is equivalent to, γ ≥ p
p+1−Γ0

≈
p

p−0.4628 > 1, which is true as γ ≥ 2 in our assumption for the values of

parameter γ. Thus, (33) holds indeed, for orders γ ≥ p
p+1−Γ0

, and so,

Γ(α+p(γ−1)
γ )

Γ(pγ−1
γ )

> pγ−1
γ . (34)

Our assumption, α
γ > 1, together with the fact that, γ

γ−1 > 1 for all defined

orders γ ∈ R\[0, 1], leads us to ( γ
γ−1 )

α/γ
> γ

γ−1 . Then, inequality (34) provides

(
γ
γ−1

)α
γ Γ(α+p(γ−1)

γ )

Γ(pγ−1
γ )

> γ
γ−1p

γ−1
γ = p,

and, using (30), we derive that, Jα(Xγ) > p
√
|det Σ| for α > γ, i.e. the first

branch of (32) holds. Similarly the other two branches also hold.

Corollary 4. The generalized Fisher’s information Jα of a spherically con-
toured r.v. Xγ ∼ N p

γ (µ, σ2Ip), with α/γ ∈ N∗, is reduced to

Jα(Xγ) = σ−α(γ − 1)−αγ
α/γ∏
k=1

{α− p+ (p− k)γ}. (35)

Proof. From (30) and the gamma function additive identity, i.e. Γ(x + 1) =
xΓ(x), x ∈ R∗+, relation (35) holds
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The following Fig. 3 depicts the generalized Fisher’s information Jα of the
bi– and tri–variate (and spherically contoured) γ–order normally distributed
random variables Xγ ∼ N 2

γ (µ, Ip=1,2), across the parameter α > 1, and for
various shape parameters γ = 1, 1.1, . . . , 1.9, 2, 3, . . . , 10. The bivariate case
p = 2 is presented in the left sub–figure, while the trivariate case p = 3 in
the right sub–figure. The usual Normal distribution case of γ = 2 is also
highlighted.

Fig. 3. Graphs of Jα(Xγ) across parameter α > 1, with Xγ ∼ N 2
γ (µ, Ip=2,3), and for

various γ values.

3 Other Nγ–based extensions

We present here some distributions that are based on the γ–order Normal
distribution.

3.1 Generalized Lognormal distribution

The Lognormal distribution is defined as the distribution of a random variable
whose logarithm is normally distributed, and usually is formulated with two
parameters. It is widely applied in life sciences, including Biology, Ecology,
Geology, Meteorology as well as Economics, Finance, and Risk Analysis, see
Crow and Shimizu [5]. Also, it plays an important role in Astrophysics and
Cosmology, see Bernardeau and Kofman [2], Blasi et al. [3] among others.

Furthermore, Log–Uniform and Log–Laplace distribution can be similarly
defined with applications in Finance, see Yan and Hanson [19], Kozubowski
and Podgórski [15]. Especially, the power–tail phenomenon of the Log–Laplace
distribution, Kozubowski and Podgórski [16], attracts, very often, attention in
Environmental Sciences, Physics and Economics.

The Lognormal distribution can be also extended to the γ–order Lognormal
distribution, denoted with LN (µ, σ2), in the sense that if X ∼ N 1

γ (µ, σ2), with

p.d.f. fX , then Y = eX follows the LN γ(µ, σ) with p.d.f.

gY (y) := 1
yfX(log y) = C1

γ(σy)−1 exp

{
−γ−1

γ

∣∣∣ log y−µ
σ

∣∣∣ γ
γ−1

}
, y ∈ R∗+. (36)
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Moreover, if X ∼ LN γ(µ, σ) then logX ∼ N 1
γ (µ, σ2).

For certain shape parameter values γ the LN γ distribution is reduced to
Log–Uniform and Log–Laplace distribution. See [12] for further reading on the
subject.

Figure 4 illustrates, in a compact form, all the density functions fXγ (x),
x ∈ [−3, 3], for all γ ∈ [−10, 0) ∪ [1, 10], where Xγ ∼ LN γ(0, 1). The known
densities of Log–Uniform (γ = 1) and Lognormal (γ = 2) distributions are
also depicted. Moreover the densities of LN γ=±10(0, 1), which approximate
the density of Log–Laplace distribution LL(0, 1) = LN±∞(0, 1), as well as the
density of LN−0.005(0, 1), which approximates the degenerate Dirac distribu-
tion D(1), are clearly presented. One can notice the smooth–bringing between
these significant distributions that are included in the family of the γ–order
Lognormal distribution.

Fig. 4. Graph of all the densities fXγ (x), x ∈ [−3, 3], for various shape parameters
γ, where Xγ ∼ LN γ(0, 1).

3.2 Truncated γ–order Normal and Lognormal distribution

Let X be a univariate r.v. from Nγ(µ, σ2) with p.d.f. fX , as in (15), and c.d.f.
FX , as in (24) or (25). Then, the r.v. X+

ρ is said to follow the right–truncated
γ–order Normal distribution at the point ρ ∈ R, when its p.d.f. fX+

ρ
is of the

form

fX+
ρ

(x) :=


0, if x > ρ,

fX(x)

FX(ρ)
=

C1
γ

σFX(ρ)
exp

{
−γ−1

γ

∣∣x−µ
σ

∣∣ γ
γ−1

}
, if x ≤ ρ,
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while X−τ is said to follow the left–truncated γ–order Normal distribution at
the point τ ∈ R, when its p.d.f. fX−

τ
is given by

fX−
τ

(x) :=


0, if x < τ,

fX(x)

1− FX(τ)
=

C1
γ

σ − σFX(τ)
exp

{
−γ−1

γ

∣∣x−µ
σ

∣∣ γ
γ−1

}
, if x ≥ τ.

For the generalized Lognormal case Y := eX ∼ LN γ(µ, σ2), through (36),
the r.v. Y +

ρ follows the right–truncated γ–order Lognormal distribution at the
(log–scaled) point ρ ∈ R∗+, when its p.d.f. gY +

ρ
is of the form

gY +
ρ

(y) :=


0, if y > ρ,

fX(log y)

yFX(eρ)
=

C1
γ

σyFX(eρ)
exp

{
−γ−1

γ

∣∣∣ log y−µ
σ

∣∣∣ γ
γ−1

}
, if y ≤ ρ,

while the r.v. Y −τ follows the left–truncated γ–order Lognormal distribution at
the (log–scaled) point τ ∈ R∗+, when its p.d.f. gY −

τ
is given by

gY −
τ

(y) :=


0, if y < τ,

fX(log y)

y − yFX(eτ )
=

C1
γ

σy[1− FX(eτ )]
exp

{
−γ−1

γ

∣∣∣ log y−µ
σ

∣∣∣ γ
γ−1

}
, if y ≥ τ.

3.3 Asymmetric form of the γ–order Normal Distribution

A two–way asymmetric form of the Nγ family can be constructed using a pair
(σ1, σ2) of asymmetric scale parameters, and/or a pair (γ1, γ2) of asymmetric
shape parameters.

A r.v. X follows the (two–way) asymmetric (γ1,γ2)–order Normal distribu-
tion, denoted by AN γ1,γ2(µ, σ2

1 , σ
2
2), when its p.d.f. fX is defined as

fX(x) :=


C exp

{
−γ1−1

γ1

∣∣∣x−µσ1

∣∣∣ γ1
γ1−1

}
, x < µ,

C exp

{
−γ2−1

γ2

∣∣∣x−µσ2

∣∣∣ γ2
γ2−1

}
, x ≥ µ,

with µ being the (maximum density) turning point, and C being the (mutual)
normalizing factor

C :=
2C1

γ1C
1
γ2

σ1C1
γ2 + σ2C1

γ1

=
1

σ1 Γ(γ1−1
γ1

)(γ1−1
γ1

)1/γ1 + σ2 Γ(γ2−1
γ2

)(γ2−1
γ2

)1/γ1
.

Equivalently, when X1, X2 are two univariate (and symmetric) r.v. from
Nγ1(µ, σ2

1) and Nγ2(µ, σ2
2), for the asymmetric r.v. X with p.d.f. fX1

and fX2
,

it is

fX(x) =
2

1 +
(
σ2C1

γ2

σ1C1
γ1

)sgn(µ−x)
×

{
fX1(x), x < µ,

fX2(x), x ≥ µ.
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where sgn(·) is the sign function. See Fig. 5 for the visualization of some
“shape–asymmetric” AN 2;γ(0, 1, 1) distributions (with fixed shape parameter
γ1 = 2 for the left part of the p.d.f. and various γ parameter values for the
right part of the asymmetric p.d.f.). For some “scale–asymmetric” distributions
AN γ,γ(0, 1, σ2) see Fig. 6 (depicting four cases of shape parameter values γ =
6/5, 2, 4,−2, with fixed scale parameter σ1 = 1 for the p.d.f.’s left part, and
various σ parameter values for the right part of the asymmetric p.d.f.).

The c.d.f. FX of the asymmetric r.v. X ∼ AN γ1,γ2(µ, σ2
1 , σ

2
2) is then given

by

FX(x) =


1+sgn(x−µ)

1+k + sgn(x−µ)

(1+k) Γ(
γ−1
γ )

Γ
(
γ−1
γ , γ−1

γ

∣∣x−µ
σ

∣∣ γ
γ−1

)
, x < µ,

1
1+k + 1

1+k−1

[
2− Γ(γ−1

γ )−1 Γ
(
γ−1
γ , γ−1

γ

(
x−µ
σ

) γ
γ−1

)]
, x ≥ µ,

where k = (σ2C
1
γ2)(σ1C

1
γ1)−1.

Fig. 5. Graph of the densities fX , with X ∼ AN 2;γ(0, 1, 1), for various “right” shape
parameter values γ.

4 Discussion

In this paper we considered an exponential–power generalized form of the mul-
tivariate normal distribution, namely the γ–order Normal distribution, N p

γ .
This generalization was obtained through the study of the generalized entropy
power, Kitso and Tavoularis [9]. The Shannon entropy as well as the Rényi
entropy was evaluated and discussed (including the specific cases of the multi-
variate Uniform, Normal and Laplace distributions) for the γ–order normally
distributed random variables. Moreover, the generalized entropy type informa-
tion measure, Jα, which extends the known entropy type Fisher’s information,
was investigated through these random variables and certain boundaries of the
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Fig. 6. Graphs of the densities fX , with X ∼ AN γ,γ(0, 1, σ2), for various “right”
scale parameter values σ (<,=, > 1), in four cases of shape parameter γ values.

Jα were obtained. Finally, three univariate Nγ–based extensions were also
given, i.e. the γ–order Lognormal distribution LN γ , the left/right truncated
cases ofNγ and LN γ distributions, and a two–way asymmetricNγ distribution.
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1 Institute of Mathematics, Faculty of Science,P.J.Šafárik University in Košice,
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Abstract. Chaos can appear in ecological systems from many sources. There are
several possibilities how to model chaos. Principal question of methane emissions re-
leased from wetland can be formulated, whether there is a chaotical part of methane
emission. In this paper, we will provide reconstruction of Pareto based chaos based
on Iterated Function System (IFS). We will mention several open problems and relate
them to already developed statistical methodology for measuring of entropy as well
as related statistical inference for methane emissions released from wetland.

Keywords: Chaos, entropy, methane emissions, iterated function system.

1 Introduction

Biogeochemical processes on the different time scales are measurable by change
of entropy having a thermodynamic meaning [7], [1]. Chaos can appear in
ecological systems from many sources. There are several possibilities for chaos
modelling, let us mention entropies, topological dimension, quantization dimen-
sion, ergodic theorems and dynamical systems. Principal question of methane
emissions released from wetland can be formulated, whether there is a chaot-
ical part of methane emission. We developed a statistical methodology for
measuring of entropy and related statistical inference for methane emissions
released from wetland in [6]. We concentrated on paradigm question how much
stochasticity and how much chaos is present in the methane emission model,
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386 Kiseľák et al.

using the residua from the process of methane emissions from wetlands in the
sedge-grass marsh, in South Bohemia, Czech Republic.

Methane emissions are modelled via trend fitting. In [4] we have modelled
this dependence by a time-series model. The trend component is estimated by
the Ordinary Least Squares and the noise component is represented by the sum
of an infinite moving average model with Pareto-like positive and negative parts
of the innovations and independent identically distributed (i.i.d.) innovations.
The process of methane release from soil has also chaotic features. Relation
to entropy and a specific version of Kullback-Leibler divergence can be given
(see [8]). Reconstruction of Pareto based chaos based on an Iterated function
system (IFS) will be also provided in this paper.

An interesting connection between the quantization dimension and temper-
ature function, β(q), such that β(0) defines Hausdorff dimension of attractor
for some Moran measures, has been developed in [5]. However, to better under-
stand underlying mechanism of ecological emissions also other values of β(q),
q > 0 are of interest. Nevertheless, classical theory of chaos considered only
the extremal case of β(0) and its estimates.

2 Iterated function system: reconstructing chaos from
Pareto

Our approach is based on the results achieved by [9]. We considered iterated
function system (IFS) {R, fi, pi}ni=1 with probabilities. That is, fi : R →
R, i = 1, . . . , n are functions and pi are associated non-negative numbers with
n∑
i=1

pi = 1. It is known that if fi are contractions, see [3], then there exists a

unique nonempty compact set A (set-attractor) satisfying

A =

n⋃
i=1

fi(A)

and a unique probability measure µ (unique measure-attractor), supported on

A, satisfying the invariance equation µ(·) =
n∑
i=1

piµ(f−1i (·)). If an IFS has

a unique measure-attractor µ, then µ is the unique stationary distribution of
{Xk}∞k=0, i.e. for the Markov chain obtained by random (independent) iter-
ations with the functions, fi, chosen with the corresponding probabilities, pi.
The inverse problem is to, given a probability distribution µ, find an IFS having
µ as its unique measure-attractor. A simple solution to the inverse problem for
continuous probability measures on R, see [9]. Let µ be a probability measure
on R with its distribution F . The generalised inverse distribution function is
defined by

F−1(z) = inf
x∈R
{F (x) ≥ z}, 0 ≤ z ≤ 1.

It is true, see [9], that if Z ∼ U(0, 1), then F−1(Z) is a µ-distributed random
variable. This basic property helps us to simulate from an arbitrary distribution
on R, by simulating uniform random numbers on the unit interval. Moreover,
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if µ is continuous then F (F−1(z)) = z for 0 < z < 1. This is a crucial property
for the following result, again see [9].

Theorem 1. A continuous distribution, µ, on R with distribution function,
F , is the measure-attractor of the IFS with monotone maps fi(x) = (F−1 ◦
ui ◦ F )(x), for any x with F (x) > 0, and probabilities pi = 1

n , where ui(z) =
z
n + i−1

n , 0 ≤ z ≤ 1, i = 1, 2, . . . , n, for any n ≥ 2.

Note that this theorem cannot be generalized to discrete distributions. As it
is stated in [9], from Theorem 1 it follows that any continuous probability dis-
tribution on R can be approximated by the empirical distribution of a Markov
chain {Xk} on R generated by an IFS with trivial randomness generated e.g.
by a coin or dice.

Our problem is to illustrate possible chaos generation by iteration of Pareto-
based functions. This justifies our approach in [6], since methane emissions are
aggregated in a similar way. Accordingly, we considered Pareto distribution
with probability density function

h(x) =

{
αxαm x

−(α+1), x ≥ xm
0, x < xm

,

where xm > 0 is a threshold and α > 0 is a shape parameter, which is known
as the tail index. Using Theorem 1 we obtain fi in the following form

fi(x) =



xm n
1
α(

n− i+
(
xm
x

)α) 1
α

, x ≥ xm

xm n
1
α

(n− i+ 1)
1
α

, x < xm

, i = 1, . . . , n.

In Figure 1 are first three continuous monotone maps with n = 4, α = 1.3 and
threshold xm = 1.

Notice that almost all the well-known fractals (Cantor set, Sierpinski trian-
gle etc.), as well as many less well known ones, are the attractors of appropriate
IFSs. An approximation of attractor computed by a simple algorithm given in
section 4 is displayed in Figure 2.

Notice that one can show that fi, i = 1, . . . , n, are Lipschitz continuous

with constant L = n
1
α (n− i+1)

−(α+1)
α , but they are not contractive in general.

In practice software that implements IFS only require that the whole system
be contractive on average, see [2]. We setup the configuration as follows: n =
2, p1 = p2 = 1

2 , α = 1.3 and xm = 1. This represents a reliable choice
of parameters, see e.g. [6], where authors modelled CH4 flux ”emissions” by
the infinite moving average process. We computed tenth-order composition of
functions f1, f2, which were chosen randomly with probabilities p1, p2. This
procedure has been repeated 1000 times (due to time complexity). We obtain
observations at given value x = 3, the histogram of which (compared to real
density) can be seen in Figure 3. Various situations where parameters α and
xm are perturbated are plotted in figures 4, 5, 6. From this, we can see the
self-similarity of chaos (and heavy tails, respectively), since iteration of density
of the tail of emission creates heavy-tailed pattern density.
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Fig. 1. Graphs of the functions f1, f2, f3 (red, green, orange) for n = 4 with xm =
1, α = 1.3.

Fig. 2. Graphical illustration of an attractor on the real line generated by IFS f1, f2
for n = 2 with xm = 1, α = 1.3.
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Fig. 3. Approximation of Pareto den-
sity α = 1.3 and xm = 1.

Fig. 4. Approximation of Pareto den-
sity α = 1.5 and xm = 1.

Fig. 5. Approximation of Pareto den-
sity with α = 0.9 and xm = 1.

Fig. 6. Approximation of Pareto den-
sity α = 1.3 and xm = 2.

3 Conclusions

As is stated in [6], the complexities of methane emissions from wetlands, es-
pecially many dependencies and interactions may lead an experimenter to a
conclusion that it is a complicated and chaotic system. IFS is a typical and
also appropriate tool for generating chaos. In this paper, we show how to re-
late IFS with extreme value distribution of Pareto type. Such relations could
be very useful for better understanding of the self-similar stochastic processes
in emissions. The ecological aspect of ebullition given by such approach is an
open question.
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4 Maple codes of simple procedures

We have used MAPLE 14 to calculate an approximation of Pareto density as
well as an approximation of attractor. These algorithms can be implemented
using a few lines of MAPLE.

Following procedure generates observations at given point X and specific
choice of parameters.

active1dgenerate := proc(N,NN,X,XM,A,m) NN - number of fifunctions,N−
numberofrepeatedprocedures,Xgivenpoint,XM − threshold,A− alpha,m−
numberofiterationslocalroll, f, i, j, p, fun, function, FUN : roll := rand(1..NN) :

f :=i-¿ piecewise(x ¡ XM,XM*NNˆ(1/A)/(NN-i+1)ˆ(1/A), XM*NNˆ(1/A)/(NN-
i+(XM/x)ˆA)ˆ(1/A)):

for i from 1 to N do p[1]:=roll(): fun[1]:=unapply(f(p[1]),x): FUN[1]:=unapply(f(p[1]),x):
for j from 2 to m do p[j]:=roll(): fun[j]:=unapply(f(p[j]),x): FUN[j]:=unapply(fun[j](FUN[j-
1](x)),x): od: function[i]:=FUN[m](X): od:

return(seq(function[i],i=1..N)): end proc:

The next script generates points, which form an approximation of attractor.

active1dattractor := proc(N,NN,XM,A,x0) x0 is a starting point of attrac-
tor local X, i, p, fun, roll, f: X[0]:=x0: roll := rand(1 .. NN): f :=i-¿ piecewise(x ¡
XM,XM*NNˆ(1/A)/(NN-i+1)ˆ(1/A), XM*NNˆ(1/A)/(NN-i+(XM/x)ˆA)ˆ(1/A)):

for i from 1 to N do p:=roll(): fun:=unapply(f(p),x): X[i]:=fun(X[i-1]): od:
return(seq([X[i],0],i=1..N)): end proc:
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Abstract. The purpose of this paper is to evaluate the accuracy of the beta estimations that 

are suggested to be free of intervalling effect bias. The accuracy of the asymptotic estimators 

of betas is examined by comparing them to OLS assessments as well as to beta estimations 

adjusted according to their tendency to regress towards one. Furthermore the above 
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1  Introduction  
 

Measuring non-diversifiable risk in an investment like a fund or a security is the 

most common practice in financial analysis. Thanks to Sharpe [29] systematic risk 

of a security can be quantified simply by its regressing returns to the market returns 

and consequently the slope, or the beta of this procedure will eventually produce a 

figure exposing how volatile and risky the security in relation to the market is. 

Apart from this practical use, the systematic risk measuring is prolific in academic 

terms. There is a vast academic literature investigating the best model that can 

provide the most accurate systematic risk measure. For example, many variations 

of the model can be formulated. In a single dimension, it appeared in the Sharpe 

and Lintner’s [21] Capital Asset Pricing Model (CAPM) and the Market Model 

(MM) while in multidimensional versions the Three Factor Model of Fama and 

French [12] and Carhart’s [4] four factor model are among the most popular.     

 

The aim of this paper is to evaluate the accuracy of the beta estimations that are 

suggested to be free of intervalling effect bias. In particular, we examine whether 

the methodology of reducing price adjustment delays due to microstructure of 

capital markets contributes to the accuracy of the risk estimations. A number of 

works have evaluated the validity of this method, for instance McInish and Wood 

[23] so this issue appears to interest both academics and practitioners. To our 

knowledge there are no studies on evaluation of the accuracy of intervalling effect 
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free-betas by straightforwardly comparing them to betas corrected according to 

their tendency to regress towards the grand beta mean. 

 

 To that end, let employ two methodologies. The first methodology was suggested 

by Cohen et al. [6] and the second one by Blume [2]. The first considers price 

adjustment delays that are present into microstructure of markets and leads to 

interavalling-effect bias, so it suggested a procedure to reduce this phenomenon. It 

appears as a two-stage procedure: In the first stage the Market Model and Ordinary 

Least Squares (OLS) time series regression betas are calculated for a number of 

intervals, typically from one day to one month. In the second stage an asymptotic 

estimator of the systematic risk coefficient by cross-sectional regress OLS betas 

towards a monotonically decreased equation is calculated. Consequently the 

asymptotic estimator reduces the intervalling-effect bias. The methodology is  

significant as far as the researchers include it in their agenda, see for instance in 

Fung et al. [16]. More recent studies that use this methodology are Diakogiannis 

and Makri [9] and Milonas and Rompotis [26]. 

Furthermore Blume’s technique [2] attempts to calculate future risk coefficients by 

taking into consideration the fact that betas aren’t constant over time, yet they have 

the tendency to regress towards the market mean. By dividing a time dataset to 

sub-periods, for instance three or five year periods, he calculates betas for each 

time period. Afterwards he regresses the betas of the earlier period towards the 

betas of the later period. 

 With the use of the regression equation and first period’s beta a researcher is able 

to recalculate betas of the second period, thus the adjusted assessment according to 

his phraseology. Final step of this methodology is an examination of the accuracy 

of the assessments that are based on historical data compared to the risk factors that 

take into account the tendency of the betas to regress toward the grand mean. Apart 

for Blume’s methodology, there are other techniques that attempt to correct the 

beta estimations according to the aforementioned principal, with most important 

the Bayesian technique. Initially inducted by Vasicek [31], the Bayesian method is 

widely used by prestigious companies like Merrill Lynch and as Elton et al. [10] 

suggests it could be more favorable in comparison to Blume’s technique in certain 

occasions. Concerning beta adjustment techniques we should mention 

Mantripragada [22] who applied a plethora of those methodologies to Canadian 

stock datasets and more recently the Sarker [27] who used both Vasicek and 

Blume’s technique to data from Dhaka Stock Exchange and concluded that there 

are no significant differences in their results. 

Taking into account all the above I: 

 

1) Investigate the accuracy of the asymptotic estimators of betas by comparing 

them to OLS naïve assessments and to beta estimations adjusted according to 

Blume [2] method.  

2) I employ above comparison for different intervals among data observations 

(daily and monthly intervals). 



Accuracy of the Risk Estimators    395 

 
3) I also re-examine my results by taking into account the Corhay [8] effect in 

results
1
. 

4) Finally I extract asymptotic estimators of betas by using models that take into 

account Heteroskedasticity in residuals (GARCH and Exponential-GARCH) and I 

proceed with the same accuracy inspection.   

In terms of data daily closing time security prices of the entire universe of Athens 

Stock Exchange are selected for calculating returns, while market returns are 

presented from Athens Stock General Index. Also data are collected for ten 

consecutive years. Moreover since Blume [2] and Cohen et al. [5] use the Market 

Model, same method should apply here hence risk free rate is not necessary. The 

rest of the paper is organized as follows. Section 2 includes literature review. 

Section 3 discusses data, Section 4 analyzes methodology approach while results 

are included in section 5. Section 6 concludes.  

 

2  Literature Review 
 

2.1  The Model 
 

In line with methodology used by Blume [2] and Cohen et al. [6], for my analysis I 

will use the Market Model. Formula is 

 

= + ( )  (1) 

 

Where  is the expected return on the capital asset,  is the residual return of 

asset I.  (the beta coefficient) represents sensitivity of the asset returns compared 

to market returns or = . Total risk of the portfolio can 

be viewed as beta. Rephrasing, the model uses time series regression to calculate 

beta, so (   stands for expected return of the market. 

Compared to the single index CAPM model it differs in two ways: First there is 

absence of risk free rate as in realistic terms it makes no countable difference and 

second, Elton et al. [11] points out that MM lacks the assumption that all 

covariances among securities occur because of a common covariance with the 

market.  Also multifactor models, like Fama and French three factors model [12], 

[14] or Carhart’s [4] four factor model are not selected. As Elton et al [10] points 

out, maybe historical prices are better interpreted by a multi-dimensional model but 

in terms of predictive ability a single-index model should be preferred. Moreover 

                                                 
1 As Corhay [8] points out if the interval between data observations is more than a day we 

might get a different result every time we choose a different starting day. To this end I 

perform tests by selecting every possible starting day within the interval and the final beta 

estimation is the average of those results.  
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multi-dimensional model might include more noise than information in their 

factors in certain occasions.     

 

2.2  Adjusted Risk Coefficient 
  

Blume [2] argued with a common practice of investors to act as if beta coefficients 

are constant over time. After examining correlations of unadjusted risk coefficients 

he suggested a methodology where he extracted future adjusted betas according to 

past prices. Most important in this methodology is the assumption that betas tend to 

regress toward market mean and consequently his methodology measures this 

phenomenon. Furthermore, he examined accuracy of adjusted assessment through 

mean square errors and found that they are significantly more accurate compared to 

assessments based simply on historical prices. In terms of methodology he 

separated his data into sub-periods and calculated via Ordinary Least Squares 

(OLS) time series regression the betas of those periods. In addition he performed 

cross section regression where betas of one period are the explanatory variables 

and betas of the next period are the dependent. Finally, with the use of the 

regression equation and the data of the first period, second period’s beta can be 

extracted and according to Blume’s [2] findings, they are more accurate compared 

to historical prices results.        

Definitely promising, yet Blume’s technique has been further investigated by the 

academic community and proved to be less than flawless. For instance, Klemkosky 

et al. [18] indicated bias occurring and recommended three procedures to reduce 

those effects. On the contrary Blume [3] addressed the issue of order bias which 

leads to non-stationarity in estimated beta coefficients. He argued that it is not of 

major importance by suggesting that extreme betas of investments tend to become 

less extreme both for new or existing investments. Summing up, two types that 

effect Blume’s technique should be mentioned. One is the fact that it fails to 

forecast a trend in beta and assumes that any trends occurring are random. Second 

it fails to spot other factors except correlation with the market that effect beta 

changes, for instance industry effects.  

In line with Blume’s concept, other techniques have been suggested with most 

important the Bayesian technique, initially suggested by Vasicek [31]. It is widely 

used by prestigious firms like Merrill Lynch and as Elton et al. [11] explains, it 

assumes that beta of investments tend to be closer to average beta than historical 

prices suggest so adjusts each historical beta towards the average. Suffering from 

its own bias, for instance when a beta is greater than one, it is corrected by a bigger 

percentage compared to a less than the market beta, yet it is suggested to be a 

slightly better technique compare to Blume’s by many authors like Elton et al. [10]  

and Klemkosky and Martin [18].    

 

2.3  Asymptotic Beta 
 

The second methodology employed in this paper is the asymptotic estimation of 

betas proposed by Cohen et al. [6]. As the majority of empirical researchers in 
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financial economics presume no friction, Hawanini et al. [17], based on 

microstructure theory, argued by confirming the importance of friction in trading 

process and by indicating the complex and persistent impact friction has on 

generating returns practice. Also Hawanini et al. [17] points out in the same study 

that when differencing interval is increasing, price adjustment delay impact will 

reduce. Concluding, in their paper it is suggested that if differencing intervals are 

greater than aforementioned delays, then the latter will lessen. Giving a simple 

example of what intervalling-effect bias is, it can be stated that if an investor 

estimates beta for a security with daily data with OLS regression procedure, he will 

get a figure that will differ compared to a procedure with weekly data, and again he 

will get different beta for monthly intervals among observations. 

Also Cohen et al. [6], in line with previous findings points out that when working 

with short differencing interval data the variation between true and observed beta is 

considerable. True are the beta that should be obtained in case of a frictionless 

environment and observed beta are the beta that can be calculated and actually 

observed by investors. Also Cohen et al. [7] denoted that price adjustment delays 

are associated with market value of the shares included in sample investigated. In 

the same work it is suggested that if intervals are increasing gradually then bias 

will reduce and eventually diminish. In formula terms Fung et al. [16] suggested 

the following: 

 

=   (2) 

 

Where  represents an inconsistent estimator of , while  is the beta 

estimator for interval l. 

The most important in Cohen et al. [6] work is their suggestion of a methodology 

where the true beta can be estimated, thus the asymptotic estimator of beta.  It is a 

two stages procedure. First step is to calculate systematic risk coefficient, thus the 

slope or the beta in the Market Model with regression method for intervals from 

1,2,…, l days. Regression formula is     

  

= + +  (3) 

 

Prescript 1 denotes the first stage. The second stage is occurring in order to 

estimate the intervalling effect on risk coefficient. For that procedure all the 

estimated betas for all intervals and for each security are cross-sectional regressed 

with the interval effect which reduces as intervals are increasing and is expressed 

from the monotonically decreased equation where it is assumed that:      

 

  (4) 

 

Formula of the second stage is: 
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= + +   (5) 

 

Where 2 denotes the second stage of the procedure and  stands for the 

asymptotic estimator of beta. Clearly as L increases without bound the intervalling 

effect reduces. Consequently diminishes and thus true beta will be approaching 

the figures of observed beta. Concerning n we follow the same methodology as in 

Cohen et al. [6] and Fung et al. [16]
 2

. Finally Cohen et al. [7] highlights the 

importance of  as quantitative proxy to measure intervalling effect. If it is 

statistically significant, a negative price of  will suggest that as differencing 

interval lengthens beta coefficient will rise and vice versa. If it is statistically 

insignificant there is no intervalling effect at all.    

 

3  Data 
 

Sample data were collected from Bloomberg’s terminal database. Daily closing 

time observations are selected due to homogeneity reasons. In case an observation 

misses due to unforeseen constraints, the average of the previous and next day is 

calculated and serves as the missing observation. Moreover all securities are valued 

in euro currency. In addition, the sample set consists of the whole universe of 

securities traded in Athens Stock Exchange for ten consecutive years, from 

02/01/2002 until 30/12/2011. In case a security was excluded from trading during 

the time sample was chosen, it will be excluded from the sample as well. For 

Market returns ASE General Index (capitalization weighted) is used in 

calculations. ASE appears to be an interesting selection for a number of reasons. 

First it does not present features like big capitalization of more mature markets like 

New York Stock Exchange or Frankfurt Stock Exchange, which habitually provide 

data for research. Moreover it was excluded from emerging markets (and 

harmonized with standards of mature markets) in 2001, yet it downgraded again in 

2013 by index provider MSCI so it is expected to produce very interesting results 

which can be compared to results provided from a mature market. In addition, it is 

expected to be more volatile compared to a mature market as it lacks capitalization, 

which is another thing that makes ASE more appealing. Finally, Athens Stock 

Exchange was selected because there is evidence that friction in trading processes 

appears to be present. As it is suggested by Alexakis and Alexakis [1] there is 

evidence that Hellenic Market follows patterns of global markets with delay.  

From initial observations continuously compounded rate of return on each security 

is calculated according to formula presented below
3
. 

 

                                                 
2
 Cohen et al. [6] n estimation is approximately 0.8 and as exposed in table 1 we get a 

similar result only on second period (07-11) and only when we take into account Corhay’s 

effect (OLS 0.61, GARCH 0.75 and EGARCH 0.69 respectively)      
3 Continuously compounded rate of return was also used for market returns 
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=   (6) 

 

 stands for price observation of security P, at day t and  

represents observation of the same security one day before. ln is the natural 

logarithm. Working with differences, and therefore interpreting coefficients as 

elasticities, is a common practice when analyzing such data. As Koop [19] 

highlights a data set of financial data will behave well in terms of stationarity
4
. 

 

3.1  Visual Inspection of Market 
 

Appendix presents graphs for ASE General Index and the continuously 

compounded rate of return of the same index. ASE index appears to exhibit from 

2003 onwards an excessively positive uptrend which appears to finish at the end of 

2008. Reason for that inarguably is the global crisis emerging from last semester of 

2007 onwards. Mortgage subprime crisis in U.S. market seem to be initial reason 

as Krugman [20] explains, nevertheless crisis spread worldwide afterwards. As 

Friedman and Schwartz [15] denoted, an economic collapse could be a cumulative 

type process. Concerning returns of ASE index, while in uptrend almost in no 

occasion a 5% change is observed, on the other hand when market index is falling 

graphs become volatile exhibiting percentage changes even more than 10% and up 

to 15%. Such conclusion is to be taken into consideration, as volatility in market 

indicates risk and uncertainty. Concluding visual inspection, two downturns and 

one peak at the end of 2008 are observed in period selected for sample.  

 

4  Methodology Approach 
 

The purpose is to examine the accuracy of the asymptotic estimated betas 

compared to accuracy of betas obtained both from adjusted and naïve assessments. 

Initially from the whole universe of Athens Stock Exchange shares in the sample, 

the ones that are not traded throughout the whole ten year period are excluded. 

Afterwards, in accordance with Blume [2], the ten year period of data is separated 

into two five year sub periods. Continuously compounded rates of returns of shares 

are calculated. Next Market Model OLS style regressions will be performed for 

each share return and for each five year period. The same pattern applies when I 

work OLS in conjunction with GARCH and EGARCH methodology. Athens Stock 

Exchange General Index’s returns are also calculated and stand as Market variable 

in equation. In accordance with Cohen et al. [6] regressions take place for intervals 

                                                 
4 Further information can be provided by the author on request  
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from 1 to 30 days. Moreover asymptotic estimations of betas are obtained with the 

use of second stage Cohen et al. [6] recommend for same intervals. It is important 

to consider Corhay’s [8] suggestion that estimated betas differ in case differencing 

interval starts on a different day so when differencing interval is bigger than a day, 

then betas will be calculated by taking as a starting date every observation included 

in the interval. Then the average of betas obtained is the final estimated beta. 

Finally we examine a set of results that takes into account Corhay effect and a set 

that does not do so. All regressions take place in Matlab software package. 

Furthermore, in accordance with Blume’s technique, betas of the 07-11 period are 

cross-sectionally regressed towards the 02-06 period
5
. The outcome of this 

procedure is a regression formula with the later period’s betas as the dependent 

variable and earlier betas as explanatory
6
. Having in mind Blume’s technique once 

again we are able to retrospectively make estimations of later period’s betas with 

the use of this formula and first period’s beta.  

The result of the aforementioned procedures are assessments of betas for the period 

2007-2011 that are based on historical data, results that are adjusted to Blume’s 

correction and asymptotic estimated beta results. Final step is a valuation of 

accuracy of those results with the use of mean square errors as Blume suggested in 

his methodology. Consequently, we are able to examine if the asymptotic 

estimation of betas provide more accurate beta estimations compared to naïve ones 

and also compared to beta adjustments proposed by Blume [2]. 

 

5  Results  
 

Results are presented in table 3 and table 4 in appendix. As I am working with 

mean square errors the smallest price denotes the more accurate estimation. 

Furthermore the key finding (bolded in tables) occurs when I use as benchmark (1
st
 

period 02-06) OLS and daily results and as comparison periods OLS and daily 

Blume adjustment (0.2862), daily asymptotic estimator (0.2708) and daily naïve 

estimation (0.3882). Evidence suggests that asymptotic estimators are more 

accurate compared to both naïve and adjusted assessments. Furthermore, when I 

take into account the Corhay effect in asymptotic estimator (0.2537) the results are 

the same and further more evidence suggest that asymptotic estimations of betas 

are even more accurate
7
.      

In addition, in every other test I performed, evidence suggests that asymptotic 

estimators are more accurate compared to naïve assessments yet less accurate 

compared to assessments compared to blume’s technique. More specifically: 

                                                 
5 I don’t follow the exact pattern of Blume [2] only in terms we don’t put beta prices in 

ascending order and also I don’t categorize stocks into portfolios according to their beta 

prices    
6 All regression formulas are presented in table in appendix    
7 Concerning naïve assessments and adjusted ones results are the same when Corhay effect 

is not taken into account since these are results taken from daily data thus the interval among 

observations is one    
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1) When I use as benchmark (02-06) OLS and monthly results (No Corhay) I have 

the following MSE figures (Blume 0.2573, asymptotic 0.3679, naïve 0.3791). 

2) When I use as benchmark (02-06) OLS and monthly results (Corhay) I have the 

following MSE figures (Blume 0.375, asymptotic OLS 0.4672, naïve 0.4869). 

3) When I use as benchmark (02-06) GARCH
8
 and daily results (No Corhay) I 

have the following MSE figures (Blume 0.2641, asymptotic GARCH 0.2736, naïve 

0.373). 

4) When I use as benchmark (02-06) GARCH and daily results (Corhay) I have the 

following MSE figures (Blume 0.2603, asymptotic GARCH 0.2706, naïve 0.3728). 

5) When I use as benchmark (02-06) GARCH and monthly results (No Corhay) I 

have the following MSE figures (Blume 0.3197, asymptotic GARCH 0.4202, naïve 

0.4796). 

6) When I use as benchmark (02-06) GARCH and monthly results (Corhay) I have 

the following MSE figures (Blume 0.3678, asymptotic GARCH 0.4457, naïve 

0.5003). 

7) When I use again as benchmark (02-06) GARCH and daily results (No Corhay) 

and I examine asymptotic EGARCH, I have the following MSE figures (Blume 

0.2641, asymptotic EGARCH 0.3007, naïve 0.373). 

8) When I use again as benchmark (02-06) GARCH and daily results (Corhay) and 

we examine asymptotic EGARCH, I have the following MSE figures (Blume 

0.2603, asymptotic EGARCH 0.2956, naïve 0.3728). 

9) When I use again as benchmark (02-06) GARCH and monthly results (No 

Corhay) and I examine asymptotic EGARCH, I have the following MSE figures 

(Blume 0.3197, asymptotic EGARCH 0.4534, naïve 0.4796). 

10) When I use again as benchmark (02-06) GARCH and monthly results (Corhay) 

and I examine asymptotic EGARCH, I have the following MSE figures (Blume 

0.3678, asymptotic EGARCH 0.4936, naïve 0.5003). 

Some caveats that should be discussed seem to be present because of the special 

features of the ASE index composition. Specifically, the capitalization of the ASE 

is included in only 60 shares (almost 100% of Cap), yet I have been working with 

224 stocks. In other words, almost ¾ of the stocks seem to contribute nothing to 

the index weight and as a consequence the index does not seem to be correlated to 

the majority of the sample. When we regress relatively uncorrelated time series we 

are not expected to get good R*2 values and the same applies here
9
. In an intuitive 

sense the capitalization’s issue seems to have an effect on Blume’s regressions 

formulas, as the larger slope factor we notice gets a value of approximately 0.30 as 

observed in table 2, while Blume observes values that reach up to 0.75.  
 

6  Conclusions  
 

                                                 
8
 In terms of GARCH and EGARCH results I select according to AIC    

9
 For instance the R*2 mean for OLS regressions (07-11 period, daily and not Corhay 

effect) is only 0.15     



402     G. C. Zachos 

 
Inarguably the main finding in the paper is the fact that Asymptotic estimators of 

beta seem to provide accurate estimations of risk. In all cases examined (OLS, 

GARCH and E-GARCH) the aforementioned technique provided more accurate 

beta compared to naïve assessments. When I test for daily and monthly interval 

between observations, evidence favours the previous result. Conclusions drawn 

under are the same if I also take into account Corhay [8] effect. Furthermore, there 

are two occasions where asymptotic estimations of beta give more accurate risk 

factors even compared to the ones Blume’s [2] adjustment provides: when I am 

working with OLS daily data and I don’t consider Corhay effect and when I am 

working with OLS daily data but take into account Corhay effect.   

Promising as they might be, those findings signify the need for more research in 

order to provide robust evidence. More specifically I suggest:  

a) A study with the same data set and methodology but only with stocks that have a 

considerable weight in the ASE general index. Evidence suggests that some 

drawbacks will be avoided if this pattern is followed. 

b) In line with the previous suggestion, a selection of stocks should occur 

according to how good the regression fits, for instance according to R*2 of 

regressions.    

c) Apart from daily and monthly also other intervals should be examined. 

d) Moreover the same methodology should apply to another market with other 

features compared to the ones ASE markets exposes, preferably a mature market. 

The comparison between the results of an emerging and mature market will 

contribute to solid conclusions.    

e) Apart from Blume’s [2] also Bayesian techniques could be applied to the 

analysis. As they appear to perform slightly better (Elton et al. [10]) and they are 

used extensively by practitioners in order to correct estimations of risk, they should 

be used as an alternative method of adjusting betas and therefore as an extra 

comparison measurement.  
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Appendix 
 

Graph 1 ASE Index 
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Graph 2 Continuously Compounded Rate of Return of ASE Index 
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Table 1 Exponent k Prices  
 

PRICES FOR EXPONENT K 

PERIOD 02-06 

NO CORHAY CORHAY 

OLS GARCH EGARCH OLS GARCH EGARCH 

1.46366071 1.2540625 1.38691964 0.44526786 0.40174107 0.41767857 

PERIOD 07-11 

1.13620536 1.25848214 1.17584821 0.60973214 0.74915179 0.69383929 

 

Table 2 Blume’s Regression Formulas  

 

BLUME'S REGRESSION FORMULAS 

REGRESSION METHODOLOGY FORMULA 

OLS DAILY AND NO CORHAY y=0.264683+0.298818*x 

OLS MONTHLY AND NO CORHAY y=0.469163+0.234048*x 

GARCH DAILY AND NO CORHAY y=0.258781+0.281737*x 
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BLUME'S REGRESSION FORMULAS 

REGRESSION METHODOLOGY FORMULA 

GARCH MONTHLY AND NO CORHAY y=0.4591+0.19378*x 

ASYM OLS AND NO CORHAY y=0.43205+0.244549*x 

ASYM GARCH AND NO CORHAY y=0.381777+0.274477*x 

ASYM EGARCH AND NO CORHAY y=0.373206+0.248492*x 

OLS MONTHLY AND CORHAY y=0.481481+0.20592*x 

GARCH MONTHLY AND CORHAY y=0.424121+0.215524*x 

ASYM OLS AND CORHAY y=0.548167+0.164256*x 

ASYM GARCH AND CORHAY y=0.502987+0.175038*x 

ASYM EGARCH AND CORHAY y=0.456146+0.175427*x 

 

Table 3 MSE Results (no Corhay correction) 

 

MEAN SQUARE ERRORS BETWEEN ADJ OR ASYMPT AND NAÏVE BETAS (no corhay) 

OLS DAILY AS BENCHMARK 
(02-06) 

ADJ OLS 07-11 ASYMP OLS 07-11 
NAÏVE OLS 
07-11 

  0.286191552 0.270828 0.388213724 

result: asymptotic OLS assesments more accurate 

OLS MONTHLY AS 
BENCHMARK (02-06) 

ADJ OLS 07-11 ASYMP OLS 07-11 
NAÏVE OLS 
07-11 

  0.257303968 0.367929 0.379163204 

result: asymptotic OLS assesments less accurate but more compare to naïve 

  

GARCH DAILY AS BENCHMARK 
(02-06) 

ADJ GARCH 07-11 
ASYMP GARCH 07-

11 
NAÏVE 
GARCH 07-11 

  0.264122376 0.273596 0.372973585 

result: asymptotic GARCH assesments less accurate but more compare to naïve 

GARCH MONTHLY AS 
BENCHMARK (02-06) 

ADJ GARCH 07-11 
ASYMP GARCH 07-

11 
NAÏVE 
GARCH 07-11 

  0.319749826 0.420151 0.479564789 

result: asymptotic GARCH assesments less accurate 

GARCH DAILY AS BENCHMARK 
(02-06) 

ADJ GARCH 07-11 
ASYMP EGARCH 07-

11 
NAÏVE 
GARCH 07-11 

  0.264122376 0.300656 0.372973585 

result: asymptotic EGARCH assesments less accurate but more compare to naïve 

GARCH MONTHLY AS 
BENCHMARK (02-06) 

ADJ GARCH 07-11 
ASYMP EGARCH 07-

11 
NAÏVE 
GARCH 07-11 

  0.319749826 0.453409 0.479564789 

result: asymptotic EGARCH assesments less accurate but more compare to 
naïve    
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Table 4 MSE Results (Corhay correction) 

 

MEAN SQUARE ERRORS BETWEEN ADJ OR ASYMPT AND NAÏVE BETAS (corhay) 

OLS DAILY AS BENCHMARK 
(02-06) 

ADJ OLS 07-11 ASYMP OLS 07-11 
NAÏVE OLS 
07-11 

  0.286191552 0.253697139 0.388213724 

result: asymptotic OLS assesments more accurate 

OLS MONTHLY AS 
BENCHMARK (02-06) 

ADJ OLS 07-11 ASYMP OLS 07-11 
NAÏVE OLS 
07-11 

  0.375046614 0.467201 0.486873048 

result: asymptotic OLS assesments less accurate but more compare to naïve   

  

GARCH DAILY AS BENCHMARK 
(02-06) 

ADJ GARCH 07-11 
ASYMP GARCH 07-

11 
NAÏVE 
GARCH 07-11 

  0.260343182 0.270565 0.372767352 

result: asymptotic GARCH assesments less accurate but more compare to naïve 

GARCH MONTHLY AS 
BENCHMARK (02-06) 

ADJ GARCH 07-11 
ASYMP GARCH 07-

11 
NAÏVE 
GARCH 07-11 

  0.367789325 0.445706 0.500254781 

result: asymptotic GARCH assesments less accurate but more compare to naïve 

GARCH DAILY AS BENCHMARK 
(02-06) 

ADJ GARCH 07-11 
ASYMP EGARCH 07-

11 
NAÏVE 
GARCH 07-11 

  0.260343182 0.295568 0.372767352 

result: asymptotic EGARCH assesments less accurate but more compare to naïve 

GARCH MONTHLY AS 
BENCHMARK (02-06) 

ADJ GARCH 07-11 
ASYMP EGARCH 07-

11 
NAÏVE 
GARCH 07-11 

  0.367789325 0.493591 0.500254781 

result: asymptotic EGARCH assesments less accurate but more compare to naïve 
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Abstract. For any level q, 0 < q < 1, and on the basis of a sample X := (X1, . . . , Xn)
of either independent, identically distributed or possibly weakly dependent and sta-
tionary random variables from an unknown model F with a heavy right-tail function,
the value-at-risk at the level q, the size of the loss that occurred with a small prob-
ability q, is estimated by a new partially reduced-bias semi-parametric procedure.
With the notation (X1:n ≤ · · · ≤ Xn:n) for the set of ascending order statistics
associated with the available sample X, such a procedure is based on the mean-of-
order-p of the set of statistics U := {Uik := Xn−i+1:n/Xn−k:n, 1 ≤ i ≤ k < n}, with
p a non-negative number and k + 1 the number of top order statistics used in the
estimation.
Keywords: Heavy right-tails, Monte-Carlo simulations, Semi-parametric estimation,
Statistics of univariate extremes, Value-at-risk.

1 Introduction

On the basis of a sample (X1, . . . , Xn) of independent, identically distributed
or possibly weakly dependent and stationary random variables (r.v.’s), from
an underlying cumulative distribution function (c.d.f.) F , let us denote by
(X1:n ≤ · · · ≤ Xn:n) the sample of associated ascending order statistics. If we
can find attraction coefficients (an, bn), with an > 0 and bn ∈ R, such that the
sequence of linearly normalized maxima, {(Xn:n − bn)/an}n≥1, converges to a
non-degenerate r.v., then (Gnedenko, 1943, [8]) such a r.v. is of the type of a
general extreme value (EV) c.d.f.,

EVξ(x) =

{
exp(−(1 + ξx)−1/ξ, 1 + ξx > 0, if ξ 6= 0,
exp(− exp(−x)), x > 0, if ξ = 0.

(1)
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We then say that F is in the max-domain of attraction of EVξ, use the notation
F ∈ DM(EVξ), and the parameter ξ is the extreme value index (EVI), a crucial
parameter in the field of statistics of extremes.

For heavy right tails, i.e. for ξ > 0, in (1), we are interested in the semi-
parametric estimation of the value-at-risk (VaRq) at the level q, i.e. the size of
the loss that occurred with a small probability q. Equivalently, we are dealing
with a high quantile

χ
1−q
≡ VaRq := F←(1− q),

of an unknown c.d.f. F , with F←(y) = inf {x : F (x) ≥ y} denoting the gener-
alized inverse function of F . As usual, let us denote by U(t) the reciprocal tail
quantile function, i.e.

U(t) := F←(1− 1/t), t ≥ 1,

the generalized inverse function of 1/(1 − F ). For small q, we thus want to
estimate the parameter

VaRq = U (1/q) , q = qn → 0, nqn ≤ 1,

i.e. we want to extrapolate beyond the sample, possibly working in the whole
DM(EVξ>0) =: D+

M, assuming thus that

U(t) ∼ Ctξ, as t→∞, (2)

where the notation a(t) ∼ b(t) means that a(t)/b(t)→ 1, as t→∞.

Weissman (1978, [22]) proposed the following semi-parametric VaRq-estimator:

Q
(q)

ξ̂
(k) := Xn−k:n

(
k

nq

)ξ̂
, (3)

where ξ̂ can be any consistent estimator for ξ and Q stands for quantile. For
ξ > 0, the classical EVI-estimator, usually the one which is used in (3), for

a semi-parametric quantile estimation, is the Hill estimator ξ̂ = ξ̂(k) =: H(k)
(Hill, 1975, [21]), with the functional expression,

H(k) :=
1

k

k∑
i=1

Vik, Vik = ln
Xn−i+1:n

Xn−k:n
, 1 ≤ i ≤ k. (4)

If we plug in (3) the Hill estimator, H(k), we get the so-called Weissman-Hill
quantile or VaRq-estimator, with the obvious notation,

Q(q)
H

(k) = Xn−k:n

(
k

nq

)H(k)

. (5)

To derive the asymptotic behavior of Q(q)
H

(k), as well as of alternative VaRq-
estimators, it is useful to impose a second-order expansion on the tail function

F (x) := 1− F (x)
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or on the function U , in (2), often assuming that we are working in Hall-Welsh
class of models (Hall and Welsh, 1985, [20]), where, as t → ∞, and with
C, ξ > 0, ρ < 0 and β non-zero,

U(t) = Ctξ
(
1 +A(t)/ρ+ o (tρ)

)
, A(t) = ξ β tρ. (6)

The class in (6) is a wide class of models, that contains most of the heavy-tailed
parents useful in applications, like the EVξ, in (1), if ξ > 0, the associated
Generalized Pareto

(
GPξ(x) = 1+ln EVξ(x), x ≥ 0

)
, and the Student-tν , with

ν degrees of freedom and a probability density function,

f(x; ν) =
Γ (ν + 1)/2√
πν Γ (ν/2)

(
1 + x2/ν

)−(ν+1)/2
, x ∈ R. (7)

Indeed, (6) implies (2).

Note next that we can write

H(k) =

k∑
i=1

ln

(
Xn−i+1:n

Xn−k:n

)1/k

= ln

(
k∏
i=1

Xn−i+1:n

Xn−k:n

)1/k

, 1 ≤ i ≤ k < n.

The Hill estimator is thus the logarithm of the geometric mean (or mean-of-
order-0) of

U := {Uik := Xn−i+1:n/Xn−k:n, 1 ≤ i ≤ k < n} . (8)

More generally, Brilhante et al. (2013, [1]), considered as basic statistics the
mean-of-order-p of U, in (8), with p ≥ 0, i.e., the class of statistics

Ap(k) =



(
1
k

k∑
i=1

Upik

)1/p

, if p > 0,

(
k∏
i=1

Uik

)1/k

, if p = 0,

and the class,

Hpk) :=


(

1−A−pp (k)
)
/p, if p > 0,

lnA0(k) = H(k), if p = 0,

(9)

with H0(k) ≡ H(k), given in (4). The class of MOP EVI-estimators in (9)
depends now on this tuning parameter p ≥ 0, and was shown to be valid for
0 ≤ p < 1/ξ, whenever k = kn is an intermediate sequence, i.e. a sequence of
integers k = kn, 1 ≤ k < n, such that

k = kn →∞ and kn = o(n), as n→∞.

If we plug in (3) the MOP EVI-estimator, Hp(k), we get the so-called MOP
quantile or VaRq-estimator, with the obvious notation,

Q(q)
Hp

(k) = Xn−k:n

(
k

nq

)Hp(k)

, (10)
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studied asymptotically and for finite samples in Gomes et al. (2013, [18]).

The MOP EVI-estimators in (9) can often have a high asymptotic bias,
and bias reduction has recently been a vivid topic of research in the area of
statistics of extremes. Working just for technical simplicity in the particular
class of models in (6), the asymptotic distributional representation of Hp(k) for
p = 0 led Caeiro et al. (2005, [3]), to directly remove the dominant component
of the bias of the Hill EVI-estimator, given by ξβ(n/k)ρ/(1 − ρ), considering
the corrected-Hill (CH) EVI-estimators,

CH(k) ≡ CHβ̂,ρ̂(k) := H(k)
(

1− β̂

1− ρ̂

(n
k

)ρ̂ )
, (11)

a minimum-variance reduced-bias (MVRB) class of EVI-estimators for adequate

second-order parameters’ estimators, (β̂, ρ̂). Estimators of ρ can be found in
Gomes et al. (2002, [14]), Fraga Alves et al. (2003, [7]), and more recently in
Goegebeur et al. (2008, [9]; 2010, [10]), Ciuperca and Mercadier (2010, [6]) and
Caeiro and Gomes (2012, [5]), among others. Regarding the β-estimation, we
refer Gomes and Martins (2002, [11]), Caeiro and Gomes (2006, [4]) and Gomes
et al. (2010, [15]), also among others. Gomes and Pestana (2007, [13]) have
used the EVI-estimator in (11) to build VaRq-estimators, that we obviously
denote by Q(q)

CH
(k).

Working with values of p such that the asymptotic normality of the estima-
tors in (9) holds, i.e. 0 ≤ p < 1/(2ξ), Brilhante et al. (2014, [2]) noticed that
there is an optimal value

p ≡ p
M

= ϕρ/ξ, with ϕρ = 1− ρ/2−
√

(1− ρ/2)2 − 1/2, (12)

which maximises the asymptotic efficiency of the class of estimators in (9).
Then, they considered the optimal r.v. HpM (k), with Hp(k) and p

M
given in (9)

and (12), respectively, deriving its asymptotic behaviour. Such a behaviour has
led Gomes et al. (2014, [19]) to introduce a partially reduced-bias (PRB) class
of MOP EVI-estimators based on Hp(k), in (9), with the functional expression

PRBp(k; β̂, ρ̂) := Hp(k)
(

1− β̂(1− ϕρ̂)
1− ρ̂− ϕρ̂

(n
k

)ρ̂ )
, (13)

still dependent on a tuning parameter p and with ϕρ defined in (12). On the
basis of a large-scale simulation study, it was shown in the aforementioned
paper that these PRB EVI-estimators, in (13), are able to outperform the CH
EVI-estimators, in (11), for a large variety of models. It is thus sensible to
work with the new VaRq-estimator Q(q)

PRBp
(k), with the obvious functional form

Q(q)
PRBp

(k) := Xn−k:n

(
k

nq

)PRBp(k;β̂,ρ̂)

, (14)

with PRBp(k; β̂, ρ̂) given in (13), p any non-negative number and k + 1 the
number of top order statistics used in the estimation. The small-scale Monte-
Carlo simulation performed in Section 2 shows the potentiality of the VaRq

semi-parametric estimators in (14).
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Under adequate regularity conditions all the aforementioned classes of EVI
and VaR estimators are asymptotically normal.

2 Monte-Carlo simulation

We have implemented multi-sample Monte-Carlo simulation experiments of
a large size, 5000 × 20, essentially for the new classes of VaR-estimators,

Q
(q)
PRBp

(k), in (14), with PRBp given in (13), for a few values of p, compar-

atively with the VaR-estimators in (5) and (10). We have considered sample
sizes n = 100, 500, 1000, 2000 and 5000, and ξ = 0.1, 0.25, 0.5 and 1, from the
following models:

1. Extreme value model, with c.d.f. F (x) = EVξ(x), in (1) (ρ = −ξ), and
2. Student-tν underlying parents, with ν = 4 (ξ = 1/ν = 0.25; ρ = −2/ν =
−0.5), with probability density function given in (7).

For details on multi-sample simulation, see Gomes and Oliveira (2001, [12]).

2.1 Mean values and MSE patterns as functions of k

For each value of n and for each of the aforementioned models, we have first
simulated the mean values (E) and root MSE (RMSE) of the VaR-estimators
under consideration, as functions of the number of top order statistics k in-
volved in the estimation, and on the basis of the first run of size 5000. Just
as an illustration, we present Figure 1, associated with EV0.25 parents. In this
figure, we show, for n = 1000, q = 1/n, and on the basis of the first N = 5000
runs, the simulated patterns of mean value, EQ[·], and root mean squared er-

ror, RMSEQ[·], of Q
(q)

ξ̂
(k)/χ1−q, based on Q

(q)

ξ̂
(k) in (3), with ξ̂ replaced by

both PRBp, in (13), for p = p` = `/(8ξ), ` = 1(1)7, representing only some
of these `-values, and CH, in (11). We have also plotted the Weissman-Hill
VaR-estimator, based on H, in (4).

To enhance the fact that for n = 1000 the PRBp VaR-estimators do not
overpass the CH VaR-estimator, we further present Figure 2, similar to Figure
1, but associated with an underlying Student t4 (ξ = 0.25, ρ = −0.5) parent.

2.2 Behaviour at optimal levels

We have further computed the Weissman-Hill VaR-estimator Q
(q)
H (k) ≡ Q

(q)
H0

(k)

at the simulated value of k
(q)
0|H0

:= arg mink RMSE
(
Q

(q)
H0

(k)
)
, the simulated op-

timal k in the sense of minimum RMSE, and with Q
(q)

ξ̂
(k) defined in (3). Such

a value is not highly relevant in practice, but provides an indication of the
best possible performance of the Weissman-Hill VaR-estimator. Such an esti-
mator is denoted by Q00 := QH|0. We have also computed Qp0 := QHp|0, the
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Fig. 1. Underlying EV parent with ξ = 0.25 (ρ = −0.25)
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Fig. 2. Underlying Student t4 (ξ = 0.25, ρ = −0.5) parent

estimator in (14) at optimal levels, for a few values of p, and the simulated
indicators,

REFFp|0 := RMSE (Q00)/RMSE (Qp0). (15)

A similar REFF-indicator, REFFCH|0 has also been computed for the VaR-
estimator based on CH EVI-estimators, in (11).

Remark 1. The indicator in (15) has been conceived so that an indicator higher
than one means a better performance than the one of the Weissman-Hill VaR-
estimator. Consequently, the higher these indicators are, the better the asso-
ciated VaR-estimators perform, compared to Q00.

As an illustration of the results obtained for the different VaR-estimators
under consideration, we present Tables 1 and 2. In the first row, we provide
the RMSE of Q00, denoted by RMSE0, so that we can easily recover the RMSE
of all other estimators. The subsequent rows provide the REFF-indicators of
the VaR-estimators based on CH and on PRBp. The highest REFF indicator
is underlined and bolded.
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Table 1. Simulated RMSE of Q00, q = 1/n (first row) and REFF-indicators of Q
CH|0

and Q
PRBp`

|0 , for p` = `/(8ξ), ` = 1(1)7, for EVξ parents, with ξ = 0.25 (ρ = −0.25),

together with 95% CIs

EV parent, ξ = 0.25

n 100 500 1000 5000

RMSE0 0.469± 0.0046 0.329± 0.0029 0.294± 0.0023 0.231± 0.0016

CH 1.393± 0.0144 1.681± 0.0215 1.908± 0.0103 1.196± 0.0045

` = 1 1.491± 0.0152 1.722± 0.0204 2.186± 0.0233 4.595± 0.0781

` = 2 1.605± 0.0140 1.609± 0.0154 1.850± 0.0165 3.558± 0.0254

` = 3 1.694± 0.0148 1.558± 0.0133 1.612± 0.0135 2.357± 0.0220

` = 4 1.718± 0.0157 1.569± 0.0126 1.528± 0.0130 1.655± 0.0147

` = 5 1.677± 0.0167 1.551± 0.0132 1.496± 0.0121 1.379± 0.0111

` = 6 1.607± 0.0165 1.516± 0.0110 1.455± 0.0116 1.291± 0.0097

` = 7 1.535± 0.0159 1.473± 0.0114 1.414± 0.0112 1.245± 0.0095

Table 2. Simulated RMSE of Q00, q = 1/n (first row) and REFF-indicators of Q
CH|0

and Q
PRBp`

|0 , for p` = `/(8ξ), ` = 1(1)7, for Student t4 (ξ = 0.25, ρ = −0.5) parents,

together with 95% CIs

Student t4 parent, (ξ, ρ) = (0.25,−0.5)

n 100 500 1000 5000

RMSE0 0.378± 0.0039 0.270± 0.0021 0.240± 0.0014 0.185± 0.0007

CH 1.211± 0.1316 1.480± 0.0134 1.881± 0.0156 1.531± 0.0095

` = 1 1.281± 0.1408 1.516± 0.0133 1.844± 0.0167 1.939± 0.0795

` = 2 1.364± 0.1496 1.442± 0.0107 1.603± 0.0093 2.821± 0.0284

` = 3 1.453± 0.1544 1.411± 0.0112 1.447± 0.0084 1.856± 0.0144

` = 4 1.499± 0.1410 1.442± 0.0107 1.392± 0.0073 1.418± 0.0098

` = 5 1.504± 0.1025 1.464± 0.0108 1.397± 0.0063 1.246± 0.0080

` = 6 1.481± 0.0559 1.452± 0.0107 1.385± 0.0066 1.171± 0.0077

` = 7 1.441± 0.0263 1.430± 0.0100 1.356± 0.0064 1.134± 0.0076

Again as an illustration, now of the bias of the new VaR-estimators at
optimal levels, see Tables 3 and 4. We present there, for the same values of n
as before, the simulated mean values at optimal levels of the VaR-estimators
under study. Information on 95% confidence intervals (CIs), computed on the
basis of the 20 replicates with 5000 runs each, is also provided. Again, and
among the estimators considered, the one providing the smallest squared bias
is underlined, and written in bold.

For a better visualisation of the tables above, we represent Figures 3 and
4, again related to EV0.25 and Student-t4 parents, respectively.
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Table 3. Simulated mean values, at optimal levels, of QT|0/χ1−q, q = 1/n, with
T =H, CH and PRBp` , p` = `/(10ξ), ` = 1(1)7, for EVξ parents, with ξ = 0.25
(ρ = −0.25), together with 95% CIs

EVξ parent, ξ = 0.25

n 100 500 1000 5000

H 1.143± 0.0068 1.108± 0.0048 1.106± 0.0052 1.094± 0.0036

CH 0.848± 0.0092 0.925± 0.0027 1.036± 0.0041 1.093± 0.0035

` = 1 0.868± 0.0069 0.913± 0.0023 0.953± 0.0027 1.000± 0.0008

` = 2 0.868± 0.0056 0.893± 0.0013 0.921± 0.0019 0.9889± 0.0006

` = 3 0.865± 0.0063 0.888± 0.0022 0.896± 0.0015 0.958± 0.0007

` = 4 0.839± 0.0027 0.884± 0.0022 0.887± 0.0017 0.916± 0.0006

` = 5 0.804± 0.0024 0.873± 0.0026 0.880± 0.0023 0.882± 0.0012

` = 6 0.775± 0.0021 0.872± 0.0031 0.872± 0.0037 0.882± 0.0020

` = 7 0.750± 0.0019 0.850± 0.0010 0.870± 0.0009 0.880± 0.0026

Table 4. Simulated mean values, at optimal levels, of QT|0/χ1−q, q = 1/n, with
T =H, CH and PRBp` , p` = `/(10ξ), ` = 1(1)7, for Student t4 (ξ = 0.25, ρ = −0.5)
parents, together with 95% CIs

n 100 500 1000 5000

Student t4 parent, (ξ, ρ) = (0.25,−0.5)

H 1.114± 0.0056 1.089± 0.0037 1.085± 0.0037 1.077± 0.0037

CH 0.905± 0.0351 0.922± 0.0030 0.978± 0.0028 1.056± 0.0015

` = 1 0.930± 0.0669 0.912± 0.0025 0.940± 0.0011 1.049± 0.0057

` = 2 0.927± 0.0428 0.904± 0.0024 0.919± 0.0014 0.978± 0.0011

` = 3 0.898± 0.0098 0.906± 0.0018 0.908± 0.0014 0.946± 0.0009

` = 4 0.866± 0.0028 0.909± 0.0029 0.907± 0.0016 0.923± 0.0009

` = 5 0.839± 0.0016 0.899± 0.0019 0.905± 0.0024 0.907± 0.0012

` = 6 0.815± 0.0014 0.892± 0.0030 0.896± 0.0020 0.897± 0.0020

` = 7 0.795± 0.0013 0.890± 0.0008 0.890± 0.0020 0.894± 0.0017

3 Concluding remarks

• It is clear that Weissman-Hill VaR-estimation leads to a strong over-estimation
of VaR and the MOP methodology can provide a more adequate VaR-
estimation, being even able to beat the MVRB VaR-estimators in a large
variety of situations.

• The obtained results lead us to strongly advise the use of the quantile
estimator Q

PRBp
for any adequate choice of p, provided by an algorithm

like for instance the bootstrap algorithm of the type devised for an EVI-
estimation in Gomes et al. (2011, [16]) and Gomes et al. (2013, [17]), among
others.
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Fig. 4. Normalized mean values (left) and REFF-indicators (right) of the VaRq-
estimators under study, at optimal levels, for q = 1/n and Student t4 parents

• For small values of |ρ| the use of Q
PRBp

, with an adequate value of p, always
enables a reduction in RMSE regarding the Weissman-Hill estimator and
even the CH VaRq-estimator. Moreover, the bias is also reduced compara-
tively with the bias of the Weissman-Hill VaR-estimator with the obtention
of estimates closer to the target value VaRq, for q = 1/n.

• Such a reduction is particularly high for values of ρ close to zero, even when
we work with models out of D+

M, like the the log-gamma and the log-Pareto.
This is surely due to the high bias of the Weissman-Hill lnVaR-estimators
for models with ρ = 0.

• The patterns of the estimators’ sample paths are always of the same type, in
the sense that for all k the VaR-estimator, Q(q)

PRBp
decreases as p increases.
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Abstract. We present sufficient conditions, which provide the strong approximation
of the random sums, and use them to investigate certain models in the risk and queu-
ing theories.
Keywords: Invariance principle, Law of the iterated logarithm, Queuing models,
Random sums, Risk process, Risk process with stochastic premiums, Strong approx-
imation, Strong limit theorem.

1 Introduction

Limit theorems for the random sums D(t) =
∑N(t)
i=1 Xi, where {Xi, i ≥ 1}

are random variables (r.v.) and N(t) is a counting process, became rather
popular during last 20 years or so, see, for is instance, Gnedenko and Ko-
rolev[7], Whitt[15] and Silvestrov[14]. This topic is interesting not only from
theoretical point of view, but also due to numerous practical applications, since
mentioned random sums often appear in useful applications in queuing theory
(accumulated workload input into queuing system in time interval (0,t)), in risk
theory (total claim amount to insurance company up to time t), in financial
mathematics (total market price change up to time t) and in certain statisti-
cal procedures. In the present work main attention is focused on the strong
limit theorems for random sums. Below we consider two classes of strong limit
theorem. The first class is a strong invariance principle (SIP), other terms are
strong approximation or almost sure approximation.

We say that a random process {D(t), t ≥ 0} admits strong approximation
by the random process {η(t), t ≥ 0} if D(t) (or stochastically equivalent D∗(t))
can be constructed on the rich enough probability space together with η(t) in
such a way that a.s.

|D(t)− η(t)| = o(r(t)) ∨O(r(t)) as t→∞, (1)

where approximating error (error term ) r(.) is a non-random function.
While week invariance principle provides the convergence of distributions,

the strong invariance principle describes how “small” can be the difference
between trajectories of D(t) and approximating process η(t).
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We present some general results concerning sufficient conditions for strong
approximation of random sums D(t) by a Wiener or α-stable Lévy process
under various conditions on the counting process N(t) and random summands
{Xi, i ≥ 1}. Corresponding proofs are based on the rather general theorems
about the strong approximation of superposition of càd-làg processes, not oblig-
atory connected with partial sums, Zinchenko[22]. It worth mentioning that
SIP-type results itself can serve as a source of a number of limit theorems.
Indeed, using (1) with appropriate error term we can easily transfer the results
about the asymptotic behavior of the Wiener or α-stable Lévy process on the
asymptotic behavior of random sums. Thus, the second class of limit theorems
deal with the rate of growth of D(T ) and it’s increments. As a consequence a
number of limit theorems for risk processes in classical Cramér-Lundberg and
renewal Sparre Andersen risk models can be obtained, particularly, strong and
weak invariance principle for risk processes, diffusion and stable approximation
of ruin probabilities, various modifications of the LIL and Erdös-Rényi-Csörgő-
Révész-type SLLN for risk processes, which describe the rate of growth and
fluctuations of mentioned processes and are useful for planning the insurance
activities and reserves. The case of risk models with stochastic premiums is
investigated in details.

2 SIP for superposition of the random processes

In this section we present two theorems (Zinchenko[22]), which provide strong
approximation of the superposition of the random processes X(M(t)), when
càd-làg random processes X(t) and M(t) themselves admit a.s. approximation
by a Wiener or stable Lévy processes.

So, let X(t) and M(t) be independent separable real measurable càd-làg
processes, X(0) = 0, M(0) = 0, M(t) does not decrease with probability 1.

Theorem 1. Suppose that there are standard Wiener processes W1(t) and
W2(t), constants m ∈ R1, λ > 0, τ > 0, δ > 0, for which a.s.

sup
0≤t≤T

|M(t)− λt− τW1(t)| = O(r(T )), (2)

sup
0≤t≤T

|X(t)−mt− σW2(t)| = O(q(T )), (3)

where r(t) ↑ ∞, r(t)/t ↓ 0 , t→∞ , q(t) ↑ ∞, q(t)/t ↓ 0 as t→∞.
Let ν2 = σ2λ+m2τ2λ3. Then X(t) and M(t) can be redefined on the one

probability space together with a standard Wiener process W (t) in such a way
that a.s.

sup
0≤t≤T

|X(M(t))−mλt− νW (t)| = O(r(T ) + q(T ) + lnT ). (4)

Now let us regard a case when X(t) admits a.s. approximation by α-stable
process with 1 < α < 2. Condition α > 1 is important for applications.
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Theorem 2. Suppose that M(t) satisfies (2), X(t) admits a.s. approximation

sup
0≤t≤T

∣∣X(t)−mt− Yα,β(t)
∣∣ = O(q(T )), (5)

where Yα,β(t), t ≥ 0 is α-stable process independent of W2(t), 1 < α < 2,
|β| ≤ 1, m ∈ R1. Then M(t) and X(t) can be redefined on the one probability
space in such a way that ∀ε > 0 a.s.

∆∗(T ) = sup
0≤t≤T

∣∣X(M(t))− (mλ)t− (Yα,β(tλ) + (mτ)W2(t))
∣∣ =

= O
(
q(T ) + r(T )

)
+ o
((
r(T ) + (T ln lnT )1/2

)1/(α−ε))
. (6)

3 SIP for random sums

Let {Xi, i ≥ 1} be i.i.d.r.v with common distribution function (d.f.) F (x),
characteristic function (ch.f.) f(u), EX1 = m, V arX1 = σ2 if E|X1|2 < ∞.
Denote

S(t) =

[t]∑
i=1

Xi, S(0) = 0, t > 0.

Also suppose that {Zi, i ≥ 1} is another sequence of i.i.d.r.v. independent of
{Xi, i ≥ 1} with d.f. F1(x), ch.f. f1(u) and EZ1 = 1/λ > 0,

Z(n) =

n∑
i=1

Zi, Z(0) = 0, Z(x) = Z([x]),

and define the renewal (counting) process N(t) associated with partial sums
Z(n) as

N(t) = inf{x ≥ 0 : Z(x) > t}.

In the most interesting applications {Zi} are non-negative r.v. Here and in the
next sections we consider random sums (randomly stopped sums) defined as

D(t) = S(N(t)) =

N(t)∑
i=1

Xi,

where i.i.d.r.v. {Xi, i ≥ 1} and renewal process N(t) are given above.
General SIP-type Theorems 1, 2 are rather convenient for investigation

random sums. Really, random sum D(t) = S(N(t)) is a typical example of
the superposition of the random processes S(t) and N(t), furthermore strong
approximation of the partial sum processes S(t) and renewal processes was
rather intensively investigated since the middle of 60-th, for the wide bibliogra-
phy see Csörgő and L. Horváth[5], Alex and Steinebach[1], Zinchenko[18] and
more recent Bulinski and Shashkin[3], Zinchenko[22]. Concrete assumptions on
summands clear up the type of approximating process and the form of error
term.
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When {Xi, i ≥ 1} and {Zi, i ≥ 1} have finite moments of order p ≥ 2 both
S(t) and N(t) admit strong approximation by a Wiener process with optimal
error terms q(t) and r(t) presented by Csörgő and L. Horváth[5]. Denote
by σ2 = V arX1, τ2 = V arZ1, ν2 = λσ2 + λ3m2τ2. Substituting explicit
expressions for q(t) and r(t) in (4), we obtain following result (see also Csörgő
and Horváth[5]):

Theorem 3. (i) Let E|X1|p1 < ∞, E|Z1|p2 < ∞, p = min{p1, p2} > 2, then
{Xi} and N(t) can be constructed on the same probability space together with
a Wiener process {W (t), t ≥ 0} in such a way that a.s.

sup
0≤t≤T

|S(N(t))− λmt− νW (t)| = o(T 1/p); (7)

(ii) if p = 2 then right side of (7) is o(T ln lnT )1/2;
(iii) if E exp(uX1) < ∞, E exp(uZ1) < ∞ for all u ∈ (0, uo), then right-hand
side of (7) is O(lnT ).

Next suppose that {Xi} are attracted to α-stable law with 1 < α < 2,
|β| ≤ 1, then approximating process for S(t) is a stable process Yα(t) (condition
α > 1 is needed to have a finite mean). SIP in this case was studied by Berkes
et al.[2] in the case of symmetric stable law (α = 0) and by Zinchenko[16]
in general case with additional assumptions on ch.f. or pseudo-moments of
{Xi, i ≥ 1}, see also Mijnheer[13]. Below we use following

Assumption (C) : there are a1 > 0, a2 > 0 and l > α such that for |u| < a1

|f(u)− gα,β(u)| < a2|u|l, (8)

where f(u) is a ch.f. of (X1−EX1) if 1 < α < 2 and ch.f. of X1 if 0 < α ≤ 1,
gα,β(u) is a ch.f. of the stable law.

Assumption (C) not only provides normal attraction of {Xi, i ≥ 1} to the
stable law Gα,β(x), but also leads to the rather “good” error term q(t) =
t1/α−%, % > 0, in SIP for S(t) (Zinchenko[16]). Thus, in this case random sum
process S(N(t)) also admits a.s. approximation by α-stable process according
to Theorem 2. More precise, we have

Theorem 4 (Zinchenko[21], [22]). Let {Xi} satisfy (C) with 1 < α < 2,
|β| ≤ 1, EZ2

1 < ∞. Then {Xi}, {Zi}, N(t) can be defined together with
α-stable process Yα(t) = Yα,β(t), t ≥ 0, so that a.s.∣∣S(N(t))−mλt− Yα,β(λt)

∣∣ = o(t1/α−%1), %1 ∈ (0, ρ0), (9)

for some %0 = %0(α, l) > 0.

Corollary 1 (SIP for compound Poisson process). Theorems 3, 4 hold
if N(t) is a homogeneous Poisson process with intensity λ > 0.
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4 The rate of grows of the random sums

In this section we demonstrate the possible way of application of the SIP: using
SIP with appropriate error term one can easily extend the results about the
asymptotic behavior of the Wiener or stable processes on the rate of growth of
random sums D(t) = S(N(t)).

Corollary 2 (Classical LIL for random sums). Let {Xi} and {Zi} be
independent sequences of i.i.d.r.v. with EX1 = m <∞, 0 < EZ1 = 1/λ <∞,
σ2 = V arX1 <∞, τ2 = V arZ1 <∞. Then a.s.

lim sup
t→∞

|D(t)−mλt|√
2t ln ln t

= ν, ν2 = λσ2 + λ3m2τ2. (10)

Statement (10) is a straightforward consequence of the classical LIL for a
Wiener process and form of error term in Theorem 3.

On the other hand, from Chung’s LIL for Wiener process and Theorem 3
it easily follows

Corollary 3 (Chung’s LIL for random sums). Let {Xi} and {Zi} be as
in Corollary 2, then a.s.

lim inf
t→∞

(
8 ln lnT

π2T

)1/2

sup
0≤t≤T

|D(t)−mλt| = ν, ν2 = λσ2 + λ3m2τ2. (11)

Moreover, if the stable distribution Gα,β , α 6= 1, is not concentrated on the
half of the axe, i.e. |β| 6= 1 if α < 1 and |β| ≤ 1 if 1 < α < 2, then a.s.

lim inf
T→∞

(
ln lnT

T

)1/α

sup
0≤t≤T

|Yα,β(t)| = Cα,β , (12)

where the constant Cα,β is defined with the help of so-called “I-functional of
the stable process” ( Donsker and Varadhan[6]). Thus, from (12) and Theorem
3 we get

Corollary 4. Let {Xi, i ≥ 1} satisfy (C) with 1 < α < 2 and {Zi, i ≥ 1} be
as in Corollary 2, then a.s.

lim inf
T→∞

(
ln lnT

T

)1/α

sup
0≤t≤T

|D(t)−mλt| = Cα,βλ
1/α. (13)

When summands {Xi, i ≥ 1} are attracted to asymmetric stable law Gα,−1,
we have

Corollary 5. Let {Xi, i ≥ 1} satisfy (C) with 1 < α < 2, β = −1. Assume
that EZ2

1 <∞. Then a.s.

lim sup
t→∞

D(t)−mλt
t1/α(B−1 ln ln t)1/θ

= λ1/α, (14)

B = B(α) = (α− 1)α−θ| cos(πα/2)|1/(α−1), θ = α/(α− 1). (15)

Proof follows from Theorem 4 and one-side LIL for the stable process Yα,−1.

Corollary 6. Corollaries 2 – 5 hold for a compound Poisson process.
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5 How big are increments of the random sums?

When both {Xi} and {Zi} have finite variance, SIP for D(t) gives the possibi-
lity to extend the Erdös-Rényi-Csörgő-Révész LLN for increments of Wiener
process W (T + aT ) − W (T ) ( Csörgő and Révész[4]) on the asymptotics of
D(T + aT ) − D(T ). Notice that additional assumptions on {Xi, i ≥ 1} and
{Zi, i ≥ 1}, which determine the form of approximation term, have impact on
the possible length of intervals aT .

Theorem 5. Let {Xi, i ≥ 1} and {Zi, i ≥ 1} be independent sequences of
i.i.d.r.v., EX1 = m, varX1 = σ2, EZ1 = 1/λ > 0, varZ1 = τ2,

E exp(uX1) <∞, E exp(uZ1) <∞, (16)

as |u| < u0, u0 > 0, function aT , T ≥ 0 satisfies following conditions:
(i) 0 < aT < T , (ii) T/aT does not decrease in T . Also assume that

aT / lnT →∞ as T →∞. (17)

Then a.s.

lim sup
T→∞

|D(T + aT )−D(T )−mλaT |
γ(T )

= ν, (18)

where

ν2 = λσ2 + λ3m2τ2, γ(T ) = {2aT (ln lnT + lnT/aT )}1/2.

Theorem 6. Let {Xi, i ≥ 1}, {Zi, i ≥ 1} and aT satisfy all conditions of
previous Theorem 5 with following assumption used instead of (16)

EXp1
1 <∞, p1 > 2, EZp21 <∞, p2 > 2.

Then (18) is true if aT > c1T
2/p/ lnT for some c1 > 0, p = min{p1, p2}.

When {Xi, i ≥ 1} are attracted to an asymmetric stable law, Theorem 4 and
variant of Erdös-Rényi-Csörgő-Révész type law for α-stable Lévy process with-
out positive jumps (Zinchenko[17]) yield

Theorem 7. Suppose that {Xi, i ≥ 1} satisfy (C) with 1 < α < 2, β = −1,
EZ2

1 < ∞, EX1 = m, EZ1 = 1/λ > 0. Function aT is non-decreasing,
0 < aT < T , T/aT is also non-decreasing and provides dT

−1T 1/α−%2 → 0 for
certain %2 > 0 determined by the error term in SIP-type Theorem 4. Then a.s.

lim sup
T→∞

D(T + aT )−D(T )−mλaT
dT

= λ1/α, (19)

where normalizing function dT = a
1/α
T {B−1(ln lnT + lnT/aT )}1/θ, constants

B, θ are defined in (15).

More results in this area are presented by Zinchenko and Safonova[19], Frolov[8]–
[10], Martikainen and Frolov[12].
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6 How small are increments of the random sums?

The answer on such question for a Wiener and partial sum processes was ob-
tained by Csörgő and Révész[4]. For instance, they proved that for increasing
aT > 0 such that (ln(T/aT )) /(ln lnT ) ↑ ∞ a.s.

lim
T→∞

γ(T, aT ) inf
0≤t≤T−aT

sup
0≤s≤aT

|W (t+ s)−W (t)| = 1, (20)

where

γ(T, aT ) =

(
8(lnT/aT + ln lnT )

π2aT

)1/2

.

Thus SIP for random sums with appropriate error term leads to the following
statement, which holds when summands {Xi} as well as inter-occurrence times
{Zi} satisfy the Cramer’s condition:

Corollary 7. Assume that i.i.d.r.v. {Xi, i ≥ 1} and {Zi, i ≥ 1} satisfy all
conditions of the Theorem 5, ν2 = λσ2 + λ3m2τ2and aT (lnT )−3 → ∞ as
t→∞, then a.s.

lim
T→∞

γ(T, aT ) inf
0≤t≤T−aT

sup
0≤s≤aT

|D(t+ s)−D(t)−mλaT | = ν. (21)

7 Applications in queuing and risk theories

In the M/G/1 queuing system customers arrive according to a Poisson process
N(t) and ith customer requires a service time of length Xi, i.i.d.r.v. {Xi, i ≥ 1}
are independent of N(t). In this case the random sum process D(t) =

∑N(t)
i=1 Xi

is the compound Poisson process and represent the accumulated workload input
in time interval (0,t]. Obviously all results of the previous sections are appli-
cable to D(t) and provide SIP-type theorems (Theorems 3, 4; Corollary 1) for
the accumulated workload input D(t) and describe the rate of grows of D(t)
(Corollaries 2–6). Clearly the conditions, which provide mentioned results, are,
in fact, conditions on the distributions of service times. The simplest form they
have in the case of M/M/1 system. The same approach can be used for inves-
tigation the more general system G/G/1, where N(t) is a renewal process. In
this case conditions on inter-arrival intervals are also needed.

As the next step we consider the popular Sparre-Anderssen collective risk
model. Within this model the risk process, which describes the evolution of
reserve capital, is defined as

U(t) = u+ ct−
N(t)∑
i=1

Xi, (22)

where: u ≥ 0 denotes an initial capital; c > 0 stands for the gross premium
rate; renewal (counting) process N(t) = inf{n ≥ 1 :

∑n
i=1 Zi > t} counts the

number of claims to insurance company in time interval [0,t]; positive i.i.d.r.v.
{Zi, i ≥ 1} are time intervals between claim arrivals; positive i.i.d.r.v.{Xi}
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with d.f. F (x) denote claim sizes; the sequences {Xi, i ≥ 1} and {Zi, i ≥ 1}
are independent; EX1 = m, EZ1 = 1/λ > 0.

Classical Cramér-Lundberg risk model is model (22), where N(t) is a ho-
mogeneous Poisson process with intensity λ > 0.

In the framework of collective risk model random sum D(t) =
∑N(t)
i=1 Xi =

S(N(t)) can be interpreted as a total claim amount arising during time interval
[0, t], and increments

D(T + aT )−D(T ) =

N(T+aT )∑
i=N(T )+1

Xi

as claim amounts during the time interval [T, T + aT ].
Since process D(t) is a typical example of the random sum, main results of

the Sections 2 – 6 can be applied to investigation of the risk process U(t). First
of all, Theorems 3 – 4 yield the SIP-type results for D(t) and U(t) under various
assumptions on the claim sizes {Xi, i ≥ 1} and inter-arrival times {Zi, i ≥ 1}.
In the actuarial mathematics individual claim sizes are usually divided in two
classes, i.e. small claims and large claims, according to the tail behavior of
their distribution function F (x).

Claims are called small if F (x) is light-tailed satisfying Cramér’s condition,
i.e. when M(u) = E exp(uX1) < ∞ for u ∈ (0, u0); in opposite case, when
moment generating function does not exist for any u > 0, the claims are called
large (F (x) is heavy-tailed). It is natural to assume that inter-arrival times Zi
have finite variance.

Thus, for small claims and {Zi} satisfying Cramér’s condition, processes
D(t) and U(t) admit strong approximation by a Wiener process with the error
term O(ln t); for large claims with finite moments of order p > 2 the error term
is o(t1/p), if p = 2 then error term is o((t ln ln t)1/2). For catastrophic events
claims can be so large that their variance is infinite. In this case we assume that
{Xi} are in domain of normal attraction of asymmetric stable law Gα,1 with
1 < α < 2, β = 1, and additionally satisfy condition (C). Then by Theorem
4 an approximating process for D(t) is α-stable process Yα,1 with 1 < α < 2,
β = 1, and risk (reserve) process U(t) admits a.s. approximation by α-stable
process Yα,−1, 1 < α < 2, β = −1, which has only negative jumps; the error
term is presented in Theorem 4.

The form of error term in SIP is “good” enough for investigation the rate of
growth of total claims and asymptotic behavior of the reserve process. Due to
results of Section 4 various modifications of the LIL for D(T ) can be obtained
almost without a proof. So, in the case of small claims or large claims ( but
with finite moments of order p ≥ 2) for large t we can a.s. indicate upper/lower
bounds for growth of total claim amounts D(t) as mλt ± ν

√
2t ln ln t and for

reserve capital U(t) as u+tρmλ±ν
√

2t ln ln t, where σ2 = V arX1, τ2 = V arZ1,
ν2 = λσ2 + λ3m2τ2, ρ = (c− λm)/λm > 0 is a safety loading.

For large claims in domain of normal attraction of asymmetric stable law
Gα,1 with 1 < α < 2, β = 1 (for instance, Pareto type r.v. with 1 < α < 2)
Corollary 5 for large t provides a.s. upper bound for the risk process

U(t) ≤ u+ ρmλt+ λ1/αt1/α(B−1 ln ln t)1/θ.



Strong Approximation of the Random Sums 429

SIP-type results also help to answer on the question: how large can be fluctu-
ations of the total claims/payments on the intervals whose length aT increases
as T → ∞ ? Indeed, under appropriate conditions on claim size distributions
and for rather “large” intervals aT (but growing not faster then T ) increments
D(T+aT )−D(T ) satisfy variants of Erdös-Rényi-Csörgő-Révész LLN similarly
to (18) or (19).

Our general approach gives a possibility to study also more complicated
risk models with stochastic premiums.

8 Strong limit theorems for the risk process with
stochastic premiums

Within the risk model with stochastic premiums the risk process U(t),
t ≥ 0, is defined as

U(t) = u+Q(t) = u+Π(t)− S(t) = u+

N1(t)∑
i=1

yi −
N(t)∑
i=1

xi, (23)

where: u ≥ 0 is an initial capital; point process N(t) models the number of
claims in the time interval [0, t]; positive r.v. {xi : i ≥ 1} are claim sizes;
Ex1 = µ1; point process N1(t) is interpreted as a number of polices bought
during [0, t]; r.v. {yi : i ≥ 1} stand for sizes of premiums paid for corresponding
polices, Ey1 = m1.

We call U(t) (or Q(t)) the Cramér-Lundberg risk process with sto-
chastic premiums(CLSP) if N(t) and N1(t) are two independent Poisson
processes with intensities λ > 0 and λ1 > 0; {xi} and {yi} are two sequences of
positive i.i.d.r.v. independent of the Poisson processes and of each other with
d.f. F (x) and G(x), respectively, λ1Ey1 > λEx1.

This model, being a natural generalization of the classical Cramér -Lundberg
risk model, was studied by Zinchenko and Andrusiv[20]. Korolev et al.[11]
present an interesting example of using (23) for modeling the speculative ac-
tivity of money exchange point and optimization of its profit.

Notice that process Q(t) = Π(t)−S(t) is again a compound Poisson process
with intensity λ∗ = λ+ λ1 and d.f. of the jumps G∗(x) = λ1

λ∗G(x) + λ
λ∗F

∗(x),
where F ∗(x) is a d.f. of the random variable −x1. In the other words

Q(t) =

N∗(t)∑
i=1

ξi, (24)

where N∗(t) is homogeneous Poisson process with intensity λ∗ = λ + λ1 and
i.i.d.r.v. ξi have d.f. G∗(x).

Theorem 8 (SIP for CLSP, finite variance case). (I)If in model (23)
both premiums {yi} and claims {xi} have moments of order p > 2, y21 = m2,
Ex21 = µ2, then there is a standard Wiener process {W (t), t ≥ 0} such that a.s.

sup
0≤t≤T

|Q(t)− (λ1m1 − λµ1)t− σ̃W (t)| = o(T 1/p), σ̃2 = λ1m2 + λµ2. (25)
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(II) If premiums {yi} and claims {xi} are light-tailed with finite moment ge-
nerating function in some positive neighborhood of zero, then a.s.

sup
0≤t≤T

|Q(t)− (λ1m1 − λµ1)t− σ̃W (t)| = O(log T ), (26)

Proof immediately follows from Corollary 1 since Q(t) is a compound Pois-
son process (see (24)) with intensity λ∗ = λ + λ1, whose jumps have mean
ã
λ∗ = λ1

λ∗m1 − λ
λ∗µ1, and second moment σ̃2

λ∗ = λ1

λ∗m2 + λ
λ∗µ2.

Remark. In model (23) it is natural to suppose that premiums have distri-
butions with light tails or tails which are lighter than for claim sizes. Therefore
moment conditions, which determine the error term in SIP, are in fact condi-
tions on claim sizes.

For catastrophic accidents claims can be so large that they have infinite
variance, i.e. belong to the domain of attraction of a certain stable law. Thus,
for Cramér-Lundberg risk process with stochastic premiums we have:

Theorem 9 (SIP for CLSP, large claims attracted to α-stable law).
Suppose that claim sizes {xi} satisfy (C) with 1 < α < 2, β ∈ [−1, 1], premiums
{yi} are i.i.d.r.v. with finite variance, then a.s.∣∣Q(t)− (λ1m1 − λµ1)t− (λ+ λ1)1/αYα,β(t)

∣∣ = o(t1/α−%2), ρ2 ∈ (0, ρ0), (27)

for some %0 = %0(α, l) > 0.

On the next step we focus on investigation the rate of growth of risk process
Q(t) as t → ∞ and its increments Q(t + at) − Q(t) on intervals whose length
at grows but not faster than t.

The key moments are representation of Q(t) as compound Poisson process
(24 ) and application of the results obtained in Sections 4–6, namely, various
modifications of the LIL and Erdös-Rényi-Csörgő-Révész law for random sums.

Theorem 10 ( LIL for CLSP). If in model (23) both premiums {yi} and
claims {xi} have moments of order p > 2, then

lim sup
t→∞

|Q(t)− ãt|√
2t ln ln t

= σ̃, where ã = λ1m1 − λµ1, σ̃2 = λ1m2 + λµ2.

Notice that Theorem 10 covers not only the case of small claims, but also
the case of large claims with finite moments of order p > 2.

Next result deals with the case of large claims with infinite variance. More
precise, we shall consider the case when r.v. {xi, i ≥ 1} in CLSP-model (23)
are attracted to an asymmetric stable law Gα,1, but premiums have Ey21 <∞.

Theorem 11. Let {xi, i ≥ 1} satisfy condition (C) with 1 < α < 2, β = 1
and Ey21 <∞. Then a.s.

lim sup
t→∞

Q(t)− (λ1m1 − λµ1)t

t1/α(B−1 ln ln t)1/θ
= (λ+ λ1)1/α,

where B = B(α) = (α− 1)α−θ| cos(πα/2)|1/(α−1), θ = α/(α− 1).
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Next theorem clarify the asymptotics of increments of the risk process with
stochastic premiums and present the Erdös-Rényi-Csörgő-Révész type law for
Q(t).

Theorem 12 (Small claims). Let in CLSP-model (23) claims {xi, i ≥ 1}
and premiums {yi, i ≥ 1} be independent sequences of i.i.d.r.v. with Ex1 = µ1,
Ex21 = µ2, Ey1 = m1 > 0, y21 = m2, and finite moment generating functions

E exp(ux1) <∞, E exp(uy1) <∞ as |u| < u0, u0 > 0.

Assume that non-decreasing function aT , T ≥ 0, satisfies following conditions:
(i) 0 < aT < T , (ii) T/aT does not decrease in T . Also let

aT / lnT →∞ as T →∞.

Then a.s.

lim sup
T→∞

|Q(T + aT )−Q(T )− aT (λ1m1 − λµ1)|
γ(T )

= σ̃,

where
γ(T ) = {2aT (ln lnT + lnT/aT )}1/2, σ̃2 = λ1m2 + λµ2.

Remark. General Sip-type theorems give also the possibility to investigate
more general cases when {yi} and {xi} are sequences of dependent r.v., for
example, associated or weakly dependent, N(t) and N1(t) can be renewal pro-
cesses, Cox processes, ets.
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Nonlinear Signals
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Abstract. Diffusion maps have proven to be very useful for dimensionality reduction
of high dimensional data sets. This method has been introduced by Coifman et al.
citecoifman2005geometric. Following the program set forth by Munford and Des-
olneux [10], which establishes a feedback architecture for data recognition and re-
construction, we construct a procedure for the regularized reconstruction of signals,
based on the distance from the training data set and otimization of diffused data.
The results show the robustness of the methodology.
Keywords: Diffusion maps, Dimensionality reduction, PCA, Regularization.

1 Introduction

The aim of this work is to investiate one of the most recent techniques for dimen-
sionality reduction of data in data modeling, looking in particular at pattern
recognition and the related problem of reconstruction from a few parameters.

In a general sense, given n data points in IRd, X1, X2, . . . , Xn, the dimen-
sionality reduction algorithms attempt to find n points in IRk, Y 1, Y 2, . . . , Y n,
such that each Y i represents the corresponding Xi, preferably with k much
less than d (in fact, we are interested in reducing the dimensionality of the
data) in such a way as to preserve, as much as possible, the inter-relation of
the data points in the new set, in the same way as in the original data set.
Several methods have been used with this aim since the classic PCA (Princi-
pal Components Analysis) till the Spectral MDS, Aflalo and Kimmel[1], which
shows the continued importance of this topic.

In this article we explore the diffusion maps method as a powerful tool for
dimensionality reduction, in special for the recognition and reconstruction of
signals coming from the quatification of qualities of physical systems.

We are interested in the problem in the perspective of pattern theory which
consists in the search for a feedback structure, where bottom-up and top-down
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algorithms are re-feed and modified for a better understanding of the physical
system. In general terms we can interpret a bottom-up algorithm as being
represented by a function G, an algorithm, mapping the space of signals in a
space of signal features,

Signals space Analysis Signal features space

IRd ⊃ E G−→ F ⊂ IRk ,

that is, atributing parameters (in F ) to the signals (in E).
The set of features can have high dimension. When E is a diferentiable

manifold of dimension e, it would be adequate that the dimensionality reduction
algorithm G would take E into G(E) ⊂ F , possibly still a manifold of dimension
e in IRk, with e ≤ k < d, (hopefully k � d). Therefore, a signal that required d
real numbers to its apecification, would be represented by just k real numbers.

In this setting, the recognition of a signal X∗ would be to identify X̃ ∈ E
sharing similar features with X∗, that is,

G(X∗) near, or in the same class as, G(X̃) .

Having the features of a signal, Y ∗ ∈ F , or near to F , the aim of recon-
struction would be to determine a signal, X∗ ∈ IRd (not necessarily belonging
to te training set E but, preferably, close), such that

G(X∗) ∼= Y ∗

and that X∗ could be accepted as a real signal of the physical system. In ths
way we can imagine a function, or an algorithm, close to an inverse of G,

Space of signals Synthesis Signal features space

IRd ⊃ E H←− F ⊂ IRk

in such a way that X∗ ∼= H(Y ∗).
Appart from the bottom-up stage, there is the top-down stage, and the

two algorithms interact. Given X∗, a signal with the properties close to the
detected ones G(X∗) (in low dimension) it is synthetized, possibly following
a stochastic model sufficiently simple and compared with the input signal. In
essence, one computes X̃ ∼= H(G(X∗)) and compares X∗ with X̃, adopting a
feedback architecture.

Diffusion maps have great potential in this scenario. However this method
has not been conceived with the full set of tools for the construction of machine
learning systems based on recognition by synthesis in the framework of pattern
theory. One of the contributions of this work is that we exploit these ideas to
shed light on the problem of recognition.

2 Diffusion maps

Diffusion maps is one of the most recent and promissing non-linear dimen-
sionality reduction techniques. This technique allows mapping distances in a



Diffusion Maps in the Reconstruction of Signals 437

convenient form, in the sense that a diffusion distance discussed below between
the input data (training set) approaches the euclidean distance between their
images by the diffusion mapping.

The initial step is to construct a graph where each element Xi of a data set
E = {X1, X2 . . . , Xn} becomes a node of the graph, while the weight of edge
joining Xi e Xj , wij , are recorded as the ij entry of an afinity matrix, W .

It is usual to express the afinity by means of a gaussian kernel given by

W (Xi, Xj) = exp(−‖X
i−Xj‖2
ε ), where ε depends on the problem. One can

interpret
√
ε as the size of a neighborhood and it is based on the knowledge

of the structure and the density of the data set. This kernel defines a local
geometry of the data set. Here we choose ε as a function of the diameter, r, of
the data set.

Coifman and Lafon [4] present three normalizations for a family of diffusion
maps: (Wα)ij =

wij
dαi d

α
j
, where dαi = (

∑n
k=1 wik)α is the degree of the i th node

of the original graph to the power α and wij is computed by the gaussian
kernel. They emphasize three values for α. When α = 0 this corresponds
to the classical normalized laplacian of a graph, α = 1/2 corresponds to the
Fokker-Plank operator and α = 1 leads to the Laplace-Beltrami operator. Here
we stick to α = 1.

We normalize the weight matrix W. Let di = (D)ii =
∑n
j=1 wij and pij =

wij
di
. Matrix P = D−1W , whose entries are pij , is a Markov matrix, for a

Markov process where the states are the nodes of the graph and the transition
probability matrix is P .

Considering increasing powers of P , P t = (D−1W )t, the Markov process
incorporates more and more the intrinsec geometry of the data set. Since pij
is the one-step transition probability from Xi to Xj , the ij entry of P t, ptij ,

is the transition probability from Xi to Xj in t steps, that is, the probability
associated with the set of all paths of lenght t leaving Xi and arriving at Xj ,
reconstructing the geometry of the data set from local connectivity.

3 Diffusion distance

To the Markov process described previously, there corresponds a family of
diffuion distances, Dt(X

i, Xj). This family measures the connectivity between
points Xi and Xj by paths of lenght t in the data set. The diffusion distance
between Xi e Xj , for each fixed t, is defined by

Dt(X
i, Xj) =

( ∑
Xr∈E

(ptir − ptjr)2

σr

)1/2

,

where σr = dr∑n
i=1 di

.

The difusion distance can be rewritten as

Dt(X
i, Xj) = (tr (D))

1
2

(
n−1∑
k=1

λ2tk (vk(i)− vk(j))2

)1/2

, (1)
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where vk , λk are, respectively, the eigenvectors and the eigenvalues of the
Markov matrix.

Motivated by this expression, the diffusion map is defined in the following
way. Let v0,v1, . . . ,vn−1 be eigenvectors from the right of P = D−1W associ-
ated to λ0 = 1 ≥ λ1 ≥ . . . ≥ λn−1 ≥ −1. For each fixed t, the diffusion map is
Dt such that

Dt(Xi) =


λt1v1(i)
λt2v2(i)

...
λtn−1vn−1(i)

 , (2)

for each Xi in the training data set. (There is no need to use λ0 since v0 is a
constant vector.)

We can verify that Dt(X
i, Xj) = (tr (D))

1
2 ‖ Dt(Xi) − Dt(Xj) ‖, and in

this way the diffusion distance between the original data is proportional to the
euclidean distance of its features.

The parameter t of the Markov process works as a type of scaling factor.
The larger t is the bigger is the scale considered in the modeling of the data.
By varying t one gets a kind of multi-scale analysis of the data set.

Since the absolute value of the eigenvalues are between 0 and 1, for increas-
ing values of t in the stochastic process allow us to keep few components in the
diffusion map to analyse data. In fact, for t large enough, we shall have several
insignificant (λk)t, and several terms in ‖ Dt(Xi)−Dt(Xj) ‖ contributing very
little for the distance between Xi and Xj , and can be neglected. Therefore,
for large t, it is possible to consider few components of the diffusion map.

If, in addition, W is positive semi-definite then the eigenvalues of P are
between zero and one. In this case, if we let k be the number of components,
chosen as a function of t, we can rewrite (1) in an approximate way,

Dt(X
i, Xj) ∼= (tr (D))

1
2

(
k∑
s=1

λ2ts (vs(i)− vs(j))2
)1/2

∼= (tr (D))
1
2 ‖ Dt(Xi)−Dt(Xj) ‖,

where

Dt(Xi) ∼=


λt1v1(i)
λt2v2(i)

...
λtkvk(i)

 .

Therefore, the diffusion distance between Xi and Xj is almost the same as
the euclidean distance between their images in IRk which, in many practical
applications, has dimension k � n, Lafon and Lee [8]. We also remark that, as
the scale parameter t increases, the features of the data, that is, their images
by the diffusion map, tend to merge together since Dt(Xi)→ 0, when t→ +∞,
for every single data point.
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4 Pre-image

The pre-image problem consists in finding in the input space an element of
the training set which better approximates the inverse image of an element in
the reduced space. In general, the exact pre-image does not exist, or it is not
unique, and we need an approximate solution Mika et al. [9].

We consider here the pre-image problem in the context of the reconstruction
of signals by means of a cost function, which differs from previous approaches,
Etyngier et al. [6], Arias et al.[2] and Arif et al. [3] We use Nystrom’s extension
of D to other vectors in IRd, which do not belong to the training set, Lafon et
al. [7]. We represent it by D̃.

Since D is injective in the training set, the pre-image problem has a unique
solution in the set of features of training signals. For features outside that
set that question is more complicated. The problem of the pre-image of an
arbitrary point of IRn−1 is an ill-posed problem and, in general, the pre-image
of a unique point, if it exits, will be a set of vectors in the input space Arias et al.
[2]. In order to circunvent this difficulty and to look for adequate modifications,
we can consider a regularization of the problem by means of the training set.

Assume we are given a point b ∈ IRn−1. We look for a good approximation
of a possible pre-image, x, of that point. We want that x be as close as possible
to the data set, in such a way to regularize the inversion. Clearly, we also want
that the image of x by the diffusion map be b or near by it. For each b we can
represent these requirements by means of an objetive function f : IRd → IR, as
follows,

f(x) = ‖D̃(x)− b‖+ γmin
k

(‖x−Xk‖). (3)

That is, given b ∈ IRn−1, its pre-image, if it exits, will be the vector x ∈ IRd
minimzing f above.The parameter γ is used so that it is possible to adjust the
level of influence of the second term with respect to the first term, in the right
hand side of (3). These ideas can also be used for the reconstruction of PCA.

If we wish to consider the pre-image problem for several points, b ∈ IRn−1,
we may extend the previous cost function to explicitely consider its dependence
not only on x but also on b, f : IRd × IRn−1 → IR, defined by f(x, b) =
‖D̃(x) − b‖ + γmink(‖x − Xk‖). Therefore, we consider a function G defined
by minimizing f , G : IRn−1 → IRd, such that

G(b) = arg minxf(x, b). (4)

In general G(b) may be a subset of IRd since f(·, b) can have several minimum
points.

The point of minimum, denoted by X̃, when b = G(X∗), is the reconstructed
sinal X∗. The residue X∗ − X̃, has to be verified to check the quality of the
reconstruction and the power of analysis and synthesis of the prposed method.

5 Experiment

We applied the discussion of extension and pre-image problem to a set of
known geometric structure in IR3, representing an helix. We considered just
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38 points in IR3 consisting of an helix with three turns. Further, random noise
was added to 189 points distributed with equal spacing between the points of
the helix. The calculation of the features of these noisy points was done by
means of Nystrom extension. The pre-images were computed by minimiza-
tion of the cost function, equation (3), using a simulated annealing algorithm.
The regularization parameter was set γ = 0.09. For the diffusion map we let
ε = 0, 001r2, t = 50 e α = 1.

Figure 1 presents the results of this experiment. There is a small part of it
which has been amplified. In blue are represented the points of the ideal helix,
the noisy points are in red, and the pre-images are in green.

Hélice ideal 
Pontos com ruídos
Pré-imagens 

Fig. 1. Helix with a small stretch amplified where one can see its noisy points (red)
and the corresponding pre-images (green) for the diffusion maps.

6 Conclusion

This article presents the diffusion map method for dimensionality reduction
focussed on pattern theory in respect to the non-linear reconstruction of signals.

We also formulate and exploit a cost function to compute pre-images for
the diffusion maps, which constitutes a significant contribution of this work.
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Abstract. Analyzing trends in multivariate time series is an important issue. A
fuzzy trend model has been proposed for estimating trends in multivariate time series.
This fuzzy trend model can decompose trends into common and individual trends.
However, seasonality is not considered in this model. In this paper we propose a model
including seasonality. Another problem of the former model is that common trend
might differ from each series when there are large differences among series. Therefore
we propose a scaling model which can decompose trends effectively by introducing
weights. Usability of proposed models is demonstrated by a numerical example.
Keywords: Decomposition of trend, Common trend, Seasonal component, Fuzzy
system.

1 Introduction

It is important to analyze trend included in multivariate time series. Most
of models and methods are proposed for stationary time series or time series
whose trends are removed previously. Models or methods for analyzing trend
have not been developed sufficiently.

The moving average method and polynomial regression are typical methods
for estimating trend. However, it is not easy to determine the length of inter-
val for moving average. Polynomial regression can estimate trend easily but
cannot follow irregular movement. On the other hand the fuzzy trend model
([1]) occupies an intermediate position between moving average method and
polynomial regression and can analyze trend objectively and flexibly. Fuzzy
trend models are also available for multivariate time series and can decompose
trends into common and individual trends ([2], [3]). Whether time series is
multivariate or scalar, most time series have seasonality or periodic compo-
nents. However, seasonality is not considered in these models. In this paper
we propose a multivariate fuzzy trend model including seasonal components.
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The former model has another problem that the common trend might differ
from each series when there are large differences among series. In this case
standardization is difficult, since time series with trends are nonstationary, and
mean values and variances depend on time points generally. To resolve this
problem we propose a weighted model which can decompose trends effectively
by introducing weights for scaling. We also consider a non-weighted fuzzy
trend model with seasonal components and weighted fuzzy trend model without
seasonal components. We provide an identification method for our models.
Applicability of proposed models is demonstrated by a numerical example.

2 Fuzzy trend model

Let {yln|n = 1, ..., N, l = 1, 2, ..L} denote the observed time series, where L
is a number of time series and N is a length of time series. The new model
proposed in this paper is defined as follows:

yln =
1

rl
(µln + uSln + xln) (1)

µln =

K∑
k=1

νlk(n)µk (2)

Rlk: If n is Alk, then µk = αlk(n− ak) + βlk, (3)

where Rlk is a fuzzy if-then rule, νlk(n) is a membership function of a fuzzy
set Alk, ulk = {(αlk βlk)′} is an unobserved bivariate series (u′ means the
transpose of u), and xln is a zero-mean stationary process with variance σ2.

When ulk is a stochastic process, we assume that xln and ulk are indepen-
dent. The weight rl is for standardization and we assume that

∑L
l=1 rl = 1 and

rl > 0. The parameter ak satisfies the equation:

ak = ak−1 + d, (4)

where d is a positive integer and a1 = 1. We use the following membership
function:

νlk(n) =
1

2
{cos(π(n− ak)/d) + 1}. (5)

Fig. 1 shows the membership functions of Al1, ..., AlK . The model given by
(2)-(3) is a kind of Takagi-Sugeno’s fuzzy system ([4]).

The term uSln is a deterministic seasonal component, where uSl,n+p = uSln
and p is the period. As a constraint we set

∑p
n=1 u

S
ln = 0 for all l. In this

paper we assume that p is known.
Each trend is lead by the latent process ul = (u′l1, ..., u

′
lK)′ in this model.

We assume that ulk can be decomposed as follows:

ul = uC + uIl , (6)
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Fig. 1. Membership functions

where the latent processes uC and uIl imply the common and individual trends
respectively. Such decomposition requires a constraint condition. We will de-
scribe this condition later (cf. Eq. (26)).

As special cases of the model (1), the non-weighted model with seasonal
components is given by

yln = µln + uSln + xln, (7)

and the weighted model without seasonal components is given by

yln =
1

rl
(µln + xln). (8)

When uSln = 0 in (7), this model is identical with the former one.

3 Identification

In this section we consider the weighted model (1) only. Identification methods
for the models (7) and (8) are derived easily.

In fuzzy trend models estimation of latent processes plays an important
role. We rewrite the model as follows:

zR = G1u
C +G2u

I + x, (9)

where

zR =


z1
...
...
zL

 =


r1y1 −BSuS1

...

...
rLyL −BSuSL

 (10)

yl = (yl1, ..., ylN )′ (11)

uI = (uI1
′
, ..., uIL

′
)′ (12)

uSl = (uSl1, ..., u
S
lp)′ (13)
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G1 = (B′1, ..., B
′
L)′ (14)

G2 =


B1 · · · · · · 0
... B2 · · ·

...
...

...
. . .

...
0 0 · · · BL

 (15)

Bl =

 νl1(1) νl1(1)(1− a1) · · · νlK(1) νlK(1)(1− aK)
...

...
...

...
νl1(N) νl1(N)(N − a1) · · · νlK(N) νlK(N)(N − aK)

 . (16)

The matrix BS is the upper N × p submatrix of the matrix consisting of suf-
ficient numbers of p-dimensional identity matrices. The vector x is defined
similarly.

Now we consider an estimation procedure. First we estimate a seasonal
component for each series by the least squares method for given d and rl.
From (1) – (16) we can rewrite

yl =
1

rl
Blul +

1

rl
BSuSl +

1

rl
xl (17)

= Blũl + B̃S ũSl + x̃l (18)

= [Bl B̃S ]

(
ũl
ũSl

)
+ x̃l, (19)

where

ũSl =
1

rl
(uSl1, ..., u

S
l,p−1)′, (20)

B̃S = BS


1 0 · · · 0
0 1 · · · 0
...

...
...

0 0 · · · 1
−1 −1 · · · −1

 , (21)

and so on. The size of the last matrix in (21) is p×(p−1). Note that uSl follows
the constraint condition. From (19) the ordinary least squares method can be
applied for estimation of ũSl . We represent the estimated seasonal component
by ûSl . The latent processes ul’s are re-estimated by using all series in the
following way.

We define the new series by removing the seasonal component from the
original series as follows:

ẑR = (ẑ′1, ..., ẑ
′
L)′ (22)

ẑl = rlyl −BS ûSl . (23)
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From (9) the latent process can be estimated by the least squares method
also. However, we cannot apply the ordinary least squares method to our model
directly. Then we propose a two stage estimation procedure. The least squares
estimators ûC and ûI are given by

ûC ≡ (G′1G1)−1G′1ẑ
R (24)

and

ûI ≡ (G′2G2)−1G′2(ẑR −G1û
C) (25)

respectively. We can show that the estimator ûI satisfies the equation:

G′1G2û
I = 0. (26)

Thus we adopt the condition (26) as a restriction. That is, the constraint of
our model is G′1G2u

I = 0.
Next we propose a recursive procedure for estimating rl.

Step 1. Set rl = 1/L (l = 1, ..., L).
Step 2. Estimate ûC by (24).
Step 3. Calculate rl as follows:

r
(0)
l = ẑ′lBlû

C/ẑ′l ẑl

λ = (
∑L

l=1 r
(0)
l − 1)/(

∑L
l=1 1/ẑ′l ẑl)

rl = r
(0)
l − λ/ẑ′l ẑl.

Step 4. Go to Step 2, if rl’s are not converged.
Step 5. Estimate ûI by (25).

The step 3 in the above procedure is lead by the method of Lagrange multi-
plier. Finally we have to determine d from data, since d is unknown generally.
We apply the quasi Bayesian Information Criterion given by the equation:

BIC = NL log(σ̂2)−N
L∑

l=1

log r2l + (2KL+ L+ p− 1) logNL, (27)

where

σ̂2 = (ẑR −G1û
C −G2û

I)′(ẑR −G1û
C −G2û

I)/NL. (28)

The width parameter d is selected by minimizing BIC. The length of the latent
process K is determined from d.

4 Numerical example

We apply the proposed models to artificial time series shown by Fig. 2 for
demonstration. The length of series N is 116 and number of series L is three.
(These series are real data of carbon dioxide concentration at three places in
Japan. However, this multivariate time series is not real, since the original time
points are not aligned.)
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We fit the non-weighted model (7) and weighted model (1), since seasonality
appears clearly. Both selected d’s of two models are 68. The result by the non-
weighted model (7) is shown by Fig. 3. The bold line is the common trend,
solid line is the original series and dotted line is the sum of common and original
trends and seasonal component. The figure shows that seasonality is estimated
well. However, the common trend differs from each series, since there are large
differences among series. This means that the common movement in each series
is not estimated appropriately.

The result by the weighted model (1) is shown by Fig. 4. The solid
line is the weighted series rlyl. Comparing Figs. 3 and 4 it is found that
the weighted model provides more natural results. The estimated weight is
(0.3430, 0.3292, 0.3278). Fig. 5 shows the estimated seasonal components and
individual trends. Similarity or dissimilarity of three series can be considered
from Fig. 5.

20 40 60 80 100
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390
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Minamitorishima

Yonagunijima

Fig. 2. Original series

5 Conclusion

In this paper we proposed the non-weighted and weighted fuzzy trend models
for multivariate time series with or without seasonality.

The non-weighted model cannot estimate common trend well, when there
are large differences among series. The weighted model resolves this problem.
Moreover the proposed models can estimates seasonal components directly.
The numerical example shows that the proposed identification method works
well.

It is expected to apply our models to multivariate time series widely. How-
ever, simulation studies and practical examples are required for further evalu-
ation of the identification procedure.
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Abstract 
This article considers the new devising methodological approach on the basis of 

reliability characteristics (failure intensity), to be applied in the system of 

controlling the technical maintenance of water pipeline networks. Specifically: 

- Define the types of reliability characteristics of the controlling objects, which 

characterizes on its actual condition. 

- Define the main parameters of controlling object (spare parts, workers) 

technique maintenance on the basis of reliability characteristics. 

This approach needs solving the problem in the following sequence: 

- Define the types of failure of water pipeline networks; 

- Determine algorithm for each type of failure flow of water pipeline networks; 

- Define the quantity of resources that is necessary for the maintenance of 

workability of water pipeline networks on each type of failure; 

- Estimate the reliability of water pipeline networks operation for various types 

of failure. 

Carried out research allowed to distinguish four types of failure of elements and 

pipelines of water-supply networks dependent on time of their introduction, 

putting into exploitation, and outer influences: 

- Running-in failure, which occurs in the initial period of exploitation; 

- Failures in condition of system’s normal operation; 

- Failures in condition of system’s physical depreciation (aging); 

- Instantaneous (random) or gradual failures that occur as a result of outer 

strikes, i.e. earthquakes.  

To determinate the amount of spare parts, the mathematical model in the form 

of optimization problem with one non-linear restriction and algorithm that builts 

on the base of quickest and descent method, which its solution under the 

increasing intensity of failures of elements and pipelines of water-supply 

networks was formulated. 
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Keywords: Water pipeline networks, technique maintenance, reliability, 

failures, modeling, earthquakes,   algorithm, workability, probability. 

 

1. Introduction 
It is known fact that engineering networks including water pipeline network in 

big cities and settlements is not built simultaneously because the water pipeline 

networks are constructed as result of cities and settlements widening. That is 

why there are buildings (constructions) of water pipeline networks of different 

remoteness year in the same city. 

 This situation complicates in a certain extent the process of controlling 

technical maintenance of water pipeline networks, as the intensity of failure 

flows in districts differs from one another dependent on their construction time 

remoteness. The traditional method causes insufficient or excess planning of 

amount of spare parts and employee group, which is necessary for the 

maintenance of workability of water pipeline networks. 

The reasons are: existence of input information in a big capacity, 

missing information on some of networks’ characteristics, insufficiency of data 

information on some parameters (on network state, influence of outer strikes), 

which require the special approach to solving this problem. 

The dynamical character of development of water pipeline network 

system requires a constant improvement of system of controlling the technical 

maintenance, as lagging in development of subject of control from object of 

control causes huge social-economical losses. 

On the other hand, the condition of water networks may change as a result of 

various earthquakes. Especially, during strong earthquakes, the condition of 

water networks will change instantly. As a result of earthquake, the water 

supply and distribution system will be partially or fully out of order. In hot 

climates, this situation leads not only to social and economic losses, but also 

increases the danger of expansion of epedemii. For example, as a result of 

earthquake in Armenia in 1989, there was the danger of expansion of the 

epidemic, even though it was the winter time. Because the water supply system 

was not restored by the deadline, and there was no beforehand developed 

system management. 

 

2. Research of Changing the Failure Intensity Properties and 

Solving the Problem of Technical Maintenance of Water 

Pipeline Networks 
Let the system of water pipeline networks consist of ar, 

( R,1r = )elements (r - signifies element’s type). The system is concentrated in 

a sufficiently big territory, i.e. it is territorially dispersed system, object of 

control (water pipeline networks) is divided onto definite repair-exploitation 

areas and technique control carried out for the maintenance of their workability. 

Controlling system consists of two levels, i.e. upper level represents city 
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municipal government of water pipeline network, and lower level includes 

repair-exploitation area administration. 
 

The failures of one or several elements do not cause the general failure 

in system. This depends on exactly in what part of system of water pipeline 

network the failure element (area) is situated, i.e. in the lines of main water 

pipeline (in initial network), in crosspieces and so on. We mark out four types of 

failure. 

1. Running-in, early failure,  occurring in the initial period of 

exploitation; 

2. Failures in  condition of system’s normal operation; 

3. Failures in  condition of system’s physical aging, depreciation 

(obsolescence); 

4. Random, chance or gradual failures, that occur as a result of outer 

strikes, i.e. earthquakes, strikes of heavy transport means and so 

on.   

Random, chance failure occurs at the same moment after one or series 

of strikes under strong earthquakes. Gradual failure occurs as a result of saving 

of deformation of several not strong strikes under not strong or insensible 

earthquakes. 

It is known that failure characteristics (intensity, deepness) reflect the 

system state. To control the technical systems first their state should be 

determined. For that we introduce the parameter of system’s elements condition 

хr(t), R,1r =  

хr(t) = { 0 on faultless  r  element in the moment t } 

хr(t) = {1 on defective  r  element in the moment t } 

If to mark through ( )ir tλ  the intensity of failures of r- element in the 

moment ti (i =1,4) then vector of systems condition is determined:  

In the periods of running-in failures  

Xr(t1)={X1(t1),  λ1(t1);  X2(t1),λ2(t1);...;  XR(t1),  λR(t1) }, 

In the periods of normal operating 

Xr(t2)={X1(t2),  λ1(t2);  X2(t2),  λ2(t2);...;  XR(t2), λR(t2)}, 

In the periods of physical depreciation 

Xr(t3)={X1(t3),  λ1(t3);  X2(t3),  λ2(t3);...;  XR(t3), λR(t3)}, 

In earthquakes (extraordinary, force major situations)  

Xr(t4)={X1(t4),  λ1(t4);  X2(t4);  λ2(t4);...;  XR(t4), λR(t4)} 

Besides, arises necessity in defining the function of allotment of failure 

intensity on appropriate periods. Proceeding from features of changing of the 

failure intensity of water pipeline networks there considered four types of 

functions of failure intensity allotment λr(ti) : 

1. Running-in failure is corresponded by Weibull-Gnedenko distribution, 

as on β<1 the intensity of failures decreases. 

In the period of normal operation of failures intensity system is 

usually considered by constant value, i.e. λ=const and Weibull-
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Gnedenko distribution corresponds to this, (and also exponential 

distribution), as if β=1, λ is constant value. 

2. In case of occurring of many deterioration failures, i.e. obsolescence 

occurrence is essential, then it causes strong change in intensity of 

failures during time (Figure 1). 

Besides, intensity of failures monotonously increase (period t2,t3) and 

intensity of failures change corresponded by Weibull-Gnedenko 

distribution, where λ(t) increases if β>1 (Beichelt& Franken, 1988 ). 

3. In case of weak earthquakes, i.e. when there is outer strike influence, it 

is accepted that operating time of the equipment and pipelines of 

water-supply networks have distribution of increasing in average 

function intensity. Usually, in the models of impact load occur 

operating times from the class of increasing in average functions 

intensity. This means that equipments and pipelines of water-supply 

networks have undergone outer strikes that occur in casual moments 

of time and cause damage (accident) in the system. Damages 

accumulate in the equipments and pipelines until some of critical 

level won’t be reached or exceeded, if this critical level is reached, 

then in equipments and pipelines occur failure (gradual). 

 

Besides, in case of strong earthquakes instantaneous, chance failures 

usually occur, which happen in seismic active areas of the Globe. For 

example, such cases were observed in 1966 in Tashkent (Republic of 

Uzbekistan), in 1968 in Ashgabat(Turkmenistan) earthquakes and these 

earthquakes reached up to 9 points on the Richter scale. 

It should be marked that analysis of failure intensity quality for all 

period of exploitation of water-supply pipeline networks shows that there exists 

the following determination. 

In running-in stage of exploitation of water-supply pipeline networks 

an interval of (0,t1)  in real probability of faultless operation begins to grow after 

the beginning of exploitation. 

Determination 1. Probability of faultless operation of technical system 

elements ( )rt aF , that are worked less t1, monotonously increases on t,   0<t<t1. 

According to the given determination, the intensity of failures in the 

interval of (0,t1) monotonously decreases, it is considered decreasing function of 

intensity. 

Determination 2. Probability of faultless operation of works of 

elements of technical system ( )rt aF , that worked for a time t2, monotonously 

decreases on t,  t2<t<∞, t2 – beginning of obsolescence stage of the elements of 

technical systems. 
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Fig. 1. Failures intensity change dependent on water networks exploitation 

time. 
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According to this determination, beginning from t2 time failure intensity 

monotonously arises, i.e. increasing function of intensity.  

Now we will examine the process of the task solution of the quantity 

determination of the resources (spare parts), which are necessary for the 

workability efficiency support in the condition of the little-studied gradual 

failure, which happens as a result of weak earthquakes.   

It is established that resources quantity determination task in weak earthquake 

conditions should be solved in three stages: 

1. Determination of failure flow. 

2. Determination of the probability of the faultless work. 
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3. Determination of resources quantity necessary for the liquidation of the 

earthquakes aftereffects. 

Under the supervision of professor Abramov N.N. (Sabitov,1977), it is 

established that failure flow dependent on earthquakes intensity is expressed by 

the following dependency formula: 

λ = а + b m – c m
2                                                                                                                         

(1) 

where - a, b, c are the unknown parameters, m earthquakes intensity scale. 

As it is seen from formula (1), failure flow depends from random factors, at the 

same time for determination of their meaning we used the Monte-Carlo method 

which is given in work (Yarkulov, 2004). 

On the second stage with the known meaning of the failure flow intensity the 

water-supply networks’ system faultless work probability is determined.  

 

3.Algorithm for the Faultless Work Probability Determination of 

the Water Pipeline Networks at the External Influences. 

At the imperceptible and weak earthquakes the water plumbing 

networks are subject to the weak influences and as a result critical failure 

crashes (damages) appear. It leads to damages accumulation and this process 

will continue till certain critical level will be achieved and exceeded, afterward 

the failure comes in the system. 

 When damages accumulate till the failure threshold, the system’s 

faultless work probability is expressed not by the exponential law, but by the 

Weibull’s distribution law (close to Weibull’s distribution). It is explained by 

the fact that at the damages stack as a result of external influences and physical 

wear and tear, and the time among the failures will be decreased.  

 Therefore, at the gradual failure the system’s faultless work probability 

is determined on the base of the full probability formula: 

 

                      (2) 

   

 

Where P [х1+х2+…+хk<x ] – is a probability that common damages that present 

k-hits sum, don’t exceed acceptable limits equal to x.  

 !k/e)е( tk λ−
λ is a probability that by (0, t1) time k hits sharp ensue. 

As it is seen from formula (2) numerical values of probability P [х1+х2+…+хk<x 

] are not always possible to get. At the same time it’s possible to determine the 

limiting boundaries of failure origin probability on the basis of the past 

(registered) earthquakes.  

It leads to the imitation of the given process, i.e. probability enactment, 

exceeding the possible, limiting boundaries, equal to x at k-hits. 
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 Algorithm imitating the given process must provide the possibility of 

modeling interval change and change boundaries of damages origin possibility. 

Suppose that during a month 10-15 imperceptible earthquakes happen, it means 

that hits quantity equal to k=10÷15 (usually it happens in Central Asia country). 

In the capacity of modeling interval length t=30 days, i.e. a month period should 

be taken. 

When considering the water supply system it’s possible to divide the whole 

system into the R equivalent elements, i.e. every area is accepted as one 

equivalent element. Now we will consider the algorithm, enacting system’s 

faultless work probability.  

     

 Algorithm’s Description 

1. Determination of equivalent elements quantity and elements types 

ar(r=1,R). 

2. x=0.1 is specified. 

3. Modeling interval is determined (0,t), t=30 days. 

4. Hits quantity is specified, i.e. k (k=10÷15). 

6. Random value is enacted ξi . 

7. The necessary tests number is specified ng≥ log (1-p)/ log (1-ε ), where 

p= 0.95, ε = 0.01 . 

8. i≥ng is verified. If i≥ng, then transition to the following paragraph, 

otherwise  -  to the paragraph 6. 

9. ),1,,1(,/ kjnin gg

i

ii ===∑ξξ is calculated. 

10. j≥ k conditions verification. If this condition is satisfied, then transition 

to the following paragraph, otherwise - to the paragraph 6. 

11. ξ1 + ξ2 + ... + ξk< x conditions verification. If this condition is satisfied, 

then P [ξ1 + ξ2 + ... + ξk ≤x] =0 and transition to the paragraph 12, 

otherwise P[ξ1 + ξ2 + ... + ξk≤x] = p( η) and transition to the following 

paragraph (where 0 < p(η) ≤ 1). 

p(η) – probable value, which is determined by big numbers law 

depending on tests and factors quantity. 

12. 
!k

)ta(
e)t(F

k
rr

L

0k

ta
r

rr
λ

= ∑
=

λ−
 P [ξ1 + ξ2 + ... + ξk<x ] is 

calculated 

Where ar – r type element quantity, (r=1,R), L – possible hits quantity. 
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13. r< R conditions verification. If this condition is satisfied, then 

transition to the paragraph 6, otherwise - to the following paragraph.  

14. Printing Fr(t)  and algorithm end. 

The developed algorithm allows taking into account water supply network 

condition change under the impact of the imperceptible and weak 

earthquakes gradual failures can occur.  

 

 On the third stage for spare parts quantity determination originally 

singularity of the given system should be taken into account. As it is 

known, water supply networks are connected logically serial, chained and 

in parallel.  

 We will consider logically connected elements of the water supply 

network. 

 

4. The Task of Spare Parts Quantity Determination 

If take the designations such as mr – spare elements quantity, TD – 

acceptable probability of the system’s faultless work, (reliability norm α – 

water supply percentage), then the spare elements optimal quantity 

determination task in damages stacking conditions is presented in this way, 

i.e. find mr, which may be solved at different criteria and limitations.  

∑
=

=
R

1r
rrN mCCmin                                                                    (3) 

 

We choose in the capacity of limitations system: 

       

∏
=

≥
R

r

Drr TmF
1

                                                    (4) 

Conditions (3)-(4) are the task of the multidimensional optimization 

with one limitation. Its solution practically comes to the one-dimensional tasks 

sequence solution on every step of optimization. Therefore, for (3)-(4) tasks 

solution it is possible to use the fastest descent method. On the basis of the last 

we will compose their solution algorithm. 

  

The Algorithm Description 

1. mr =1,  )R,1(r =  are specified. 
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2. ∏
=

=θ
R

1r
rrmF is calculated. 

3. ∏
=

≥
R

r

Drr ТmF
1

Conditions of verification. If this 

condition is satisfied, then transition to the paragraph 9, 

otherwise - to the following paragraph. 

4. ∑
=

λ−λ
=

r
rr

m

0k

ta
k

rr
rr e

!k

)ta(
)m(F

is calculated

 

5. ∆Fr(mr) = Fr(mr) - Fr(mr+1),    (r = R,1 ) is calculated. 

6. Cr/∆Fr(mr),   (r = R,1 ) is calculated. 

7. 
rm

min Cr / ∆Fr (mr),    (r = R,1 ) is found. 

8. The variable (mr) is increased on one unit to which 

rm
min Cr/∆Fr(mr) corresponds and transition to the paragraph 

3. 

9. Objective function value calculation 

.mCCmin
R

1r
rrN ∑

=

=  

10. The end of the algorithm. 

The analysis of the results obtained shows that the developed 

algorithm is suitable for the practical accounts of the spare 

elements quantity when under the influence of the external hits 

gradual failures arise. The main sources of the gradual refusals 

emergence in seismic active districts (zones) are the weak 

earthquakes. 

The given task was solved for the consecutively serial 

connected elements of the system, and for the systems with 

parallel joined elements it is solved analogically, only with 

the limitations change (4). 

       5.Conclusions: 
1. It is necessary to manage the technical maintenance (efficiency 

support) of the water-supply networks only by their condition, as it 
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allows minimizing the exploitation expenses and water loss. To support 

the water plumbing networks efficiency at minimal expenses it is 

necessary to determine the failure flow intensity on the network areas. 

In the inhabited districts and cities, which are situated in seismic active 

zones, it is necessary to determine the failure flow in condition of 

imperceptible, weak and strong earthquakes. 

2. With due regard for the data of the failure flow intensity it is necessary 

to determine the optimal resources quantity (spare parts, working 

teams) on the basis of the above mentioned models and algorithms 

which do not admit shortage or plenty of the resources. 

3. To develop the complete system of models and algorithms, which are 

necessary for the water plumbing network efficiency support, and as a 

result, to create the information system of the network technique 

maintenance management. 

         6.Recommendation 
This project is virtually internationl project because  no country is safe from 

earthquakes in the world. It would be good if the concerned organizations 

(enterprises) from other countries will be able to support (finans  support) for 

this project. 

Create emergency reserve resources for individual cities in the region (e.g., state 

or province), which is enough to rebuild water systems within the same city. 

Create a separate section "control in extreme situations" in the system 

engineering management. 
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Singular extremals in control problems for
wireless sensor networks
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Abstract. Energy-saving optimization is very important for various engineering prob-
lems related to modern distributed systems. We consider here a control problem for
a wireless sensor network with a single time server node and a large number of client
nodes. The problem is to minimize a functional which accumulates clock synchro-
nization errors in the clients nodes and the energy consumption of the server over
some time interval [0, T ]. The control function u = u(t), 0 ≤ u(t) ≤ u1, corresponds
to the power of the server node transmitting synchronization signals to the clients.
For all possible parameter values we find the structure of extremal trajectories. We
show that for sufficiently large u1 the extremals contain singular arcs.

Keywords: Pontryagin maximum principle, bilinear control system, singular ex-
tremals, wireless sensor network, energy-saving optimization.

1 Model

Power consumption, clock synchronization and optimization are very popular
topics in analysis of wireless sensor networks [1]–[7]. In the majority of modern
papers their authors discuss and compare communication protocols (see, for
example, [4]), network architectures (for example, [3]) and technical designs
by using numerical simulations or dynamical programming methods (e.g., [6]).
In the present talk we consider a mathematical model related with large scale
networks which nodes are equipped with noisy non-perfect clocks [2]. The
task of optimal clock sychronization in such networks is reduced to the clas-
sical control problem. Its functional is based on the trade-off between energy
consumption and mean-square synchronization error. This control problem
demonstrates surprisingly deep connections with the theory of singular opti-
mal solutions [8]-[13].

The network consists of a single server node (denoted by 1) and N client
nodes (sensors) numbered as 2, . . . , N + 1.

Let xi be a state of the node i having the meaning of a local clock value at
this node. The network evolves in time t ∈ R+ as follows.

Stochastic Modeling, Data Analysis and Statistical Applications (pp. 461-474)
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1) The node 1 is a time server with the perfect clock:

d x1(t)

dt
= v > 0

2) The client nodes are equipped with non-perfect clocks with a random
Gaussian noise

d xj(t)

dt
= v + σdBj(t) + synchronizing jumps,

where Bj(t), j = 2, . . . , N + 1, are independent standard Wiener processes,
σ > 0 corresponds to the strength of the noise and “synchronizing jumps” are
explained below.

3) At random time moments the server node 1 sends messages to randomly
chosen client nodes, u is the intensity of the Poissonian message flow issued
from the server. The client j, j = 2, . . . , N+1, that receives at time τ a message
from the node 1 immediately ajusts its clock to the current value of x1:

xj(τ + 0) = x1(τ),

xk(τ + 0) = xk(τ), k 6= j.

Hence the client clocks xj(t), t ≥ 0, are stochastic processes which interact
with the time server.

The function

R(t) = E
1

N

N+1∑
j=2

(xj(t)− x1(t))
2

is a cumulative measure of desynchronization between the client and server
nodes. Here E stands for the expectation.

It was proved in [2] that the function R(t) satisfies the differential equation

Ṙ = −uR+Nσ2

2 Optimal control problem

Consider the following optimal control problem∫ T

0

(αR(t) + βu(t)) dt→ inf (1)

Ṙ (t) = −u(t)R(t) +Nσ2 (2)

R (0) = R0 (3)

0 ≤ u(t) ≤ u1 (4)

Here α, β are some positive constants. The control function u (t) corresponds
to the power of the server node transmitting synchronization signals to the
clients. The functional (1) accumulates clock synchronization errors in the
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clients nodes and the energy consumption of the server over some time interval
[0, T ].

The admissible solutions to (1)-(4) are absolutely continuous functions, the
admissible controls belong to L∞ [0, T ].

We prove that the problem (1)-(4) has a unique solution. We find a structure
of optimal control. We show that optimal solutions may contain singular arcs.

3 Existence of solution

Lemma 1 For any R0 and any parameter values T, α, β, N, σ2, u1 there ex-
ists a solution (R̂(t), û(t)) to the problem (1)-(4).

Proof. Let BR0 denote the set of continuous functions R : [0, T ]→ R such that
R(0) = R0. Consider the map K : L∞ [0, T ]→ BR0

defined as follows:

(Ku) (t) = R0 exp

(
−
∫ t

0

u(ξ)dξ

)
+Nσ2

∫ t

0

exp

(
−
∫ t

s

u(ξ)dξ

)
ds

=: A(u, t) +B(u, t). (5)

This operator assigns to the control function u the corresponding solution
R of (1)-(4).

1. Let
{
u(n)(t)

}∞
n=1

be a minimizing sequence for the fuctional∫ T

0

(αR(t) + βu(t)) dt,

i.e.,∫ T

0

(
αKu(n)(t) + βu(n)(t)

)
dt→ inf

u∈V

{∫ T

0

(αR(t) + βu(t)) dt

}
, (n→∞),

where V = {v ∈ L∞ [0, T ] : 0 ≤ v(t) ≤ u1}. Recall that the space L1 [0, T ] is
the adjoint space to L∞ [0, T ]. By 〈φ, u〉 we denote the value of the functional
φ ∈ (L∞ [0, T ])

∗ ∼= L1 [0, T ] at u ∈ L∞ [0, T ]:

〈φ, u〉 =

∫ T

0

φ(ξ)u(ξ) dξ .

Since u(n)(t) ∈ [0, u1], one can extract a weakly-∗ converging in L∞ [0, T ] sub-
sequence u(nk)(t) by virtue of Banach-Alaoglu theorem. Without loss of gener-
ality one can assume that u(n) weakly-∗ converges to some û ∈ L∞ [0, T ]. This
means that for each ρ ∈ L1 [0, T ] one has∫ T

0

ρ(ξ)u(n)(ξ) dξ →
∫ T

0

ρ(ξ)û(ξ) dξ, n→∞. (6)

2. Let us prove that the sequence R(n)(t) := Ku(n)(t) converges pointwise
to R̂(t) := Kû(t) as n→∞.
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Further let φts(ξ) := −1[s,t] (ξ) =

{
−1, ξ ∈ [s, t],
0, ξ 6∈ [s, t].

Taking ρ(ξ) = φt0(ξ) in

(6) we obtain ∫ t

0

u(n)(ξ) dξ →
∫ t

0

û(ξ) dξ, n→∞,

hence
A(u(n), t)→ A(û, t), n→∞

for each fixed t. Note that B(u(n), t) = Nσ2

∫ t

0

exp
〈
φts, u

(n)
〉
ds. The func-

tions exp
〈
φts, u

(n)
〉

are uniformly bounded and pointwise convergent, hence
Lebesgue’s dominated theorem yields the convergence

B(u(n), t)→ B(û, t), n→∞

for each fixed t. So we established the required convergence.
3. Let us show that R̂(t) is a solution to (1)–(4).
Obviously R(n)(t) are uniformly bounded (this follows straightforward from

the explicit formula (5)). Since they form a pointwise convergent sequence,
Lebesgue’s dominated theorem yields∫ T

0

αR(n)(t) dt→
∫ T

0

αR̂(t) dt, n→∞.

Moreover, due to weak-∗ convergence, one has∫ T

0

βu(n)(t) dt = β

∫ T

0

φT0 (t)u(n)(t)dt→ β

∫ T

0

φT0 (t)û(t)dt = β

∫ T

0

û(t)dt.

This yields∫ T

0

(
αR(n)(t) + βu(n)(t)

)
dt→

∫ T

0

(
αR̂(t) + βû(t)

)
dt.

Thus (R̂(t), û(t)) is an optimal solution to (1)–(4). �

4 Pontryagin maximum principle

We will apply Pontryagin Maximum Principle [14] to the problem (1)-(4). Let(
R̂ (t) , û (t)

)
be an optimal solution. Then there exist a constant λ0 and a

continuous function ψ (t) such that for all t ∈ (0, T ) we have

H
(
R̂ (t) , ψ (t) , û (t)

)
= max

0≤u≤u1

H
(
R̂ (t) , ψ (t) , u

)
(7)

where the Hamiltonian function

H (R,ψ, u) = −λ0 (αR+ βu) + ψ
(
−uR+Nσ2

)
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Except at points of discontinuity of û (t)

ψ̇ (t) = −
∂H

(
R̂ (t) , ψ (t) , û (t)

)
∂R

= λ0α+ û (t)ψ (8)

And ψ satisfies the following transversality condition

ψ (T ) = 0 (9)

The function ψ (t) is called an adjoint function. The condition (7) is called the
maximum condition.

The dynamics equation (2) and the adjoint equation (8) form a Hamiltonian
system

ψ̇ = λ0α+ û (t)ψ

Ṙ = −û (t)R+Nσ2 (10)

where û (t) satisfies the maximum condition (7). The solutions (R (t) , ψ (t)) of
(10) are called extremals. If λ0 6= 0, we say that (R (t) , ψ (t)) is normal. One
can show [3] that in the problem (1)-(4) every extremal is normal. So we can
put λ0 = 1.

5 Switching function and singular extremals

Denote
H0 (R,ψ) = −αR+ ψNσ2, H1 (R,ψ) = −β −Rψ (11)

then H = H0 + uH1. The Hamiltonian H is linear in u. Hence to maximize it
over the interval u ∈ [0, u1] we need to use boundary values depending on the
sign of H1.

û(t) =

{
0, H1 (R(t), ψ(t)) < 0
u1, H1 (R(t), ψ(t)) > 0

(12)

The function H1 is called a switching function.
Suppose that there exists an interval (t1, t2) such that

H1 (R(t), ψ(t)) = 0, ∀t ∈ (t1, t2) (13)

then the extremal (R (t) , ψ (t)) , t ∈ (t1, t2) , is called a singular one. In this
case we can’t find an optimal control from the maximum condition (7). We
will differentiate the identity H1 (R(t), ψ(t)) ≡ 0 by virtue of the Hamiltonian
system (10) until a control u appears with a non-zero coefficient.

We say that a number q is the order of the singular trajectory iff

∂

∂u

dk

dtk

∣∣∣∣
(10)

H1(R,ψ) = 0, k = 0, . . . , 2q − 1,

∂

∂u

d2q

dt2q

∣∣∣∣
(10)

H1(R,ψ) 6= 0
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in some open neighborhood of the singular trajectory (R(t), ψ(t)).
It is known that q is an integer.
Singular solutions arise frequently in control problems [8]-[12] and are there-

fore of practical significance. We prove that for suffiently large u1 a singular
control is realised in the problem (1)-(4).

Lemma 2 Let √
αNσ2

β
≤ u1

then in the problem (1)-(4) there exists a singular extremal of order 1

R̂s (t) ≡
√
Nσ2

β

α
, ψs (t) ≡ −

√
αβ

Nσ2
(14)

and the corresponding singular control is

us =

√
αNσ2

β

Proof. Assume that (13) holds. We will differentiate this identity along the
extremal with respect to t:

d

dt

∣∣∣∣
(10)

H1(R (t) , ψ (t)) = 0 ⇒ −Nσ2ψ (t)− αR (t) = 0 (15)

d2

dt2

∣∣∣∣
(10)

H1(R (t) , ψ (t)) = 0 ⇒ u
(
αR (t)−Nσ2ψ (t)

)
− 2αNσ2 = 0 (16)

From (13)–(15) we have

R (t) =

√
Nσ2

β

α
, ψ (t) = −

√
αβ

Nσ2
(17)

Substituting (17) in (16) we obtain

2
√
Nσ2αβ · u− 2αNσ2 = 0

Thus

R (t) ≡
√
Nσ2

β

α
, ψ (t) ≡ −

√
αβ

Nσ2

is a singular extremal of order 1 and us =
√

αNσ2

β is the corresponding singular

control.

Note that if
√

αNσ2

β > u1 then us does not satisfy the condition 0 ≤ u(t) ≤
u1 hence optimal solutions to the problem (1)-(4) are nonsingular. �

Recall the well-known generalized Legendre-Clebsch condition [8], the nec-
essary condition for optimality of the singular extremal of order 1:

∂

∂u

d2

dt2
H1(R̂ (t) , ψ (t)) ≥ 0
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We see that this condition holds in our problem. One can show that any
concatenation of the singular control with a bang control u = 0 or u = u1
satisfies the necessary conditions of the maximum principle [8].

From the transversality condition (9) it is easily seen that on the final time
interval the optimal control û (t) in the problem (1)-(4) is nonsingular. Namely,
for all initial condition R0 and for all parameter values α, β, N, σ2, u1 we have
the following result.

Lemma 3 There exists ε > 0 such that û (t) = 0 for all t ∈ (T − ε, T ) .

Proof. Using the transversality condition (9) we obtain H1(R̂ (T ) , ψ (T )) =
−β < 0. The continuity of the switching function H1 implies that

H1(R̂ (t) , ψ (t)) < 0 ∀t ∈ (T − ε, T )

for some ε > 0. The maximum condition (7) yields û (t) = 0, t ∈ (T − ε, T ).
�

6 The orbits of the Pontryagin maximum principle
system

Consider the behaviour of the extremals on the plane (R,ψ). Let Γ be a
switching curve, that is, a set of point such that H1 (R,ψ) = 0. By (11) we have
Γ = { (R,ψ)|β +Rψ = 0}. We are interested in the domain {(R,ψ) : R > 0}.
Denote

Γ+ = Γ ∩ {(R,ψ) : R > 0}

Above Γ+ the optimal control û equals 0, below Γ+ the optimal control û
equals u1 (see (12)). Let u = 0 then the Hamiltonian system (10) has the form

Ṙ = Nσ2, ψ̇ = α (18)

The general solution of (18) is

R (t) = Nσ2t+ C, ψ (t) = αt+ w

On the plane (R,ψ) the orbits of the system (18) are straight lines

ψ =
α

Nσ2
R+B

Let u = u1 than the Hamiltonian system (10) has the form

Ṙ = −u1R+Nσ2, ψ̇ = α+ u1ψ (19)

The general solution of (19) is

R(t) = C̃e−u1t +
Nσ2

u1
, ψ (t) = w̃eu1t − α

u1
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On the plane (R,ψ) if C̃ 6= 0, w̃ 6= 0, the orbits of the system (19) are
hyperbolas

|α+ ψu1| ·
∣∣Nσ2 − u1R

∣∣ = ω

If C̃ = 0, w̃ 6= 0, the orbit is the straight line R = Nσ2

u1
, directed upward if

w̃ > 0 or downward if w̃ < 0. If w̃ = 0, the orbit is the straight line ψ = − α
u1

,

directed to the left if C̃ > 0 or to the right if C̃ < 0. If C̃ = 0, w̃ = 0 , the

point
(
Nσ2

u1
,− α

u1

)
is the stationary orbit.
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Fig 1. Orbits in the nonsingular case:

√
αNσ2

β
> u1

Remark. On Fig. 1 and Fig. 2 we don’t show trajectories (R(t), ψ(t)) with
ψ (0) > 0 because they cannot satisfy the transversality condition.
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Fig 2. Orbits in the singular case:

√
αNσ2

β
≤ u1

Note that in the case
√
αNσ2/β ≤ u1 two extremals go out of the singular

point

(√
Nσ2 β

α ,−
√

αβ
Nσ2

)
(with u = 0 and u = u1). But only one extremal

(going of the singular point) satisfies the transversality condition (9).
Thus for any R0 ≥ 0 there exists a unique extremal such that R (0) = R0,

ψ (T ) = 0. Since we prove that a solution to problem (1)-(4) exists hence the
constructed extremals are optimal.

To summarize the above analysis in the next two sections we consider sep-
arately the nonsingular and singular cases. In each case we provide a plot with
optimal solutions and state a conclusion on the structure of the optimal control
û(t) (Theorems 1 and 2). It is interesting also to see how the structure of û(t)
depends on the parameter R0 and T . The answer is presented on Figures 4
and 6.
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7 Optimal solutions. Nonsingular case
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Fig 3. Optimal solutions for different values of the problem parameters.
Nonsingular case.

Theorem 1 Let

√
αNσ2

β
> u1, that is, optimal solutions are nonsingular

(Lemma 2). Then, depending of values R (0) and T , the optimal control û(t)
has one of the following forms

1.1. û(t) = 0, t ∈ (0, T )

1.2. û(t) =

{
u1, t ∈ (0, t1)
0, t ∈ (t1, T )

1.3. û(t) =

 0, t ∈ (0, t1)
u1, t ∈ (t1, t2)
0, t ∈ (t2, T )

i.e., the optimal control switches between u = 0 and u = u1 and the number of
switchings does not exceed 2.
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The Fig. 4 shows how the structure of optimal controls û = û(t), t ∈ [0, T ],
depends on T and on the initial value R(0).
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Fig 4.

Let (θ, ρ) be some point on the plane (T,R(0)). Assume that (θ, ρ) belongs to
a domain labeled, for example, by (a, b, c). This means that for the optimal
control problem with T = θ and R(0) = ρ the optimal control function û = û(t)
has the following form

û(t) =

a, t ∈ (0, τ1),
b, t ∈ (τ1, τ2),
c, t ∈ (τ2, θ).

Here τ1 and τ2 are some numbers satisfying the condition 0 < τ1 < τ2 < θ.
The numbers τ1 and τ2 depend on (θ, ρ) and on all parameters (α, β,N, σ) of
the model. For points (θ, ρ) in the domain labeled by (0) we have û(t) = 0 for
all t ∈ [0, T ].
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8 Optimal Solutions. Singular case

: :

: :

100 400 700
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | || | | | | | |

| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | || | | | | | |
200 400 600

−−
−−
−−
−−
−−
−−
−−
−−
−−
−−
−−
−−
−−
−−
−−
−−
−−
−−
−−
−−
−−
−−
−

−

−

−

−

−

100

200

300

400

500

−−
−−
−−
−−
−−
−−
−−
−−
−−
−−
−−
−−
−−
−−
−−
−−
−−
−−
−−
−−
−−
−−
−

−

−

−

−

−

100

200

300

400

500ψ

ψ̂S

−α
u1

R̂S
Nσ2

u1
R

0

u = u1

u = u1

u =
0

u =
0

Γ+

Fig 5. Optimal solutions for different values of the model parameters.
Singular case.

Theorem 2 Let

√
αNσ2

β
≤ u1. Then, depending of values R (0) and T , the

optimal control û(t) has one of the following forms

2.1. û(t) = 0, t ∈ (0, T )

2.2. û(t) =

{
u1, t ∈ (0, t1)
0, t ∈ (t1, T )

2.3. û(t) =

{
us, t ∈ (0, t1)
0, t ∈ (t1, T )

2.4. û(t) =

 0, t ∈ (0, t1)
us, t ∈ (t1, t2)
0, t ∈ (t2, T )

, 2.5. û(t) =

u1, t ∈ (0, t1)
us, t ∈ (t1, t2)
0, t ∈ (t2, T )

i.e., the number of control switchings does not exceed 2 and the optimal solutions
may contain the singular arcs (cases 2.3-2.5).
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As it is seen from Fig. 6 in the singular case on the plane (T,R(0)) we
have more domains with different structures of the optimal control û = û(t).
These additional domains are labeled as (uS , 0) or (a, uS , 0). Note that on that
intervals t ∈ ∆ where û(t) = uS the function R̂(t) takes the constant value R̂S :

R̂(t) = R̂S , t ∈ ∆.

9 Conclusions

We considered the control problem for wireless sensor networks with a single
time server node and a large number of client nodes. The cost functional of this
control problem accumulates clock synchronization errors in the clients nodes
and the energy consumption of the server over some time interval [0, T ]. For all
possible parameter values we found the structure of optimal control function.
It was proved that for any optimal solution R̂ (t) there exist a time moment τ,
0 ≤ τ < T , such that û(t) = 0, t ∈ [τ, T ], i.e., the sending messages at times
close to T is not optimal. We showed that for sufficiently large u1 the optimal
solutions contain singular arcs. We found conditions on the model parameters
under which different types of the optimal control are realized.

We hope that our study of the energy-saving optimization will also be use-
full for analysis of other engineering problems related to modern distributed
systems. In future we plan to extend these results to more general models.
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Dipole Antenna above Real Ground
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Väster̊as, Sweden
(e-mail: farid.monsefi, milica.rancic, sergei.silvestrov@mdh.se)

2 Dept. of Theoretical Electrical Engineering, ELFAK, University of Nǐs
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Abstract. High frequency (HF) analysis of the horizontal dipole antenna above real
ground, which is employed in this paper, is based on the electric-field integral equation
method and formulation of the Hallén’s integral equation solved for the current using
the point-matching method. The Sommerfeld’s integrals, which express the influence
of the real ground parameters, are solved approximately. Influence of different pa-
rameters of the geometry and ground on current distribution and input admittance
is investigated. Furthermore, the method validation is done by comparison to the
full-wave theory based exact model, and available measured data.
Keywords: Horizontal dipole antenna, Hallén’s integral equation, Point-matching
method, Polynomial current approximation, Real ground, Sommerfeld’s integrals.

1 Introduction

Increase of the radiation power in different frequency bands during the last
decades, has called for a study of harmful effects of the radio frequency energy
on the living organisms and electronic equipment. An accurate determination
of the near field strength in the vicinity of higher-power transmitting anten-
nas is necessary for assessing any possible radiation hazards. In that sense, it
is of great importance to account for the influence of the finite ground con-
ductivity on the electromagnetic field structure in the surroundings of these
emitters. The estimation of this influence has been intensively studied by Wait
and Spies[1], Popović[2], Bannister[3], Popović and Djurdjević[4], Popović and
Petrović[5], Rančić and Rančić[7], [8], Rančić and Aleksić[9], [11], Rančić[10],
Arnautovski-Toseva et al.[12], [13], Nicol and Ridd[14], and a number of ap-
proaches has been applied in that sense, ranging from the exact full-wave based
ones (Popović and Djurdjević[4], Arnautovski-Toseva et al.[12], [13]) to different
forms of approximate, less time-consuming ones (Wait and Spies[1], Popović[2],
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Lidia Filus - Teresa Oliveira - Christos H Skiadas (Eds)
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Bannister[3], Popović and Petrović[5], Rančić and Rančić[7], [8], Rančić and
Aleksić[9], [11], Rančić[10]). Although the approximate methods introduce a
certain level of calculation error, their simplicity is of interest in the electromag-
netic compatibility (EMC) studies. For that reason, finding an approximate,
but satisfyingly accurate method applicable to wide range of parameters is
often a goal of researches done in this field.

In this paper, the authors perform analysis of a thin horizontal dipole an-
tenna (HDA) above lossy half-space (LHS) of known electrical parameters. The
approach is based on the electric-field integral equation method, and formula-
tion of the Hallén’s integral equation (HIE), Balanis[6]. This equation is then
solved for the current, which is assumed in a polynomial form Popović[2], using
the point-matching method (PMM) (Balanis[6]). This way obtained system of
linear equations involves improper Sommerfeld’s integrals, which express the
influence of the real ground, and are here solved approximately using simple,
so-called OIA and TIA, approximations (Rančić and Rančić[7], [8], Rančić and
Aleksić[9], [11], Rančić[10]). Both types of approximations are in an exponen-
tial form, and therefore, are similar to those obtained applying the method of
images. It should be kept in mind that the goal of this approach is to develop
approximations that have a simple form, whose application yields satisfyingly
accurate calculations of the Sommerfeld’s type of integrals, and are widely
applicable, i.e. their employment is not restricted by the values of electrical
parameters of the ground, or the geometry, Rančić and Rančić[7], [8], Rančić
and Aleksić[9], [11], Rančić[10].

Thorough analysis is performed in order to observe the influence of different
parameters of the geometry, and the ground, on current distribution and the
input impedance/admittance of the HDA. Furthermore, the verification of the
method is done by comparison to the exact model based on the full-wave theory
(Arnautovski-Toseva et al.[12], [13]), and experimental data from Nicol and
Ridd[14]. Obtained results indicate a possibility of applying the described
methodology to inverse problems involving evaluation of electrical parameters
of the ground (or detection of ground type change) based on measured input
antenna impedance/admittance.

2 Theory

Considered HDA is positioned in the air (conductivity σ0 = 0, permittivity ε0,
permeability µ0) at height h above semi-conducting ground that can be con-
sidered a homogeneous and isotropic medium of known electrical parameters.
Antenna conductors are of equal lenght l1 = l2 = l and cross-section radius
a1 = a2 = a (a � l and a � λ0, λ0 − wavelength in the air). The HDA is
fed by an ideal voltage generator of voltage U and frequency f , and is oriented
along the x-axis.

For such antenna structure, the Hertz’s vector potential has two compo-
nents, i.e. Π00 = Πx00 x̂ + Πzx00 ẑ, which are described, at an the arbitrary
field point M0(x, y, z), by the following expressions:
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Πx00 =
1

4πσ0

∫ l

−l
I(x′)

[
K0(r1k) + Sh00(r2k)

]
dx′, (1)

Πzx00 =
1

4πσ0

∂

∂x

∫ l

−l
I(x′)

∫ ∞
α=0

[
−n−2T̃z10(α) + T̃η10(α)

] K̃00(α, r2k)

u0
dα dx′.

(2)
where I(x′) - current distribution (x′ - axis assigned to the HDA); γ

i
- propa-

gation constant and σi - equivalent complex conductivity of the i-th medium
(i = 0 for the air, and i = 1 for the lossy ground); n = γ

1
/γ

0
=
√
εr1 -

complex refractive index (γ
0

= jβ0 in the air); εr1 ≈ εr1 − j60σ1λ0 - complex
relative permittivity; α - continual variable over which the integration is done;
K̃00(α, r2k) - spectral form of the potential kernel, K0(rik) = e−γ0

rik/rik - stan-
dard potential kernel, i = 1, 2; Sh00(r2k) - a type of the Sommerfeld’s integral;
T̃z10(α) and T̃η10(α) - spectral transmission coefficients; r1k =

√
ρ′2k + (z − h)2,

r2k =
√
ρ′2k + (z + h)2, ρ′2k = (x − x′k)2 + (y − y′k)2, k = 1, 2; u0 =

√
α2 + γ2

0
,

x′k and y′k - coordinates of the k-th current source element.
Boundary condition for the total tangential component of the electric field

vector must be satisfied at any given point on the antenna surface, i.e.:

Ex + Uδ(x) = 0, − l ≤ x ≤ l, y = a, z = h, (3)

where Ex - x-component (tangential one) of the electric field vector E

Ex = Ex̂ =
[
graddiv Π00 − γ20 Π00

]
x̂ =

∂2Πx00

∂x2
+
∂2Πzx00

∂x∂z
− γ2

0
Πx00. (4)

The second term in (4) can be written in the following manner:

∂2Πzx00

∂x∂z
=
∂2Π∗zx00
∂x2

, (5)

where Π∗zx00 denotes the modified z-component of the Hertz’s vector potential

Π∗zx00 =
−1

4πσ0

∫ l

−l
I(x′)

∫ ∞
α=0

[
−n−2T̃z10(α) + T̃η10(α)

]
K̃00(α, r2k) dα dx′ =

=
−1

4πσ0

∫ l

−l
I(x′)

[
(1− n−2)K0(r2k)− n−2Sv00(r2k) + Sh00(r2k)

]
dx′. (6)

where Sv00(r2k) - another type of the Sommerfeld’s integral. Substituting (4)
into (3) and adopting (5), the boundary condition (3) becomes:

γ2
0

Π∗x00 −
∂2Π∗x00
∂x2

= γ2
0

Π∗zx00 + Uδ(x), − l ≤ x ≤ l, y = a, z = h, (7)

where Π∗x00 denotes the modified x-component of the Hertz’s vector potential

Π∗x00 = Πx00 + Π∗zx00 =
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=
1

4πσ0

∫ l

−l
I(x′)

[
K0(r1k) + (n−2 − 1)K0(r2k) + n−2Sv00(r2k)

]
dx′. (8)

Equation (7) presents the second order nonhomogeneus partial differential
equation whose solution can be expressed as:

Π∗x00 = C ′1 cosβ0x+ C ′2 sinβ0x−

− 1

β0

∫ x

s=0

[
γ2
0

Π∗zx00 + Uδ(x)
]
x=s
y=a
z=h

sinβ0(x− s)ds, (9)

i.e.
4πσ0Π∗x00 = C1 cosβ0x+ C2 sinβ0x+

+jγ
0

∫ l

−l
I(x′)

∫ x

s=0

[
(1−n−2)K0(r2k)−
−n−2Sv

00(r2k)+

+Sh
00(r2k)

]
x=s
y=a
z=h

sinβ0(x− s)ds dx′, (10)

where C1 = 4πσ0C
′
1, and C2 = 4πσ0(C ′2 − jU/γ

0
) is a constant that will be

obtained from the potential gap condition ϕ00(x = 0+)− ϕ00(x = 0−) = U at
feeding points. The electric scalar potential can be expressed as:

ϕ00 = −divΠ00 = −∂Πx00

∂x
− ∂Πzx00

∂z
= −∂Πx00

∂x
− ∂Π∗zx00

∂x
= −∂Π∗x00

∂x
, (11)

and substituting (10) in (11) we get

ϕ00 = −j30C1 sinβ0x+
U

2
cosβ0x−

−j30
∂

∂x

∫ l

−l
I(x′)

∫ x

s=0

[
(1−n−2)K0(r2k)−
−n−2Sv

00(r2k)+

+Sh
00(r2k)

]
x=s
y=a
z=h

sinβ0(x− s)ds dx′. (12)

Knowing (12), the potential gap condition yields C2 = −jU/60. Finally (10)
becomes:

4πσ0Π∗x00 = C1 cosβ0x− j
U

60
sinβ0x+

+jγ
0

∫ l

−l
I(x′)

∫ x

s=0

[
(1−n−2)K0(r2k)−
−n−2Sv

00(r2k)+

+Sh
00(r2k)

]
x=s
y=a
z=h

sinβ0(x− s)ds dx′. (13)

Expression (13) presents the Hallén’s integral equation (HIE) (Balanis[6]),
having the current distribution I(x′) and the integration constant C1 as un-
knowns. With a suitable function chosen to approximate the current distri-
bution, HIE (13) is transformed to a system of linear equations appying the
point-matching method at so-called matching points along the antenna.

It is of great importance to select an appropriate approximation for the
current distribution since it will affect the calculation accuracy of both the
near- and the far-field characteristics. There is a variety of proposed func-
tions in the literature, but the polynomial current approximation proposed in
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Popović[2] was repeatedly proven as a very accurate one when analysing dif-
ferent wire antenna structures, Popović[2], Popović and Djurdjević[4], Popović
and Petrović[5], Rančić and Rančić[7], [8], Rančić[10], Rančić and Aleksić[9],
[11]. The form that will be used in this paper is as follows:

I(x′) =

M∑
m=0

Im

(
x′

l

)m
, (14)

where Im, m = 0, 1, 2, · · · ,M , present unknown complex current coefficients.
Adopting (14), HIE (13) becomes:

M∑
m=0

Im

∫ l

−l

(
x′

l

)m 
K0(r1k)+(n−2−1)K0(r2k)+n

−2Sv
00(r2k)−

−jγ
0

∫ x
s=0

(1−n−2)K0(r2k)−
−n−2Sv

00(r2k)+

+Sh
00(r2k)


x=s
y=a
z=h

sin β0(x−s)ds

dx′−

−C1 cosβ0x = −j
U

60
sinβ0x. (15)

Unknown complex current coefficients Im, m = 0, 1, 2, · · · ,M , are deter-
mined from the system of linear equations obtained matching (15) at points:

xi =
i

M
l, i = 0, 1, 2, · · · ,M. (16)

This way, system of (M + 1) linear equations is formed, lacking one ad-
ditional equation to account for the unknown integration constant C1. This
remaining linear equation is obtained applying the condition for the current at
the conductor’s end. Standardly, the vanishing of the current is assumed at
the end of antenna arm (Popović[2], Popović and Djurdjević[4], Popović and
Petrović[5], Rančić and Rančić[7], [8], Rančić and Aleksić[9], [11], Rančić[10]),
which corresponds to I(−l) = I(l) = 0, i.e. based on (14) to

M∑
m=0

Im = 0. (17)

(Note: A more realistic condition for the current at the conductor’s ending,
derived satisfying the continuity equation at the end of an antenna arm, can
also be used.)

This way, the system of equations needed for computing the current dis-
tribution of the observed antenna is formed. Based on that, for the given
generator voltage U , the input admittance is determined from Yin = I0/U ,
where I0 = Im|m=0.

Remaining problem are two Sommerfeld’s integrals appearing in (15) ex-
pressed by

Sv00(r2k) =

∫ ∞
α=0

R̃z10K̃00(α, r2k)dα, (18)

Sh00(r2k) =

∫ ∞
α=0

R̃η10K̃00(α, r2k)dα, (19)
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where the first terms in both integrands represent spectral reflection coefficients
(SRCs):

R̃z10(α) =
n2u0 − u1
n2u0 + u1

, ui =
√
α2 + γ2

i
, i = 0, 1, (20)

R̃η10(α) =
u0 − u1
u0 + u1

, ui =
√
α2 + γ2

i
, i = 0, 1. (21)

In order to solve the type of Sommerfeld’s integral given by (18) the method-
ology proposed in Rančić and Rančić[7] will be applied. Let us assume the SRC
(20) in a so-called - TIA (two-image approximation) form:

R̃z10(u0) ∼= Bv +A1ve
−(u0−γ

0
)dv , (22)

where Bv, A1v and dv are unknown complex constants. When (22) is substi-
tuted into (18), the following general TIA approximation is obtained:

Sv00(r2k) ∼= BvK0(r2k) +AvK0(r2kv), (23)

where r2kv =
√
ρ′2k + (z + h+ dv)

2, presents the distance between the second
image and the observation point M0, and Av = A1v exp (γ

0
dv). Now, matching

expressions (20) and (22) at u0 → ∞ and u0 = γ
0
, and the first derivative of

the same expressions at u0 = γ
0
, the following values for the unknown complex

constants in (22) are obtained:

Bv = R∞, A1v = R0 −R∞, dv = (1 + n−2)/γ
0
, (24)

where: R∞ = R̃z10(u0 →∞) = (n2 − 1)/(n2 + 1) and R0 = (n− 1)/(n+ 1).

Substituting (24) into (23), the following TIA form of (18) is obtained:

Sv00(r2k) ∼= R∞K0(r2k) + (R0 −R∞)eγ0
dvK0(r2kv). (25)

Similarly, we can assume (21) in the following form (Rančić and Rančić[8],
Rančić and Aleksić[9], [11], Rančić[10]):

R̃η10(u0) ∼= Bh +A1he
−(u0−γ

0
)dh , (26)

where Bh, A1h and dh - unknown complex constants. Substituting (26) into
(19), the following general approximation is obtained:

Sh00(r2k) ∼= BhK0(r2k) +AhK0(r2kh), (27)

where Ah = A1h exp (γ
0
dh), and r2kh =

√
ρ′2k + (z + h+ dh)2.

After matching (21) and (26) at points u0 →∞ and u0 = γ
0
, and their first

derivatives at u0 = γ
0
, we get values Bh = 0, A1h = −R0, and dh = 2/(γ

0
n),

i.e. (27) gets the OIA (one-image approximation) form, Rančić and Aleksić[9],
[11], Rančić[10]:

Sh00(r2k) ∼= −R0e
γ
0
dhK0(r2kh). (28)
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Fig. 1. Relative error of the current magnitude (left) and phase (right) along the
HDA arm.
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Fig. 2. Current magnitude (left) and phase (right) along the HDA for different ground
conductivities.

3 Numerical results

Described numerical procedure is applied to near-field analysis of the symmet-
rical HDA fed by an ideal voltage generator of voltage U .

Firstly, results of the relative error of current distribution calculation are
given in Figure 1. The conductor is 2l = 20 m long with the cross-section radius
of a = 0.007 m, and it is placed at h = 1.0 m above lossy ground with electrical
permittivity εr1 = 10. In this case, the variable parameter is the frequency
that takes values from a wide range (10 kHz to 10 MHz). The relative error is
shown separately for the current magnitude and phase along the HDA arm for
the case of the specific conductivity of σ1 = 0.001 S/m. As a reference set of
data, those from Arnautovski-Toseva et al.[12], [13] are taken.

Current distribution’s magnitude and phase at 1 MHz, can be observed
from Figure 2. The HDA has the same dimensions as previously, and it is
placed at h = 1.0 m above lossy ground with electrical permittivity εr1 =
10. The value of the specific conductivity has been taken as a parameter:
σ1 = 0.001, 0.01, 0.1 S/m. Comparison has been done with the results from
Arnautovski-Toseva et al.[12], [13].

Further, the influence of the conductor’s position on the current distribution
has been analysed. The results are graphically illustrated in Figure 3 together
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Fig. 3. Current magnitude (left) and phase (right) along the HDA above LHS at
different heights.

with the ones from Arnautovski-Toseva et al.[12], [13]. Three cases were ob-
served that correspond to heights h = 0.1, 1.0, 5.0 m. The current has been
calculated at frequency of 1 MHz, and analysis has been done for the following
values of the specific ground conductivity: σ1 = 0.001, 0.01, 0.1 S/m. HDA
dimensions are the same as previously.

Next example explores the dependence of the current (its magnitude and
phase) on different ground conductivities calculated at the feeding point A(l =
0 m), which can be observed from Figure 4. Two cases are considered: solid
line represents the value of σ1 = 0.001 S/m, and the dashed one corresponds
to σ1 = 0.1 S/m. The first row of Figure 4 corresponds to HDA height of
h = 2.5 m, and the second one to h = 5.0 m. The same influence for height
h = 0.5 m is given in Rančić and Aleksić[11].

Similarly, the dependence of the current (its magnitude and phase) at spe-
cific points along the HDA arm in the frequency range from 10 kHz to 10 MHz,
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Fig. 4. HDA current magnitude (left) and phase (right) at point A for different ground
conductivities.

is presented in Figure 5. The antenna is 2l = 20 m long with a cross-section
radius of a = 0.01 m, and considered heights are: h = 0.5, 2.5, 5.0 m. Electri-
cal parameters’ values of the ground are: electrical permittivity εr1 = 10,
and specific conductivity σ1 = 0.1 S/m. Current is calculated at points:
A(l = 0 m), B(l = 2.5 m), C(l = 5.0 m), and D(l = 7.5 m). This exam-
ple for σ1 = 0.001 S/m and h = 0.5 m is given in Rančić and Aleksić[11].

Finally, Figure 6 shows comparison between theoretical calculations per-
formed using the methodology described in this paper, and the results of the
admittance measurements for the frequency range of 7 − 12 MHz (Nicol and
Ridd[14]). Observed HDA is 15 m long suspended at height of 0.3 m above
the LHS. Two boundary cases of the ground are observed: a perfect dielectric
(blue data), and a highly conducting plane (black data). Corresponding re-
sults obtained by the method of images are also shown (open circles). It can
be observed that the better accordance is achieved using the method described
here, which was expected since the observed antenna is very close to the ground
(for the frequency of 10 MHz, height of 0.3 m corresponds to 0.01λ0), and the
accuracy of the method of images decreases when the antenna is at height less
than h/λ0 = 0.025 (Popović and Petrović[5]).

4 Conclusions

Approximate method for the analysis of horizontal dipole antenna has been
applied in this paper for the purpose of the current distribution and input
admittance evaluation for the HDA positioned in the air at arbitrary height
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Fig. 5. HDA current magnitude (left) and phase (right) at different points along the
antenna.
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above LHS, which is considered a homogenous medium. The aim of the paper
was to validite the applied method for the cases of interest in the EMC studies.
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The analysis has been performed in a wide frequency range, and for different
positions of the antenna, as well as for various values of the LHS’s conductiv-
ity. It has been proven, based on the comparison with the exact model from
Arnautovski-Toseva et al.[12], [13], that the methodology used here yields very
accure results in the observed parameters’ ranges. This indicates a possibilty
of applying this method for analysis of different wire structures in the air above
LHS, and more importantly, very close to the ground where the finite conduc-
tivity’s influence is the greatest.
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Abstract. In this paper we discuss the applicability of the Taylor series approach to
the numerical analysis of the GI/M/1 queue with negative customers. In other words,
we use the Taylor series expansions to examine the robustness of the GI/M/1 (FIFO,
∞) queueing model having RCH (Removal of Customer at the Head) to perturbations
in the negative customers process (the occurrence rate of RCH). We analyze numeri-
cally the sensitivity of the entries of the stationary distribution vector of the GI/M/1
queue with negative customers to those perturbations, where we exhibit these entries
as polynomial functions of the occurrence rate of RCH parameter of the considered
model. Numerical examples are sketched out to illustrate the accuracy of our ap-
proach.
Keywords: Taylor series expansion, Sensitivity analysis, GI/M/1 queue with nega-
tive customers, Numerical methods, Performance measures.

1 Introduction

Recently there has been a rapid increase in the literature on queueing systems
with negative arrivals. Queues with negative arrivals, called G-queues, were
first introduced by Gelenbe [5]. When a negative customer arrives, it imme-
diately removes an ordinary (positive) customer if present. Negative arrivals
have been interpreted as inhibiter and synchronization signals in neural and
high speed communication network. For example, we can use negative arrivals
to describe the signals, which are caused by the client, cancel some proceeding.

There is a lot of research on queueing system with negative arrivals. But
most of these contributions considered continuous-time queueing model: Boucherie
and Boxma [6], Jain and Sigman [8], Bayer and Boxma [2], Harrison and Pitel
[9] all of them investigated the same M/G/1 model but with the different killing
strategies for negative customers; Harrison, Patel and Pitel [10] considered the
M/M/1 G-queues with breakdowns and repair; Yang [11] considered GI/M/1
model by using embedded Makov chain method.
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In this paper we investigate the GI/M/1/N with Poisson negative arrivals
to test the robustness of the model to perturbation in the negative customers
process (the occurrence rate of RCH). In deed, we use the Taylor series expan-
sions to examine the robustness of the GI/M/1/N queue to perturbations in
the arrival process. Specifically, we analyse numerically the sensitivity of the
entries of the stationary distribution vector of the GI/M/1/N queue to that
perturbations, where we exhibit these entries as polynomial functions of the
occurrence rate of RCH.

The remainder of this paper is organized as follows. In Section 2, we intro-
duce the necessary notations for analyzing of the considered queueing model,
and present closed-form expressions for the sensitivity of the stationary distri-
bution to model parameter as a function of the deviation matrix. In Section
3, we outline the numerical framework to compute the relative absolute error
in computing the stationary distribution. Concluding remarks are provided in
Section 4.

2 Queueing Model Analysis

We investigate the GI/M/1/N queue with negative customers, where N is the
capacity of the system including the one who is in service. Assume that cus-
tomer arrivals occur at discrete-time instants τk, where τ0 = 0, customers arrive
at the system according to a renewal process with interarrival time distribu-
tion G(t) and mean 1/λ. The service time Ts of each server is assumed to be
distributed exponentially with service rate µ. Its density function is given by

s(t) = µe−µt, t ≥ 0.

Additionally, we assume that there is another kind of customers, namely RCH,
arriving in the system according to an independent Poisson process of pa-
rameter h. Let Lk denote the number of customers left in the system im-
mediately after the kth departing customer. A sequence of random variables
Lk; k = 1, 2, . . . , N constitutes a Markov chain. Its transition probabilities ma-
trix is given by:

P =



b0 a0 0 0 0 . . . 0
b1 a1 a0 0 0 . . . 0
b2 a2 a1 a0 0 . . . 0
b3 a3 a2 a1 a0 0 0
...

...
...

...
...

...
...

bN−1 aN−1 aN−2 aN−3 aN−4 . . . a0
bN−1 aN−1 aN−2 aN−3 aN−4 . . . a0


(N+1)×(N+1)

where aj = (µ+h)j

(−1)jj!
∂jF∗

∂αj (α), bj = 1 −
∑j
i=0 ai, α = µ + h and F ∗ is

the Laplace transformation corresponding to pdfs f(i.e dG(t) = f(t)dt) of the
interarrival process.

Let π denote the stationary distribution of the Markov chain Lk. We define
the traffic intensity ρ =(arrival rate)/(service rate) = λ/µ. It can be shown
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that the Markov chain Lk is positive recurrent for all ρ. In this paper, we con-
sider the stationary distribution π as a mapping of some real-valued parameter
θ, in notation πθ. For example, θ may denote the occurrence rate of RCH pa-
rameter of the model. We are interested in obtaining higher-order sensitivity
of stationary distribution with respect to parameter θ. In the sequel we derive
formulas for the higher order derivatives of πθ with respect to θ. Then, by
using these formulas we obtain a Taylor series expansions in θ for πθ+∆, where
its coefficients are expressed in closed form as functions of the deviation matrix
(denoted by Dθ) associated to the Markov chain Lk. It is well know that if Pθ
is irreductible, then (I − Pθ + Πθ) is invertible, where Πθ = e πθ. Then, the
matrix Dθ = (I −Pθ +Πθ)

−1−Πθ exists and it is called the deviation matrix.
The deviation matrix can be obtained in explicit form by:

Dθ =

∞∑
n=0

(Pnθ −Πθ),

=

∞∑
n=0

(Pθ −Πθ)
n −Πθ,

= (I − Pθ +Πθ)
−1 −Πθ.

In the following theorem we give the higher-order derivatives of the stationary
distribution πθ with respect to θ in terms of the deviation matrix Dθ, which is
a key result used in the framework proposed subsequently.

Theorem 1. [7] Let θ ∈ Θ and let Θ0 ⊂ Θ, with Θ ⊂ R be a closed interval
with θ an interior point such that the Markov chain is ergodic on Θ0. Provided
that the entries of the transition matrix Pθ are n-times differentiable with
respect to θ, let

Kθ(n) =
∑

1 ≤ m ≤ n;
1 ≤ lk ≤ n;

l1 + · · ·+ lm = n

n!

l1! · · · lm!

m∏
k=1

(
P

(lk)
θ Dθ

)
..

Then, it holds that

π
(n)
θ = πθKθ(n) , (1)

where P
(k)
θ (respectively π

(k)
θ ) is the matrix (respectively vector) of the elemen-

twise kth order derivative of Pθ (respectively πθ) with respect to parameter θ.

In the following, we propose a numerical approach to compute the station-
ary distribution πθ for some parameter value θ, and we demonstrate how this
stationary distribution can be evaluated for the case where the control parame-
ter θ is changed in some interval. In other words, we will compute the function
π(θ+∆) on some ∆-interval. More specifically, we will approximately compute
π(θ +∆) by an polynomial in ∆. To achieve this we will use the Taylor series
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expansion approach established in [7]. Under some mild conditions it holds
that πθ+∆ can be developed into a Taylor series of the following form:

πθ+∆ =

k∑
n=0

∆n

n!
π
(n)
θ , (2)

where π
(n)
θ denotes the n-th order derivative of πθ with respect to θ (see formula

(1)).

We call

Hθ(k,∆) =

k∑
n=0

∆n

n!
π
(n)
θ (3)

the k-th order Taylor approximation of πθ+∆ at θ.

Under the conditions put forward in Theorem 1 it holds for k < n that:

π
(k+1)
θ =

k∑
m=0

(
k + 1
m

)
π
(m)
θ P

(k+1−m)
θ Dθ . (4)

An explicit representation of the lower derivatives of πθ is given by [1]:

π
(1)
θ = πθP

(1)
θ Dθ (5)

and

π
(2)
θ = πθP

(2)
θ Dθ + 2πθ(P

(1)
θ Dθ)

2. (6)

Elaborating on the recursive formula for higher order derivatives (4), the second
order derivative can be written as:

π
(2)
θ = πθP

(2)
θ Dθ + 2π

(1)
θ P

(1)
θ Dθ. (7)

In the same vein, we obtain for the third order derivative:

π
(3)
θ = πθP

(3)
θ Dθ + 3π

(2)
θ P

(1)
θ Dθ + 3π

(1)
θ P

(2)
θ Dθ. (8)

3 Numerical Application

In this section, we apply the numerical approach based on the Taylor series ex-
pansions introduced above to the GI/M/1/N queue with negative customers,
where we consider the model with perturbed the occurrence rate of RCH pa-
rameter. In this case, we estimate numerically the sensitivity of the stationary
distribution of the queueing model with respect to the perturbation.

Let Θ = (a, b) ⊂ R, for 0 < a < b <∞.

(H) For 0 ≤ j ≤ N it holds that aj is n-times differentiable with respect to
h on Θ.
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Under (H) it holds that the first n derivatives of P exists. Let P (k) denote
the kth order derivative of P with respect to h, then it holds that

P (k)(i, j) =
d(k)

dh(k)
P (i, j), 0 ≤ i, j ≤ N, (9)

or, more specifically,

P (k) =



b
(k)
0 a

(k)
0 0 0 0 . . . 0

b
(k)
1 a

(k)
1 a

(k)
0 0 0 . . . 0

b
(k)
2 a

(k)
2 a

(k)
1 a

(k)
0 0 . . . 0

b
(k)
3 a

(k)
3 a

(k)
2 a

(k)
1 a

(k)
0 0 0

...
...

...
...

...
...

...

b
(k)
N−1 a

(k)
N−1 a

(k)
N−2 a

(k)
N−3 a

(k)
N−4 . . . a

(k)
0

b
(k)
N−1 a

(k)
N−1 a

(k)
N−2 a

(k)
N−3 a

(k)
N−4 . . . a

(k)
0


(N+1)×(N+1)

(10)

where

a
(k)
j = (−1)k(µ+h)j

(−1)j+kj!
∂j+kF∗

∂αj+k (α) +
k∑

n=1

Cn
k−1(−1)

k−n(µ+h)j−n

(−1)k+j−n(j−n)!
∂k+j−nF∗

∂αk+j−n (α)

+ (µ+h)j−k

(−1)j(j−k)!
∂jF∗

∂αj (α)

and b
(k)
j = −

j∑
i=0

a
(k)
j

Consider the M/M/1/N queue with service rate µ and exponential inter-
arrival time with rate λ. First, we present the numerical results obtained by
applying our approach to this case. Therefore, we set µ = 2, λ = 1 . For the
implementation of our algorithm in MATLAB, we require a finite version of our
queueing model. Figures 1, 2 and 3 depict the relative error on the stationary

distributions π
(k)
θ (i) for 0 ≤ i ≤ N and k = 1, 2, 3, of the M/M/1/N queue

versus the perturbation parameter ∆ ∈ [−δ, δ], where δ = 0.1. As expected,
the relative error on the stationary distributions decreases as the perturbation
parameter h decreases.

Fig. 1. The relative error in computing π1+∆ by Taylor series of 1st order.

series coefficients are given in terms of the deviation matrix corresponding
to the embedded Markov chain. We have presented some numerical examples
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Fig. 2. The relative error in computing π1+∆ by Taylor series of 2nd order.

Fig. 3. The relative error in computing π1+∆ by Taylor series of 3rd order.

that illustrate our numerical approach. In fact, the convergence rate of the
Taylor series is such that already a Taylor polynomial of degree 2 or 3 yields
good numerical results. As part of future work, we will further investigate the
multi-server queues with vacations. We will also further provide a simplified
and easily computable expression bounding the remainder of the Taylor series
and, thereby provide an algorithmic way of deciding which order of the Tay-
lor polynomial is su?cient to achieve a desired precision of the approximation
Abbas, Heidergott and Aissani (2013).

4 Conclusion

This paper has developed a numerical, method to analyze the effect of the
perturbation of the negative customers process in the performance measures
of the queuing model considered (Stationary distribution), our numerical in-
vestigation are based on the Taylor series expansion; see [7], where the Taylor
series coefficients are given in terms of the deviation matrix corresponding to
the embedded Markov chain. Therefore, we have presented different examples
that illustrate our numerical approach, and as illustrated by the numerical ex-
amples the convergence rate of the Taylor series is such that already a Taylor
polynomial of degree 2 or 3 yields good numerical results, we will further in-
vestigate the multi-server queues with vacations. We will also further provide
a simplified and easily computable expression bounding the remainder of the
Taylor series and, thereby provide an algorithmic way of deciding which or-
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der of the Taylor polynomial is sufficient to achieve a desired precision of the
approximation [1].
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Abstract. Monitoring the coefficient of variation (CV) is an effective approach to
Statistical Process Control when both the process mean and standard deviation are
not constant but, nevertheless, proportional. Until now, research has not yet inves-
tigated the monitoring of the CV for short production runs. This paper proposes a
new efficient method to monitor the CV by means of one-sided Run Rules type charts
and provides the derivation of the corresponding Truncated Run Length properties
(i.e. TARL, TSDRL and TRLr).
Keywords: Coefficient of variation, Short production runs, Markov chain, Truncated
run length.

1 Introduction

A control chart is one of the most effective techniques in Statistical Process
Control (SPC) used to improve the quality and productivity of a production
process. It generally assumes that a normally distributed process is in-control
as long as it has a constant mean and variance. As soon as a change occurs in
the mean and / or the standard-deviation, a control chart is supposed to trigger
an alarm corresponding to an out-of-control situation. But they are some
situations where the mean and the standard-deviation may not be constant all
the time but they are proportional and the process is nevertheless operating
in-control. In this case, monitoring the mean (X̄ chart) and / or the standard-
deviation (S chart) is useless and a possible alternative is to consider the on-line
monitoring of the coefficient of variation (CV, in short) γ.

Kang et al. [14] were the first to develop a Shewhart-type control chart
for monitoring the CV using rational subgroups and applied it to a clinical
chemistry-control process in order to show that the CV is a potentially at-
tractive tool in quality improvement, where neither the process mean nor the
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variance are constant. Hong et al. [11], were the first to propose an EWMA-CV
(Exponentially Weighted Moving Average) control chart in order to improve
the CV chart proposed by Kang et al. [14] and detect small shifts more effi-
ciently. More recently, Castagliola et al. [6] suggested a new method to monitor
the CV by means of two one-sided EWMA charts of the CV squared. Calzada
and Scariano [2] suggested a synthetic control chart (denoted SynCV) for mon-
itoring the CV and Castagliola et al. [3,4] proposed alternative approaches to
monitor the CV based on Run Rules and Variable Sampling Interval strategy,
respectively.

The researches presented above are aimed at monitoring a process over a
production horizon considered as infinite. But, there are many situations where
the production horizon is very short, i.e. a few hours or a few days, and is con-
sidered as finite. Control charts specifically designed for finite production run
processes have been first introduced by Ladany [16] who presents a methodol-
ogy for the economic optimization of a p-chart for short runs. Later, Ladany
and Bedi [17] extended this work to allow time H to be a decision variable.
More recently, the design of Shewhart-type X̄ control charts for short runs have
been discussed in Del Castillo and Montgomery [8,9]. Bayesian type control
charts for monitoring the sample mean during a short run have been proposed
by Calabrese [1], Tagaras [25], Tagaras and Nikolaidis [26] and Nenes and
Tagaras [21]. The statistical measures of performance of the Fixed Sampling
Rate (FSR) Shewhart and EWMA t and X̄ control charts, monitoring the pro-
cess mean in short horizon processes, have been investigated by Celano et al. [7].
Nenes and Tagaras [20,22] investigated the performance of the CUSUM control
chart, again under the assumption of a finite run. Very recently, Castagli-
ola et al. [5] investigated the statistical properties of VSS (Variable Sample
Size) Shewhart control charts monitoring the mean in a short production run
context.

If several X̄ type control charts have been proposed for short run processes,
as far as we know, no research has been done concerning the monitoring of
the CV in a short run context. Consequently, the purpose of this paper is to
fill this gap by proposing one-sided Run Rules type charts for monitoring the
coefficient of variation i.e. an upward (downward) Run Rules CV control chart
aiming at detecting an increase (decrease) in the CV for short run processes
and by investigating their truncated run length properties.

The remainder of the paper is organized as follows. In Section 2, the main
distribution properties of the sample coefficient of variation are briefly intro-
duced. In Section 3, two one-sided Run Rules CV charts for short produc-
tion runs are defined. The truncated run length properties TARL (average
of the truncated run length), TSDRL (standard deviation of the truncated
run length), TRL0.5 (interpolated 50%-quantile, i.e. the median, of the trun-
cated run length distribution) and TRL0.95 (interpolated 95%-quantile of the
truncated run length distribution) are presented in Section 4 as measures of
statistical performance. Finally, conclusions and future research directions, in
Section 5, complete the paper.
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2 Properties of the (Sample) Coefficient of Variation

Let X be a random variable and let µ = E(X) and σ = σ(X) be the mean and
standard-deviation of X, respectively. By definition, the coefficient of variation
γ of the random variable X is defined as

γ =
σ

µ
.

Now, let us assume that {X1, . . . , Xn} is a sample of n normal i.i.d. (µ, σ)
random variables. Let X̄ and S be the sample mean and the sample standard-
deviation of X1, . . . , Xn, i.e.,

X̄ =
1

n

n∑
i=1

Xi,

and

S =

√√√√ 1

n− 1

n∑
i=1

(Xi − X̄)2.

The sample coefficient of variation γ̂ is defined as

γ̂ =
S

X̄
.

By definition, γ̂ is defined on (−∞,+∞). The distributional properties of
the sample coefficient of variation γ̂ have been studied by McKay [19], Hen-
dricks and Robey [10], Iglewicz et al. [13], Iglewicz and Myers [12], Warren [28],
Vangel [27] and Reh and Scheffler [24]. Among these authors, Iglewicz et al. [13]

noticed that
√
n
γ̂ follows a noncentral t distribution with n−1 degrees of freedom

and noncentrality parameter
√
n
γ . Based on this property, it is easy to derive

approximations for the c.d.f. (cumulative distribution function) Fγ̂(x|n, γ) and
inverse c.d.f. F−1γ̂ (α|n, γ) of γ̂ as

Fγ̂(x|n, γ) ' 1− Ft
(√

n

x

∣∣∣∣n− 1,

√
n

γ

)
, (1)

and

F−1γ̂ (α|n, γ) '
√
n

F−1t

(
1− α

∣∣∣n− 1,
√
n
γ

) . (2)

3 One-sided CV charts with Run Rules for short
production runs

A manufacturing process is scheduled to produce a small lot of N parts during
a production horizon having finite length H. Let I be the number of sched-
uled inspections within the production horizon H. The interval between two
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consecutive inspections, i.e. the sampling frequency is h = H
I+1 hours since no

inspection takes place at the end of the run. Let us suppose that we observe
subgroups {Xi,1, Xi,2, . . . , Xi,n} of size n, at time i = 1, 2, . . . , I. We assume
that there is independence within and between these subgroups and we also
assume that each random variable Xi,j follows a normal N(µi, σi) distribution
where parameters µi and σi are constrained by the proportionality relation
γi = σi

µi
= γ0, i = 1, 2, . . . , I, when the process is in-control. This implies that

from one subgroup to another, the values of µi and σi may change, but the
coefficient of variation γi = σi

µi
is constant and equal to some predefined in-

control value γ0 = σ0

µ0
, common to all the subgroups, where µ0 is the in-control

mean and σ0 is the in-control standard-deviation.
In the 2-out-of-3 Run Rules, an out-of-control signal is obtained if two out-

of-three successive values γ̂i are plotted above an upper warning limit UWL
or two out-of-three successive points are plotted below a lower warning limit
LWL. In this paper, we propose to define two separate one-sided control charts:

• a downward chart (denoted as RR2,3 − γ− chart) aiming at detecting a
decrease in the CV, with the following limits

LWL = µ0(γ̂)−K−2,3σ0(γ̂), (3)

UWL = +∞,

• an upward control chart (denoted as RR2,3−γ+ chart) aiming at detecting
an increase in the CV, with the following limits

LWL = 0,

UWL = µ0(γ̂) +K+
2,3σ0(γ̂), (4)

where K−2,3 > 0 and K+
2,3 > 0 are the warning limit parameters and where

µ0(γ̂) and σ0(γ̂) are the mean and standard-deviation of the sample coefficient
of variation γ̂, respectively, when the process is in-control. Since there is no
closed form for µ0(γ̂) and σ0(γ̂), the following approximations proposed by Reh
and Scheffler [24] can be used

µ0(γ̂) ' γ0

(
1 +

1

n

(
γ20 −

1

4

)
+

1

n2

(
3γ40 −

γ20
4
− 7

32

)
+

1

n3

(
15γ60 −

3γ40
4
− 7γ20

32
− 19

128

))
, (5)

σ0(γ̂) ' γ0

(
1

n

(
γ20 +

1

2

)
+

1

n2

(
8γ40 + γ20 +

3

8

)
+

1

n3

(
69γ60 +

7γ40
2

+
3γ20
4

+
3

16

))1/2

. (6)

The sequence of points plotted on both the RR2,3 − γ− and RR2,3 − γ+
charts can be modelled as a stochastic process. Therefore, to compute the
statistical properties of the control charts the following Markov Chain matrix
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P can be used

P =

 Q r

0T 1

 =



0 0 0 pC pL 0 0 pU
0 0 0 0 0 0 pC pL + pU
pC pL 0 0 0 0 0 pU
0 0 pU pC pL 0 0 0
0 0 0 0 0 pU pC pL
pC 0 0 0 0 0 0 pL + pU
0 0 pU pC 0 0 0 pL
0 0 0 0 0 0 0 1


,

where 0 = (0, 0, . . . , 0)T , Q is the (7, 7) matrix of transient probabilities, the
(7, 1) vector r satisfies r = 1−Q1 (i.e. row probabilities must sum to 1), with
1 = (1, 1, 1, 1, 1, 1, 1)T . The corresponding (7, 1) vector q of initial probabilities
associated with the transient states is equal to q = (0, 0, 0, 1, 0, 0, 0)T (i.e.
the initial state is the fourth one). The probabilities pL = P (γ̂ < LWL),
pU = P (γ̂ > UWL) and pC = P (LWL ≤ γ̂ ≤ UWL) are equal to:

• For the RR2,3 − γ− chart:

pL = Fγ̂(LWL|n, γ1),

pU = 1− Fγ̂(LWL|n, γ1),

pC = 0,

• For the RR2,3 − γ+ chart:

pL = 0,

pU = Fγ̂(UWL|n, γ1),

pC = 1− Fγ̂(UWL|n, γ1),

where Fγ̂(. . . |n, γ1) is the c.d.f. (cummulative distribution function) of γ̂ as
defined in (1) and where γ1 = τγ0 is an out-of-control value for the CV. Values
of τ ∈ (0, 1) correspond to a decrease of the nominal CV, while values of τ > 1
correspond to an increase of the nominal CV.

4 Truncated Run Length Properties

In an infinite horizon context, the run length RL of the one-sided Run Rules
control charts presented in the previous section is a Discrete PHase-type (or
DPH) random variable of parameters (Q,q), (see Neuts [23] or Latouche and
Ramaswami [18]). Consequently, the p.m.f. (probability mass function) fRL(`)
and the c.d.f. FRL(`) of the run length RL are defined for ` = 1, 2, . . . and are
equal to

fRL(`) = qTQ`−1r, (7)

FRL(`) = 1− qTQ`1. (8)

In an finite horizon context, the short run measures of statistical perfor-
mance of a control chart have been originally proposed by Nenes and Tagaras [22]
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who assume that the truncated run length TRL of the short run chart is de-
fined for ` = 1, 2, . . . , I + 1 and the p.m.f. fTRL(`) and the c.d.f. FTRL(`) of
the truncated run length TRL are equal to

fTRL(`) =

{
fRL(`) if ` = 1, 2, . . . , I
1− FRL(I) if ` = I + 1,

and

FTRL(`) =

{
FRL(`) if ` = 1, 2, . . . , I
1 if ` = I + 1

The finite horizon counterpart of ARL = E(RL) for infinite horizon is
TARL = E(TRL). It can be proved that

TARL = qT

(
I∑
`=0

Q`

)
1 (9)

It can be also proved that the second non-central moment TRL2 = E(TRL2)
of the truncated run length TRL is equal to

TRL2 = qT

(
I∑
`=0

(2`+ 1)Q`

)
1 (10)

This allows to compute the standard-deviation of the truncated run length
as

TSDRL =
√
TRL2− TARL2

In order to gain more insight concerning the variability of the TRL, we have
also decided to derive the interpolated r-quantile, r ∈ (0, 1), of the truncated
run length distribution TRLr. The computation of TRLr depends on the value
of r:

• if r ∈ (0, FTRL(1)) then TRLr is not defined.
• if r ∈ [FTRL(1), FTRL(I)) then we have FTRL(`) = FRL(`), ` = 1, 2, . . . , I.

The idea is then to replace the discrete c.d.f. FRL(`) by some continuous
c.d.f. Investigating different possible distributions led us to choose the
continuous gamma c.d.f. Fγ(`|a, b, c) with parameters (a > 0, b > 0, c) as

a good candidate, where a =
4µ3

2

µ2
3

, b = µ3

2µ2
, c = µ− 2µ2

2

µ3
and where µ = ν1,

µ2 = ν2− ν21 + ν1 and µ3 = ν3 + 3(1− ν1)ν2 + 2ν31 − 3ν21 + ν1 are the mean,
second and third central moments of RL, respectively, and ν1, ν2 and ν3
are the first three factorial moments of RL, i.e.

ν1 = qT (I−Q)−11,

ν2 = 2qT (I−Q)−2Q1,

ν3 = 6qT (I−Q)−3Q21.

An approximation for TRLr is then

TRLr ' F−1γ (r|a, b, c),
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where F−1γ (r|a, b, c) is the inverse c.d.f. of the gamma distribution with
parameters (a, b, c). The choice of the gamma distribution is motivated by
its actual ability to accurately fit DPH type distributions.

• if r ∈ [FTRL(I), 1) we suggest to linearly interpolate TRLr between the
points (FTRL(I), I) and (1, I + 1), i.e.

TRLr '
(I + 1)FTRL(I)− I − r

FTRL(I)− 1

5 Conclusions

In this paper, we have proposed two separate one-sided Run Rules type control
charts monitoring the coefficient of variation in a short production run context:
a downward (upward) Shewhart-type chart denoted as RR2,3−γ− (RR2,3−γ+)
aiming at detecting a shift decreasing (increasing) the in-control CV γ0. We
have also derived the Truncated Run Length properties of these charts, i.e.
TARL, TSDRL and TRLr. Since monitoring the CV in a short production
run is a new subject of SPC research, there is room for many extensions like,
for instance, the use of adaptive strategies like the VSI (Variable Sampling
Interval), VSS (Variable Sampling Size) or DS (Double Sampling) and the
design of advanced schemes like EWMA or CUSUM.
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Abstract. The bootstrap methodology is used in Phase I of control charting to esti-
mate the nominal process parameters, together with the use of robust estimates. We
evaluate the performance of the Mean-chart with estimated parameters for monitor-
ing the process location, where the estimates are obtained on the basis of a simple
reference sample or via bootstrapping from such sample. The run-length distribution
of the corresponding charts for samples of size 5 and 10 is obtained by Monte Carlo
simulations, and the values obtained for some parameters of interest are discussed.

Keywords: Bootstrap, Control charts, Robust statistics, Statistical Process Con-
trol.

1 Introduction

The control charts, introduced by Shewhart in 1924, are one of the main tools in
Statistical Process Control (SPC), but their domain has been successively en-
larged, with applications to areas as diverse as Health, Medicine, Genetics, Bi-
ology, Environmental Sciences, Finance, Metrology, Sports and Justice, among
others. For an overview of standard and non-standard applications of control
charts see, for instance, Montgomery[18], Woodall and Montgomery[27],[28],
MacCarthy and Wasusri[17], Dull and Tegarden[11], Vardeman et al.[26], and
references therein.

To develop any control chart the nominal process parameters must be either
assumed known or estimated. In practice the distribution of the process data as
well as the process parameters are usually unknown, being the process parame-
ters usually estimated from an in-control Phase I reference sample, made up of
m subgroups of size n, before we proceed to the building of a (non-)parametric
control chart.

A strong emphasis has been given to the analysis of the real performance of
control charts implemented on the basis of estimated parameters, and to the ef-
fect of the non-normality in the performance of the usual control charts. Apart
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from the pioneer works of Schilling and Nelson[25], Balakrishnan and Kocher-
lakota[1], Chan et al.[3], Rocke[21],[22], Quesenberry[20], Chen[8], Nedumaran
and Pignatiello[19], Champ and Jones[4], Chakraborti[5],[6],[7], and Jensen et
al.[16], we mention, among others, the recent works of Zhang and Castagli-
ola[29], Schoonhoven et al.[23],[24], and Castagliola and Figueiredo[2]. From
these studies we easily conclude that to obtain control charts implemented with
estimated control limits with the same run-length properties as the correspond-
ing charts with true limits, the choice of the number of subgroups, m, and the
sample size, n, cannot be heuristic. Besides the need of a very large number m
of subgroups, which is a limitation from a practical point of view, and in some
cases even impossible, we must determine the control limits in a robust way.
Other approach consists of modifying the chart parameters’ in order to take
into consideration the variability introduced by the estimation of the nominal
process values in Phase I, allowing that way to maintain the expected false
alarm rate.

Our aim in this paper is only to investigate the benefits of using the boot-
strap methodology in Phase I of control charting to obtain a larger reference
sample to estimate the nominal process parameters, together with the use of
robust estimates. More precisely, from an in-control reference sample of m
subgroups (20 or 30) of size n = 5, 10, we set out to construct a larger reference
sample of Mb subgroups (100, 500 or 1000) of size n by bootstrapping from
the pooled sample of size m × n. The nominal process parameters are then
estimated through the use of a few location and scale statistics. To illustrate
the effect of these parameters’ estimates on the properties of the chart we will
consider the traditional Mean-chart with 3-sigma (exact and estimated) control
limits to monitor the mean value of a normal process. The paper is organized
as follows. Section 2 provides some information about the implementation of
the Mean-chart with estimated control limits, the bootstrap methodology and
the statistics considered in the estimation of the nominal process parameters.
Section 3 presents some relevant parameters of the run-length distribution of
the traditional Mean-chart implemented on the basis of previous estimates,
obtained by Monte Carlo simulations, and Section 4 concludes with some com-
ments about the performance of the implemented control charts.

2 Mean-chart with estimated control limits based on
bootstrap estimates

2.1 Mean-chart with estimated control limits

Let Y be a random variable associated with a normal process, being the in-
control mean value, µ0, and the in-control standard deviation, σ0, both un-
known. The most popular control chart for the process location monitoring
is the Mean-chart with estimated control limits, Y , obtained by plotting the
sample means of the Phase II samples (Yi,1, . . . , Yi,n), i = 1, 2, . . . , of n inde-
pendent normal random variables, N(µ0 + δσ0, σ0), where i is the subgroup
number and δ is the magnitude of the standardized mean shift. If δ = 0 the
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process is in-control, otherwise the process is out-of-control due to a shift in
the mean process.

The (estimated) control limits (CL’s) of the Y -chart are random variables,
which can be written in the form

ĈL
′
s = µ̂0 ±Kσ̂0, (1)

where the chart parameter K depends on the sample size n, and is determined
in order to obtain a given in-control performance, say, a fixed in-control Average
Run-Length (ARL). For instance, the Y -chart with exact 3-sigma control limits,
CL′s = µ0± 3√

n
σ0, leads to an in-control ARL=370.4. If we considerK = 3/

√
n

in (1), the corresponding Mean-chart does not have the same performance of
the chart with exact 3-sigma control limits, unless the process nominal values
µ0 and σ0 are adequately estimated.

2.2 A reference sample for the estimation of the nominal process
parameters

The standard procedure is to estimate µ0 and σ0 from m = 20, 30 subgroups
(Xi,1, . . . , Xi,n), i = 1, . . . ,m of size n, usually 4 or 5, assuming independence
between and within subgroups, and that Xi,j ∼ N(µ0, σ0). However, the lit-
erature refer that for an adequate estimation of µ0 and σ0, the number m of
initial subgroups must be very large, at least 400/n (see, for instance, Que-
senberry[20] and Castagliola and Figueiredo[2]). In this study we apply the
bootstrap methodology to the pooled sample of size m × n in order to obtain
a larger number Mb = 100, 500, 1000 of subgroups of size n = 5, 10 that will be
used for the estimation of µ0 and σ0.

2.3 How does the bootstrap methodology work?

Let (W1, . . . ,Wn) be a random sample of size n from a d.f. F (.). The boot-
strap sample, (W ∗1 , . . . ,W

∗
n), is obtained by randomly sampling n times, with

replacement, from the observed sample (w1, . . . , wn). These variables W ∗i are
independent and identically distributed (i.i.d.) replicates from a random vari-
able W ∗, with d.f. equal to the empirical d.f. of our observed sample, given
by

F ∗n(w) :=
1

n

n∑
i=1

I{wi≤w}, (2)

where IA denotes the indicator function of the set A. For other details about the
bootstrap methodology see, for instance, Davison and Hinkley[10], Efron[12]
and Efron and Tibshirani[13].

In our case, by bootstrapping from the empirical d.f. associated to the
pooled reference sample of size m × n, (x1,1, . . . , x1,n, . . . , xm,1, . . . , xm,n), we
generate Mb random samples of size n, say (X∗r,1, . . . , X

∗
r,n), r = 1, . . . ,Mb.

In the sequel (Xi,1, . . . , Xi,n) denotes the i-th subgroup of size n used in
the estimation of the nominal values and let Xi,(j) be the j-th ascending order
statistics (o.s.) associated to the subgroup (Xi,1, . . . , Xi,n).
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2.4 Estimates of the nominal process parameters under
consideration

To estimate the in-control mean value µ0 and the in-control standard deviation
σ0, we have carried out the following procedure:

1. From k subgroups of size n (5, 10), with k denoting either m (20, 30) or Mb

(100, 500, 1000), we compute k partial estimates, µ̂0i and σ̂0i, i = 1, · · · , k;

2. Then, we consider the overall estimates of µ0 and σ0, µ̂0 =
∑k

i=1 µ̂0i/k and

σ̂0 =
∑k

i=1 σ̂0i/k, to be used in the 3-sigma control limits of the Y -chart.

We must point out that even when we are working with potential normal pro-
cesses, in practice we can have some disturbances in the data, and in particular,
in the m subgroups collected in Phase I. Thus, to obtain the partial estimates
µ̂0i and σ̂0i, apart from the usual estimators for µ0 and σ0, we also consider the
Total Median (TMd) and the Total Range (TR) statistics, defined and studied
in Cox and Iguzquiza[9], Figueiredo[14] and Figueiredo and Gomes[15]. The
statistics TMd and TR are resistant to changes in the underlying model, and
are similar to a special trimmed-mean, in which the ideal percentage of trim-
ming does not depend on the data distribution. The distributional behaviour
of the TMd and the TR estimators has already been investigated, and these
statistics have revealed to be efficient and robust estimators of the mean value
and the standard deviation, respectively.

Thus, to obtain the partial estimates µ̂0i, we consider, for n = 5, 10, the
sample mean,

Xi =
1

n

n∑
j=1

Xi,j ,

and the total median, defined by

TMdi = 0.058
(
Xi,(1) +Xi,(5)

)
+ 0.366Xi,(3) + 0.259

(
Xi,(2) +Xi,(4)

)
for samples of size n = 5, and by

TMdi = 0.001(Xi,(1) +Xi,(10)) + 0.019(Xi,(2) +Xi,(9)) + 0.078(Xi,(3) +
Xi,(8)) + 0.168(Xi,(4) +Xi,(7)) + 0.234(Xi,(5) +Xi,(6))

for samples of size n = 10.
To obtain the partial estimates σ̂0i, unbiased whenever the underlying model

is normal, we consider, for n = 5, 10, the following statistics divided by the
normalizing scale constant c, next given: the sample standard deviation,

Si =

√√√√ 1

n− 1

n∑
j=1

(
Xi,j −Xi

)2
, c = c4 =

{
0.940, if n = 5
0.921, if n = 10,

the sample range,

Ri = Xi,(n) −Xi,(n), c = d2 =

{
2.326, if n = 5
2.058, if n = 10,
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and the total range, defined by

TRi = 0.737
(
Xi,(5) −Xi,(1)

)
+ 0.263

(
Xi,(4) −Xi,(2)

)
, c = 1.801,

for samples of size n = 5, and by

TRi = 0.654(Xi,(10) −Xi,(1)) + 0.241(Xi,(9) −Xi,(2)) + 0.079(Xi,(8) −Xi,(3)) +
0.022(Xi,(7) −Xi,(4)) + 0.004(Xi,(6) −Xi,(5)), c = 1.513,

for samples of size n = 10.

In the sequel the two overall estimates of µ0 will be denoted by X and TMd,
and the three overall estimates of σ0 will be denoted by S/c4, R/d2 and TR/c.

3 Run-length distribution of the Mean-chart with
control limits estimated via bootstrapping

The ability of a control chart to detect process changes is usually measured
by the expected number of samples taken before the chart signals, i.e., by its
ARL (Average Run Length), together with the standard deviation of the Run
Length distribution, SDRL. When we have to estimate some process parameters
to determine the control limits of the chart, the RL variable (i.e., the number
of samples taken before the chart signals) has not a geometric distribution as it
happens in the known parameters case, but a more right-skewed distribution.

Some authors, Chakraborti[5],[6],[7] and Jensen et al.[16], for instance, refer
that in this case the ARL and the SDRL parameters are not the best measures
of performance of a control chart, due to the high asymmetry of the RL dis-
tribution, and one might prefer the use of the Median Run-Length, MRL, as
a measure performance, and the 5th and the 95th percentiles of the RL dis-
tribution to represent the spread of the RL. Additionally, for a more complete
understanding of the chart performance, they suggest the analysis of the con-
ditional RL distribution, i.e., the RL distribution conditional on the observed
estimates, together with the analysis of the marginal RL distribution. Such a
marginal distribution is computed by integrating the conditional RL distribu-
tion over the range of the parameter estimators and takes thus into account the
random variability introduced into the charting procedure through parameter
estimation without requiring the knowledge of the observed estimates.

In order to get information about the in-control and the out-of-control per-
formance of the previous Y charts with estimated 3-sigma control limits to
monitor normal data, we compute the (conditional) RL distribution of the
Y -charts by Monte Carlo simulation, using 250000 runs in the simulation ex-
periment. Tables 1 and 2 present estimates of some parameters of the in-control
and out-of-control RL distribution for the case of known nominal process values
(exact limits obtained by replacing µ0 = 0 and σ0 = 1), and when the esti-

mated control limits are based on the overall estimates (X,S/c4), (X,R/d2)
and (TMd,TR/c), obtained from a reference sample of m (20 and 30) sub-
groups of size n = 5 and from Mb (100, 500 and 1000) subgroups of size n = 5
obtained by bootstrapping from the pooled reference sample of size m × n.
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Mean-chart with ARL SDRL

Estimated CL’s
# subgroups Estimates Estimates

m Mb (X,S/c4) (X,R/d2) (TMd, TR/c) (X,S/c4) (X,R/d2) (TMd, TR/c)

20 458 444 445 891 817 836
100 404 386 375 728 713 676
500 388 366 370 671 576 627
1000 378 365 368 608 602 615

30 415 418 409 640 695 628
100 394 374 375 633 620 588
500 373 363 364 543 494 508
1000 378 364 367 533 499 518

Exact CL’s 371 371

Table 1. In-control ARL and SDRL of the 3-sigma Y -chart for samples of size n = 5.
For the estimation we consider m = 20, 30 or Mb = 100, 500, 1000 subgroups of size
n = 5.

Mean-chart with ARL SDRL

Estimated CL’s
# subgroups Estimates Estimates

m Mb δ (X,S/c4) (X,R/d2) (TMd, TR/c) (X,S/c4) (X,R/d2) (TMd, TR/c)

30 0.3 132.4 134.4 135.2 209.5 216.4 224.0
0.5 42.3 42.5 42.9 62.3 64.1 65.4
0.7 15.7 15.9 15.8 20.3 20.5 20.9
1.0 5.0 5.0 4.9 5.4 5.5 5.2
1.5 1.6 1.6 1.6 1.1 1.1 1.1

500 0.3 124.8 121.5 123.3 196.0 181.5 188.2
0.5 39.7 39.4 39.3 57.4 56.0 56.6
0.7 14.9 14.7 14.8 18.8 18.9 18.6
1.0 4.8 4.7 4.8 5.2 5.0 5.0
1.5 1.6 1.6 1.6 1.1 1.0 1.0

Exact CL’s 0.3 99.2 98.4
0.5 33.1 32.5
0.7 13.2 12.8
1.0 4.5 4.0
1.5 1.6 0.9

Table 2. Out-of-control ARL and SDRL of the 3-sigma Y -chart for samples of size
n = 5. For the estimation we consider m = 30 or Mb = 500 subgroups of size n = 5.
The process mean changed from µ = µ0 = 0 to µ = δ.
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More precisely, Table 1 presents estimates of the most commonly used mea-
sures of performance of a control chart, the ARL and the SDRL, obtained for
the Y -charts under study, and assuming that the process is in-control. Table
2 presents the ARL and the SDRL of the Y -charts with estimated and exact
control limits for samples of size n = 5, when the process is out-of-control due
to a shift in the mean value from µ = µ0 = 0 to µ = δ = 0.3, 0.5, 0.7, 1.0, 1.5,
and for m = 30 and Mb = 500 subgroups of size n = 5.

Table 3 presents the percentiles (P) 1th, 5th, 10th, 25th, 50th (MRL), 75th,
90th, 95th and 99th of the in-control RL distribution, the interquartile range
(a robust measure of spread), IQR=P75th-P25th, and the Fisher skewness
coefficient, g, defined by g := m3

m
3/2
2

, where mr denotes the r-th central moment

of the sampling distribution of RL.

Mean-chart with estimated CL’s

Estimates # subgroups Percentiles

m Mb 1th 5th 10th 25th 50th 75th 90th 95th 99th IQR g(
X,S/c4

)
20 3 12 25 73 204 504 1078 1675 3967 431 9.65

100 3 12 24 69 185 452 956 1475 3277 383 8.45
500 3 12 25 69 186 450 922 1383 2987 381 8.73
1000 3 12 24 70 185 438 916 1360 2902 368 5.75

30 3 14 29 83 218 503 980 1441 2923 420 7.41
100 3 13 26 76 200 461 934 1393 2897 385 7.12
500 3 14 28 78 201 455 885 1287 2566 377 5.27
1000 3 14 28 79 207 466 907 1300 2562 387 4.56(

X,R/d2

)
20 3 12 24 70 196 487 1050 1634 3810 417 6.67

100 2 11 22 63 174 429 914 1407 3114 366 9.03
500 3 12 24 68 181 429 884 1317 2748 361 5.29
1000 3 12 25 67 180 423 874 1283 2721 356 7.02

30 3 14 28 80 211 494 988 1461 3051 414 8.70
100 3 13 25 71 186 443 895 1312 2778 372 9.45
500 3 14 28 78 201 452 878 1247 2389 374 3.96
1000 3 14 28 79 204 455 860 1248 2332 376 4.53(

TMd, TR/c
)

20 3 12 25 73 199 488 1050 1615 3751 415 9.16

100 2 11 22 63 171 416 900 1383 2977 353 7.82
500 3 12 23 67 180 430 882 1312 2844 363 8.11
1000 3 11 24 68 180 428 881 1321 2753 360 7.40

30 3 14 29 80 210 489 973 1456 2900 409 5.67
100 3 12 25 71 190 440 898 1333 2825 369 5.39
500 3 13 27 77 200 453 869 1261 2426 376 4.57
1000 3 14 28 77 202 459 870 1239 2419 382 4.97

Mean-chart with exact CL’s

4 19 40 108 260 515 856 1110 1693 407 1.97

Table 3. Percentiles, interquartile range (IQR) and Fisher coefficient of asymmetry
(g) of the in-control RL distribution of the 3-sigma Y -charts for samples of size n = 5.
For the estimation we consider m = 20 or Mb = 100, 500, 1000 subgroups of size n = 5.
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Finally, to illustrate the in-control performance of the chart when we in-
crease the sample size n, we present in Table 4 estimates for the in-control ARL
and SDRL values of the Mean-chart implemented for samples of size n = 10.

Mean-chart with ARL SDRL

Estimated CL’s
# subgroups Estimates Estimates

m Mb (X,S/c4) (X,R/d2) (TMd, TR/c) (X,S/c4) (X,R/d2) (TMd, TR/c)

20 363 372 355 479 516 490
100 348 333 328 499 477 448
500 339 335 326 437 437 421
1000 338 330 330 453 430 427

30 364 367 355 449 460 433
100 348 338 335 434 435 422
500 345 340 339 424 413 404
1000 357 341 339 444 413 409

Exact CL’s 371 371

Table 4. In-control ARL and SDRL of the 3-sigma Y -chart for samples of size n = 10.
For the estimation we consider m = 20, 30 or Mb = 100, 500, 1000 subgroups of size
n = 10.

4 Some comments on the performance of the Y -charts

As expected, for all the different combinations of the number of subgroups used
in the estimation, m or Mb, and all the estimates (µ̂0, σ̂0) here considered, the
estimation of the nominal values have effect on the ARL and on the SDRL
of the Y -charts. However, the effect on the in-control and out-of-control RL
behaviour becomes small when m increases, and specially if we consider a large
number Mb of subgroups of size n = 5, 10 obtained by bootstrapping from the
initial m subgroups of the reference sample.

As m and Mb increases the ARL value of the chart with estimated control
limits tends faster than the SDRL to the corresponding values obtained when
the Y -chart is implemented with exact CL’s. For instance, if we consider
Mb = 500 or 1000 subgroups n = 5 obtained by bootstrapping from the initial
m = 20, 30 subgroups of the reference sample, we obtain an in-control ARL
approximately equal to 370.4, although the SDRL value maintains yet larger
than 370.4. Concerning the different estimates of the nominal values here
considered, the results are qualitatively the same, at least when monitoring
normal data.

For detecting small shifts in the process mean value, we also get some
improvements in terms of performance if we consider, for instance, Mb = 500
subgroups of size n = 5 for the estimation of (µ0, σ0), by bootstrapping from
the initial m = 30 subgroups of the reference sample.

The RL distribution although more right-skewed in all cases than a geomet-
ric distribution, its asymmetry decreases significantly as m and Mb increases.
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Moreover, the lower percentiles of the RL distribution are almost equal for all
combinations of m, Mb and (µ̂0, σ̂0), but the same statement is not true for
the upper percentiles. As m and Mb increases, the upper percentiles become
closer to the corresponding percentiles of the RL distribution of the Y -chart
with exact CL’s, implemented for samples of size n = 5.

As n increases, the benefits of using the bootstrap methodology become
irrelevant. We obtain SDRL values smaller, but the ARL values are smaller
too, which is not desirable.

Finally, when it is not possible to consider a large reference sample or there
is not available a modified chart parameter, K, that takes into consideration
the variability introduced by the estimation of the nominal process values, the
use of the bootstrap methodology should be explored because it can lead to
some improvements in the performance of the chart.
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Abstract: In some production processes the quality characteristics can be represented by 

profiles or linear functions. We propose an adaptive control chart to monitor the 

coefficient vector of a simple linear regression model, once fixed parameter control 

charts are slow in detecting small to moderate shifts in the process parameters, that is, the 

intercept and the slope. A study on the performance of the proposed control chart was 

done, considering the adjusted average time until a signal. 

Keywords: Linear profile, Adaptive control chart, Markov chain 

 

1  Introduction 

In adaptive control charts, one or more design parameters vary in real time 

during the production process based on recent data obtained from the process. 

Authors who have been studying this subject have shown that these charts 

present superior performance when compared to a fixed parameter control chart. 

Approaches for the design of univariate adaptive control charts have been 

proposed by several authors, as for example, Reynolds et al. (1988), Amin and 

Miller (1993), Costa (1994, 1997), De Magalhães et al. (2002, 2009). 

In some processes, however, the simultaneous control of two or more related 

quality characteristics is necessary, considering that, the design of multivariate 

fixed parameter and adaptive control charts have been studied by several 

authors, see for example, Aparisi (1996, 2001), Bersimis et al. (2007), Zhang 
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and Shing (2008). Adaptive control schemes have shown better performance 

than fixed parameter control schemes in detecting small and moderate process 

shifts.  

Nonetheless, some quality characteristics are best represented by a functional 

relationship between a response variable and one or more explanatory variables, 

that is, in this case, the quality characteristic is expressed by a function or 

profile (see, Kang and Albin, 2000; Kim et al., 2003; Zhang and Albin, 2009; 

Mahmoud et al., 2010; Moura Neto and De Magalhães, 2012). The monitoring 

of profiles is used to verify the stability of this relationship over time. When the 

profile does not suffer alteration, it is said that the process is under control. 

However, if any excessive variation occurs, it is said that the process is out of 

control, thus, requiring investigation procedures and remedial actions. Some 

applications of profile monitoring methods include lumber manufacturing 

(Staudhammer et al., 2007) and calibration of instruments and machines (Stover 

and Brill, 1998; Kang and Albin, 2000).  

Kang and Albin (2000) proposed a fixed parameter chi-square control chart to 

monitor the intercept and the slope of a linear profile represented by a simple 

linear regression model.  

In this paper, we propose a model for the statistical design of a chi-square 

control chart with variable sample size and sampling intervals for the 

monitoring of linear profiles. The performance measure is obtained through a 

Markov chain approach. The performance of the variable sample size and 

sampling intervals chi-square chart (VSSI  control chart) is compared to the 

fixed parameter chi-square chart (FP  chart) proposed by Kang and Albin 

(2000) to monitor the intercept and the slope of a model. Numerical 

comparisons between these charts are made considering the semiconductor 

manufacturing process studied in the paper of Kang and Albin.  

 

2. VSSI  control chart 

Based on the studies of Kang and Albin (2000) and Costa (1997), we propose 

the variable sample size and sampling intervals chi-square chart for monitoring 

a linear profile. As the chart considered in Kang and Albin, the proposed chart 

aims to monitor the intercept ( ) and the slope coefficient ( ) of a simple 

linear regression model.  
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It is considered a production process where the quality of the produced items is 

evaluated by the value of a measurable characteristic Y which is a linear 

function of an independent variable x, that is, 

 

where  and  are parameters, ε’s are independent random variables 

normally distributed with mean zero and variance σ2
 (denoted by, 

)). It is assumed, in matrix notation, that the parameters 

 and  of the model, when the process is under control, are 

known, more specifically, and . Then, from 

the observations, the aim is to verify if the process remains under control, i.e., if 

the parameters have not changed. Changes or deviations from the parameter 

vector  are analyzed. When the process is out of control, the 

parameter vector is given by: 

 

where  represents the vector of the shifts, where  and 

are, respectively, the magnitude of the shift in the intercept and the slope. 

 

2.1 The statistic used in the monitoring of the process 

Consider that the profile Y is measured in the values of the independent variable, 

x = xj, j = 1,..., nk, where nk = n1 or nk = n2, depending on the size of the sample 

that is being used; then, for each sample i of size nk , k=1, 2, the profile 

monitored is: . For each sample i composed by 

a set data  the least square estimators 

for parameters  and  are obtained and the estimator of the vector of 

parameters is denoted by . The expressions of   and  

are given by, 
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For each sample i taken from the process, it is assumed that , 

, are pre-set values for 

all samples taken. 

The proposed control chart monitors the parameters β’s, to verify if the process 

is in control, that is, if the parameters  and  have not shifted. The statistic 

used in the control chart for monitoring the process is given by, 

 

where  , the matrix  , the covariance-variance matrix of  

and the vector  are known.         

When the process is in control,  has chi-square distribution with two degrees 

of freedom and the upper control limit is equal to , that is, UCL =  

where  is the  percentile point of the chi-square distribution. If 

, it is assumed that the process is in control. 

 

2.2 Surveillance policy  

The chi-square control chart with variable sample size and sampling intervals 

has, besides the upper control limit (UCL), a warning limit, w, such that 

. In contrast to the control chart used by Kang and Albin 

(2000), which has a fixed sample size ( ) and sampling interval (h0), the 

proposed control chart makes use of two different sample sizes, 

 and two different sampling intervals, h1 

and h2 such that  h2  < h0 <  h1. 
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A sample i of size  or  is taken randomly and estimates of , the 

parameter vector of the regression model, are obtained. Then, subsequently, the 

statistic  is calculated and plotted in the VSSI  control chart. 

Regarding the sample size to be used, if , the sample i will have 

size  and should be taken after a long time interval, that is h1, if 

, the sample i will have size  and should be taken after a 

short time interval, that is h2; finally, if , the process may be out 

of control. In this case, an investigation should be initiated to verify if there are 

indeed non-random causes acting in the process, so that corrective action can be 

undertaken. Otherwise, if an assignable cause is not found the process is 

considered in control and in this case the signal produced by the chart is a false 

alarm event. 

The probability of a false alarm, that is, the probability of  be greater than 

UCL given that the process is control is 

. 

 

3. Performance measure 

As Costa (1997) to explicitly obtain all the expressions of the statistical model, 

the production process was represented by a Markov chain with five states: 

State 1: if ],0[2 wi ∈χ  and the process is in control;  

State 2: if ],(2 UCLwi ∈χ  and the process is in control; 

State 3: if ],0[2 wi ∈χ  and the process is out of control; 

State 4: if ],(2 UCLwi ∈χ  and the process is out of control; 

State 5 (absorbing state): if ),(2 ∞∈ UCLiχ . 

 

It is necessary to obtain the transition probabilities to calculate the performance 

measure. The matrix of transition probabilities between the five states is given 

by 
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It is assumed that the process starts in control and sometime in the future it goes 

to out of control and, also, the time that the process remains in control is 

exponentially distributed with parameter λ . 

The performance of the proposed chart, that is, the VSSI  control chart, was 

compared to the FP  control chart proposed by Kang and Albin (2000) for 

the monitoring of linear profiles. The performance measure utilized in this 

article is the adjusted average time to signal. 

 

3.1 Adjusted average time to signal  

The adjusted average time to signal (AATS) is the expected time since the instant 

that the process goes to an out of control state until a signal, that is, until a 

sample generates a value of statistic  above the UCL. When the process is 

out of control, it is expected that this situation be quickly detect, and then small 

values of AATS are desired. On the other hand, large values of AATS are 

expected when the process is in control. The AATS values depend on the 

magnitude of shift in the process parameters, that is, on the 

vector  as well as on  

The expression for the adjusted average time to signal is given by: 
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where E(TC) represents the average time of the production cycle, that is, the 

average time since the beginning of the production process until a signal after an 

occurrence of a process shift and, E(T) denotes the time the process remains in 

control. 

The expression for the average time of the production cycle is given by: 
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The expression for E(TC) depends on the cumulative probability function of a 

central chi-square distribution with two degrees of freedom, and a non-central 

chi square distribution with two degrees of freedom with non-centrality 

parameter given by   

To compare the performance of the VSSI  control chart and the FP  

control chart, we use the AATS, for a given value of the shift parameters. 

However, for the comparison to be fair, the same amount of resources/effort 

spent with inspections and false alarms, when the process is in control, should 

be imposed. This is done by the following constraints  
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4. Comparing charts 



Statistical design of an adaptive control chart for linear profile monitoring   523 
 

In this section, we compare the performance of the VSSI  and the FP  

control charts for monitoring linear profiles relative to the detection speed of an 

out-of-control state considering several shifts magnitudes on the parameters.  

For comparison purposes, the application of the developed statistical model for 

the VSSI  control chart for monitoring linear profiles is shown by the 

numerical example of Kang and Albin (2000), which consists of a calibration 

application in a production process of semi-conductors, where several thousand 

inscriptions of chips need to be provided in a wafer. The critical device in this 

process is a mass flow controller (MFC). The pressure measure in the chamber 

is approximately a linear function of the mass flux through the MFC. In the 

example presented by Kang and Albin (2000), the chart employed is the FP  

control chart in which a single sample size  is used. Moreover, based 

on the work of Costa (1997) and taking into account the following restrictions 

,201 nnn <<  102 hhh << , then the following design parameters were used: 

n0=4, h0=1, α0=0.005, for the FP 
2χ  chart; and n0=4, n1=2, n2=12, h0=1, h1=1, 

2, h2=0.2, α0=0.005, for the VSSI 
2χ  chart. Again, based on the work of Costa 

(1997), we considered 
0001,0

11 =
λ . 

As we are considering the example proposed by Kang and Albin (2000) and also 

as we are going to compare the chart proposed by them and our proposed chart, 

the shifts  in  varied from 0.2 to 2.0 in steps of 0.2, the shifts  in  

assumed values from 0.025 to 0.250 in steps of 0.025. 

Then, with the design parameters considered above, performance measures were 

calculated for the proposed chart. The results are presented in Tables 1 to 4. 

Table 1 presents the values of the AATS for both charts with respect to the 

values of the shift parameter . Table 2 and Fig.1 present the percentage gain 

of VSSI chart relative to FP chart as a function of intercept shifts. 

Table 1. AATSs for both charts with intercept shifts. 

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 

    
2χ  Chart 0δ  

         FP 200.5 138.24 63.96 28.45 13.69 7.38 4.49 3.08 2.35 1.95 1.73 

       VSSI 200.5 129.43 40.38 10.46 4.31 2.93 2.43 2.16 1.98 1.86 1.78 
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Table 2. Percentage gain of VSSI chart relative to FP chart as a function of 

intercept shifts. 

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 

    
2χ  Chart 0δ  

       VSSI 0.00 0.06 0.37 0.63 0.69 0.60 0.46 0.30 0.16 0.05 -0.03 
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Fig.1. Percentage gain of VSSI chart with respect to FP chart as a function of 

intercept shifts. 

As may be seen in Table 1, when the process is in control the AATS is equal to 

200.5. It can be observed from this table that from small to moderate shifts in 

the intercept  the VSSI  chart is always quicker than the FP 

 control chart, for the design parameters considered. Still the performance of 

the VSSI  chart is superior to the FP  control chart for shifts of magnitude 

 for the design parameters considered. In contrast, in the presence 

of large shifts when , the FP  control chart is more efficient 

than the VSSI  chart; although in this case, the average number of samples 

until a signal is below 2.0 for the VSSI  chart. 
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From Table 2 and Fig.1, we can observe when  the percentage gain 

varies, approximately, from 6% to 69% and when  the 

percentage gain varies, approximately, from 60% to 5%, for the design 

parameters considered. When  it is preferable to use the FP  chart 

instead of the VSSI  chart, in the case considered. 

Table 3 presents the values of the AATS for both charts with respect to the 

values of the shift parameter . Table 4 and Fig.2 present the percentage gain 

of VSSI chart relative to FP chart as a function of slope shifts. 

Table 3.  AATSs for both charts with slope shifts. 

0.000 0.025 0.050 0.075 0.100 0.125 0.150 0.175 0.200 0.225 0.250 

    
2χ  Chart 

1δ  

         FP 200.5 166.50 106.09 61.18 34.98 20.62 12.73 8.30 5.73 4.19 3.24 

       VSSI 200.5 162.35 87.70 35.39 13.49 6.29 3.98 3.12 2.70 2.43 2.25 

  

Table 4. Percentage gain of VSSI chart relative to FP chart as a function of 

slope shifts. 

0.000 0.025 0.050 0.075 0.100 0.125 0.150 0.175 0.200 0.225 0.250 

    
2χ  Chart 

1δ  

      VSSI 0.00 0.02 0.17 0.42 0.61 0.69 0.69 0.62 0.53 0.42 0.31 
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Fig.2. Percentage gain of VSSI chart with respect to FP chart as a function of 

slope shifts. 

As may be seen in Table 3, when the process is in control the AATS is equal to 

200.5. It can be observed from this table that for all considered shifts in the 

slope, the VSSI  chart is always quicker than the FP  control chart, for the 

design parameters considered.  

From Table 4 and Fig.2, we can observe when  the 

percentage gain varies, approximately, from 2% to 69% and when 

 the percentage gain varies, approximately, from 62% to 

31%, for the design parameters considered.  

 

 

5. Conclusions 

In this article, a model for the statistical design of a chi-square control chart with 

variable sample size and sampling interval for monitoring a linear profile was 

developed. This chart contemplates the monitoring of the intercept and the slope 

coefficient of a linear regression model. The proposed chart was developed 

based on the fixed parameter chi-square control chart existent in the literature 

for monitoring a linear profile employed by Kang & Albin (2000). Comparisons 

between the two charts considered the adjusted average time until a signal 
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(AATS). From a numerical example, the performance comparison between the 

two charts showed, in general, a better statistical performance for the VSSI chi-

square chart. 
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Abstract: This paper concerns the role and contribution of SPC methods to 

pairs trading, a relative-value statistical arbitrage trading technique. Pairs 

trading and its numerous extensions have gained increased attention over the 

recent years and is a popular trading strategy among hedge funds and 

investments boutiques. The core idea of pairs trading is “buy low” and “short-

sell high” and it is based on the assumption that the low-valued asset will gain 

value and the high-valued asset will lose value, so that the two assets are co-

evolving or mean-reverting. Several authors have recently suggested that this 

mean-reversion may be appropriate only at some periods of time (in which 

profits may be realized) while in other periods of time mean-reversion is lost 

(resulting to significant losses, e.g. one could buy an asset which loses its 

value). In this paper we propose the use of appropriate SPC methods in order to 

detect mean-reversion, hence to identify tradable periods. The literature on pairs 

trading will be reviewed and examples will illustrate the need for a monitoring 

procedure. Finally, control charts for autocorrelated processes are proposed for 

the detection of mean-reversion.  
Keywords: pairs-trading, control charts, SPC, autocorrelated processes, 
financial data, mean-reversion 

 

 

1. Introduction 
 

 Pairs trading is a very common trading strategy among hedge funds and 

institutional investors because of the consistent, though usually modest, 

profitability. The strategy requires the choice of two assets whose prices are 

influenced by the same economic forces. The consequence of this is that the 

prices of these two assets actually co-move. The second step is to detect the time 

point that these prices diverge from their long term equilibrium so as to take 

action and short sell the overvalued share and buy the undervalued one. Profit is 

generated when the prices return to their long term equilibrium state. Several 

researchers propose methods and techniques for selecting the appropriate pairs 

of assets, identifying the spread magnitude that should trigger a trade, predict 

the next step of the process so as to proceed or not to opening a position. 

 More specifically, in order to apply a pairs trading strategy traders 
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choose a pair of assets and decide on trading their spread. The spread of these 

assets could be defined as the difference of the prices of these assets or another 

linear combination of the two prices. The rationale behind profit generation is 

quite simple. When the price of one asset is low the trader buys this asset while 

simultaneously short-sell the other whose price is at that time high. Then it is 

said that the trader opens a position. Short-selling means that the trader lends an 

amount of shares and sells them. These shares though must be returned 

sometime in the future. To close the position the trader must sell the number of 

shares bought and buy the shares of the “short-sold” asset, in order to return 

them.   Profits are generated when the price of the undervalued asset increases 

whereas the price of the overvalued asset decreases. For book length versions on 

pairs trading one can refer to Ehrman [1], Vidyamurthy [2]  and Whistler [6]. 

 There is a main assumption made for financial markets, which affects  

trading strategies, that is efficient market hypothesis (Fama [4]). This 

assumption is based on that information is considered to be instantly and equally 

distributed among all market participants. Therefore, it is argued that all relevant 

information is reflected and incorporated in current asset prices. A direct result 

of this assumption is that no excessive returns can be gained. Applying a pairs 

trading strategy, though, gives investors the opportunity to exploit temporary 

market inefficiencies, disturbances of the levels of asset prices that do not last 

long, and therefore, benefit from the excessive returns which then can be 

generated.  

 There are three main methods on pairs trading considered in the 

literature. The distance method proposed by Gatev et al. [5], according to which 

the pairs chosen are the ones that have the smallest sum of squared deviations. 

Although this method is cost efficient, it is based on the assumption that the 

price differences follow a standardized normal distribution while it is known 

that share prices usually follow a log-normal distribution.  

 The second is the correlation method discussed in Ehrman [2]. In his 

book he proposes to consider the correlation of a pair of shares as a factor 

affecting the selection of appropriate pairs to be traded. It is suggested that in 

cases when the correlation coefficient is greater than or equal to 0.7 then a pair 

of assets could be considered tradable. Moreover, it is recommended that the 

correlation coefficients be measured and monitored at several time intervals so 

as to detect any changes in the assets relation. 

 The third is cointegration method introduced in Engel and Granger [6] 

and Engel and Yoo [7]. According to this method two non-stationary price time 

series are said to be co-integrated when there exists at least one linear 

combination of them that is a stationary process see Figure 1. Moreover, the co-

integrated pair is assumed to have a long-term equilibrium and a self adjustment 

mechanism that is triggered when deviations from the equilibrium state occur.  
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Figure 1. Cointegrated assets and their spread 

  

  Other approaches that can be found in the literature are those of 

stochastic modeling, copulas and artificial neural networks. Scholars also model 

the spread process either in the context of continuous (Ornstein-Ulenbeck 

processes) or discrete time. Several empirical studies have also been conducted 

to investigate the effectiveness of this trading strategy in different markets under 

various economic conditions. 

 As previously mentioned there are many studies published concerning 

pairs-trading.  In this paper a review of some recently proposed methodologies 

will be presented as well as the potential of using Statistical Process Control 

methods in the pairs trading context. The studies that investigate the statistical 

properties of this trading strategy are to be presented in the next section. In 

Section 3 the potential of the use of Statistical Process Control techniques in the 

context of pairs-trading is to be investigated. In the last section the main 

conclusions of the study as well as some issues for further research are to be 

summarized. 

 

 

2. Literature review – Pairs trading 
 

 Several researchers propose methods and techniques for selecting the 

appropriate pairs of assets, identify the spread magnitude that should trigger a 

trade, predict the next step of the process so as to proceed or not to opening or 

closing a position. As mentioned above, there are three main methods to 

approach a pairs trading strategy that are considered in the literature; the 

distance method Gatev [5], the correlation method Ehrman [1]  and the co-

integration mehtod Engel and Granger [6] and Engel and Yoo [7]  see Figure 1. 

Other approaches that can be found in the literature are those of stochastic 

modeling, copulas and artificial neural networks. Scholars also model the spread 

process in the context of continuous time – Ornstein-Ulenbeck processes 

(Ulenbeck-Ornstein  [8])– or discrete time. Several empirical studies have also 

been conducted to investigate the effectiveness of this trading strategy in 
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different markets under various economical conditions. In this talk a review of 

the several proposed methodologies will, first, be presented . 

 Reviewing pairs trading literature it is obvious that most scholars focus 

on improving the modeling of either spread or prices time series attempting to 

develop models that better reflect reality. Various models have been developed 

so far. Some can be found in the studies of Elliot et al. [9] who propose the use 

of a mean reverting Gaussian Markov chain model for the spread of pairs 

trading strategies. In another study, Dattasharma [10] introduce a general 

framework that can be used to predict the dependence between two stocks based 

on any user-defined criterion by applying the concepts of events and episodes. 

Triantafyllopoulos and Montana [11] propose a Bayesian state-space model for 

spread processes with time varying parameters. In this study the researchers also 

developed an on-line estimation algorithm that could be used to monitor data for 

mean reversion. Gatarek et al. [12] suggest a combination of Dirichlet process 

prior techniques with Bayesian estimation to estimate co-integrated models with 

non-normal disturbances. Triantafyllopoulos and Han [13] propose a 

methodology for detecting mean-reverted segments of data streams in 

algorithmic pairs trading using a state-space model for the spread and propose 

two new recursive least squares (RLS) algorithms with adaptive forgetting for 

predicting mean-reversion in real time. Tourin and Yan [14] in their study 

suggest the use of an optimal stochastic control model to address the problem of 

analyzing dynamic pairs trading strategies. In Fasen [15] the asymptotic 

properties of the least squares estimator for the model parameter of a 

multivariate Ornstein-Uhlenbeck model are investigated. Alrasheedi and Al-

Ghamedi [16] apply a Vector Auto-Regressive model (VAR) for the simulation 

of the time series of two stocks and examine the influence of some of the model 

parameters on the total profits earned. Improving and developing models is 

indeed very important since more accurate predictions of assets future prices can 

then be obtained. Unlike other processes, financial processes are difficult to be 

predicted because of the nature of financial data and it is generally argued that 

the best prediction of a tomorrow's asset price is the price of the asset today. 

This explains the vast amount of studies published on modeling financial time 

series considering continuous or discrete time. There are also non-parametric 

approaches proposed for handling financial data, as well. An example is the 

study of Bogomolov [17] in which a novel non-parametric approach for pairs 

trading is proposed in which the only assumption to be made is that the 

statistical properties of the volatility of the spread process remain reasonably 

constant. 

 Gatev et al. [5] proposed the GGR model for applying a pairs trading 

strategy. The study leads to the conclusion that excessive returns are likely to be 

generated for market participants that have relatively low transaction costs and 

the ability to short sell securities. It is also observed that there is a latent risk 

factor that affects the profitability of pairs trading over time. Papadakis and 

Wysocki [18] examine whether accounting information events, such as earnings 

announcements and analysts’ earnings forecasts, have an effect on the 

profitability of the pairs trading strategy proposed by Gatev et al. [5]. Broussard 
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and Vaihekoski [19] extended the work of Gatev et al.[5] through an empirical 

study showing that the aforementioned investment strategy is profitable even in 

markets with reduced liquidity.  In the study of Wang and Mai [20] a 

comparison of GGR, Herlemont and FTBD pairs trading openning position 

strategies is conducted. The main conclusion obtained from this study is that 

after deducting the trading cost, the absolute income of  the three strategies 

considered is significantly bigger than zero. 

 Portfolio optimization, i.e. the choice of which assets and the number 

of stocks from each asset are to be traded in order to attain maximum profits, is 

another issue considered in pairs trading literature. Perlin [21] suggests a 

multivariate version of pairs trading which can be used to create an artificial pair 

for a specific stock using the information associated to 
m

 assets. 

Mudchanatongsuk et al. [22] propose a stochastic control approach to address 

pairs trading portfolio optimization. Chiu and Wong [23] investigate the 

continuous-time mean-variance portfolio selection problem considering co-

integrated assets. Alsayedand and McGroarty [24] introduce a solution to the 

portfolio optimization problem when risky arbitrage trading is considered 

through the introduction of a nonlinear generalization of Ornstein-Uhlenbeck 

model which takes into consideration important risk factors. 

 Moreover, the trading costs are also taken into consideration in some 

studies. Transaction costs are those associated to opening or closing a position. 

In the study of Lin et al. [25] researchers propose the integration of loss 

limitation within the statistical modeling of pairs trading strategies. In several 

empirical studies transaction costs are also considered in order to assess the 

performance of the different methodologies. Trading costs can be significant and 

if not taken into consideration the returns of applying a pairs trading strategy 

could be minimized. 

 Various trading rules have also been proposed in order to perform 

successful pairs trading. In the study of Song and Zhang [26] pairs trading is 

investigated and a pairs trading rule is proposed which takes into account profit 

maximization or losses minimization. The approach of the researchers to 

address the problem considered is dynamic programming.  

 Some recent studies also consider the process's microstructure using 

intra-day data. Microstructure theory focuses on how specific trading 

mechanisms affect the price formation process. Zebedee and Kasch-

Haroutounian [27] in their study examine the microstructure of the co-

movement among the returns of stocks on an intra-day basis applying a 

combination of a traditional lead-lag model with a pseudo-error correction 

mechanism. Marshall et al. [28] investigate the microstructure of pairs trading 

on an intra-day basis. In other words, they examine the intra-day market 

characteristics that can be observed when arbitrage opportunities appear. Since 

pairs trading could be applied on an a daily basis and traders exploit daily 

market disturbances the examination of process' microstructure is indeed very 
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interesting.  

 A basic step in pairs trading is to be able to identify suitable pairs so 

that the pairs trading to be profitable. To this end, several researchers try to 

develop an optimal methodology for choosing the most suitable pairs. Gatev et 

al. [5] proposes choosing the pairs having the smallest sum of squared 

deviations for trading. Ehrman [1]  suggests pairs to be chosen using the 

correlation coefficient. When this coefficient is greater than or equal to 0.7, the 

pair is tradable. Engle [6] introduce co-integration approach and proposed 

choosing pairs whose prices are co-integrated. In the study of Huck [29] the 

sensitivity of pairs trading strategies' returns on the length of the pairs formation 

period is investigated. Through an example it is shown that the choice of the 

formation period affects the returns of the strategy employed and after taking 

into consideration the data snooping bias this result does not change. 

 Various empirical studies have also been published. In Matteson et al. 

[30] researchers introduce a new methodology in identifying local stationarity of 

non-stationary processes. Through an empirical approach robust estimates of 

time varying windows of stationarity are “produced”. Moreover, it is proven that 

using the adaptive window leads to higher returns and, in some cases, holding 

the positions open for a shorter period of time. Mai and Wang [31] published a 

limited study on the impact of the structure of the market on the returns of a 

pure statistical pairs trading. The researchers suggest that the annual rate of 

return of pairs trading can be improved by choosing the markets the traders are 

operating in. 

 Some different approaches have also been recently developed. Huck 

[29] proposes a methodology that can be used for pairs selection in a highly 

non-linear environment. The researcher combines forecasting techniques 

(Neural Networks) and multi-criteria decision making methods to select and 

trade pairs under pairs trading strategies. Artificial Neural Network models 

(ANN) are presented by Gomide and Milidiu [32] that are used to predict spread 

time series. Through obtaining spread predictions, times of the day when to 

perform a particular Pair Trading can be recommended. The use of copulas in 

development of pairs trading strategies is investigated in Liew and Wu [33] It is 

suggested that copulas approach is a good alternative to the traditional ones – 

distance approach and co-integration approach – since it is not necessary to 

assume the existence of correlation among the values of the assets to be traded 

and thus, argued to be realistic and robust.  

 

 

3. Potential of the use of SPC tools   
 

 The main questions that arise considering pairs trading are summarized 

in the following: When is the optimal time to open and close a position? How 

many trades are optimal in a given time period? What is the optimal time for a 

position to be kept open? What is the optimal way to handle non-stationary 

spread processes? What is the optimal way to select pairs? All these questions 
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should be answered considering the ultimate goal of investors, i.e. maximum 

profitability, and the distinctive characteristics of financial time series.  

 Some of these questions could be addressed using Statistical Process 

Control techniques. Control charts signal when the process monitored is 

observed to be out of control. Thus, as long as we can model a process and we 

are able to estimate its long term parameters control charts can be constructed 

and used to aid traders identify tradable periods, in which they will have to take 

action, i.e. to open or close a position.  

 Moreover, control charts could be used to identify mean-reverting 

periods of a process that is locally mean-reverting (Figure 2). Mean reverting 

processes are those that are characterized by a long term equilibrium, they 

present a constant mean and variance in the long run. In case these processes are 

disturbed and deviate from their equilibrium they are expected to revert within a 

short time interval.  

 While this can be observed in some cases mean-reversion could be, as 

stated before, local, meaning that a series could be mean-reverting during some 

periods while in others could be non-stationary, non mean-reverting. In this case 

control charts could be constructed so as to signal when mean reversion is 

observed. In this case it is of great importance for practitioners to be able to 

identify mean reverting segments in non-mean reverting processes. This would 

actually mean that the possible pairs of stocks to be traded are not only the 

“obvious” ones. Practically a practitioner could arbitrary choose pairs of stocks 

and monitor their spread to detect periods where it is mean reverting. That 

would lead to more trading strategies since the pairs to be traded could be 

“uniquely” chosen by each trader without using any specific rule. That would 

actually mean higher returns for the traders. Unit root tests, Dickey – Fuller 

(Dickey and Fuller [34]), Phillips – Perron (Phillips and Perron [35]) KPSS 

(Kwiatkowski et al. [36]), can be employed to check whether a process is 

integrated of order one or stationary (mean-reverting).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 2. Locally co-integrated assets and their spread. 
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 Several surveillance methodologies for detecting I(0) and I(1) segments 

of time series are developed in the studies of Steland [39], [40], [39] and [40] 

where he respectively proposes a control chart (stopping time) based on 

sequential Dickey-Fuller unit root test statistic to detect stationary segments of a 

time series, a control chart based on weighted Dickey-Fuller unit root test 

statistic to detect stationarity, a control chart for monitoring sequentially a time 

series with stopping times based on a sequential version of a kernel-weighted 

variance-ratio statistic and a sequential monitoring procedure that relies on 

KPSS unit root test statistic to detect whether the error terms in a polynomial 

regression model behave as a random walk or as a stationary process. In the 

study of Steland and Weidauer [41] the researchers investigated a monitoring 

procedure based on KPSS unit root test to address the problem of detecting 

sequentially stationary error terms in a multiple regression model, examining the 

case of co-integration as a special case, as well. The proposed monitoring 

procedures can be used for developing modifications that would be suitable for 

being used in the context of pairs trading. This issue is going to be examined 

further in an other study. 

 For all the above reasons, this study proposes the use of Statistical 

Process Control tools, i.e. control charts, as a means to enhance timely detection 

of potential market inefficiencies. Since mean reverting models are commonly 

used to describe the spread between the prices of two assets when a pairs trading 

investment strategy is applied, SPC techniques could be employed to identify 

tradable periods. The concept of co-integration is largely used in pairs trading 

literature to describe the relation between two financial variables. Co-integration 

refers to the co-movement of two time series, which actually means that the two 

processes considered have common stochastic trends. It has been proven that if 

the prices are “tied” together there will be a linear combination of them that will 

be stationary. This linear combination can be the spread of the two prices of 

interest. In order to estimate the long term mean and variance of the spread we 

have to estimate the parameters of this process. The unconditional expected 

value of the dependent variable, spread, is the estimated long-term mean and the 

unconditional variance is the long-term process variance.  

 In the context of SPC the long-run mean provides the center line of the 

control chart to be constructed and the variance assists in the construction of the 

respective control limits. Autocorrelated processes have been thoroughly 

investigated in the SPC literature. Several control charts have been proposed for 

monitoring stationary processes. A residuals control chart for the spread of two 

co-integrated processes is presented in Figure 3. The combined Shewhart – 

EWMA control chart of Lu and Reynolds [42] could also be employed to detect 

shifts of the disequilibrium factor. The rationale is quite simple considering that 

in pairs trading an appropriate control chart should timely detect step changes 

(shocks) as well as slow drifts of the process mean. This way short term 

disturbances would be detected and traders would act accordingly in order to 

make profitable investments. When the chart signals that would mean that the 

process is out-of-control which would lead the  trader to decide upon opening or 



537  Vyniou et al. 

 

 

 

closing a position. While opening a position can be achieved by using a control 

chart like the one mentioned before, the right time to close the position so as to 

maximize profits must then be determined. A lower one-sided CUSUM control 

chart for autocorrelated data could be used to determine this time point. This 

issue is usually tackled by using an impulse response function which gives 

detailed information about the effects of a possible shock over time (Alexander 

[43]). The combined Shewhart-EWMA and the lower one-sided CUSUM chart 

in the context of pairs trading are left to be investigated in a future study. 

 There are several tools used in the context of technical analysis, most 

of which are usually empirical. Traders use oscillators and indices to make 

decisions upon their trades. Bollinger Bands is such a technical analysis tool 

invented by John Bollinger. The construction of a chart using Bollinger Bands 

can be used to determine the time of opening and closing a position.  Bollinger 

Bands are actually envelopes that surround the price bars plotted two standard 

deviations away from a simple moving average, which may or may not be 

displayed and they are defined as 
(MA± Kσ )

. The window for this moving 

average can vary but it is usually 20 and
K = 2σ

.  In the case of the spread 

process a simple moving average of the spread process is used and the band 

surrounds this moving average.  The time of opening a position is determined 

when the spread crosses the upper control limit while the position is closed 

when the process returns in the in-control area. 

 An example of the use of  a simple residuals control chart and the 

respective Bollinger Bands are shown below in Figue 3. and Figure 4. The 

following charts were  

 

 

Figure 3. Residuals control chart for the 

spread of two co-integrated assets. 

Figure 4. Bollinger Bands for the spread 

of the same two co-integrated assets. 
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constructed using a set of simulated data. The data were generated so as the co-

integrating system of the two assets considered to present short term deviation 

from its long term equilibrium state. The two out-of-control segments can be 

easily observed. In the out-of-control segments both the mean and the variance 

of the spread process were different from the long term, true parameters. The 

residuals of the generated spread process are presented in Figure 3 in the 

residuals control chart. The Bollinger Bands for the respective spread process is 

presented in Figure 4. 

 Observing the two figures one can realize that the traditional residuals 

chart is able to detect the out of control segments while the technical analysis 

tool seems to be far less appropriate for this purpose. It can be seen that the 

upper limit of the Bollinger Bands chart is approached only in the second out-

of-control period, whereas the first the out of control situation is not detected. In 

the trading context this actually can be interpreted as a missed opportunity of 

making profit.  

 

4. Conclusions and Further Research 

 

 Since a symmetry of assumptions in Pairs-trading and Statistical 

Process Control literature is evident, one can straightforward conclude that SPC 

techniques can be effectively used in the pairs trading context. In the case of co-

integrating assets, examined in this study, the use of the traditional residuals 

chart was proven to be more effective in identifying tradable periods than that of 

Bollinger Bands, the technical analysis tool which is usually used to trigger 

potential trades. Although this study is quite limited, it introduces a new area of 

research for the SPC scholars. The adjustment of  SPC tools and theory to 

account for financial data and more specifically the use of these tools in the 

decision making process for traders employing relative-value statistical 

arbitrage trading techniques such as pairs-trading is a promising area of 

investigation. 

 The conclusions drawn from this study are to be substantiated further in 

a new study using real data, closing share prices. Furthermore, the use of all the 

control charts mentioned in the study (combined Shewhart-EWMA and lower 

CUSUM) are to be used in order to investigate the effectiveness of each under 

various circumstances. This investigation will also enable a comparison of the 

proposed charts, when used in the Pairs-trading context, that will eventually lead 

to the selection of the most appropriate charts to be used as trading decision 

making tools. Another issue to be investigated in the future is the use of  control 

charts for detecting mean reverting segments of  non-stationary processes.  
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