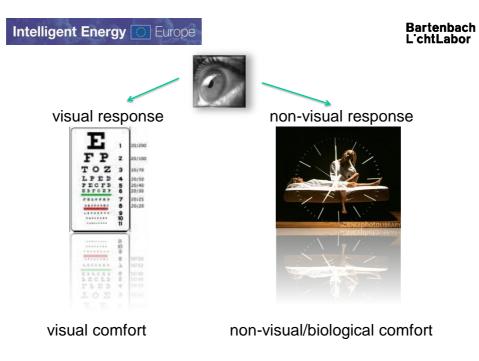
1

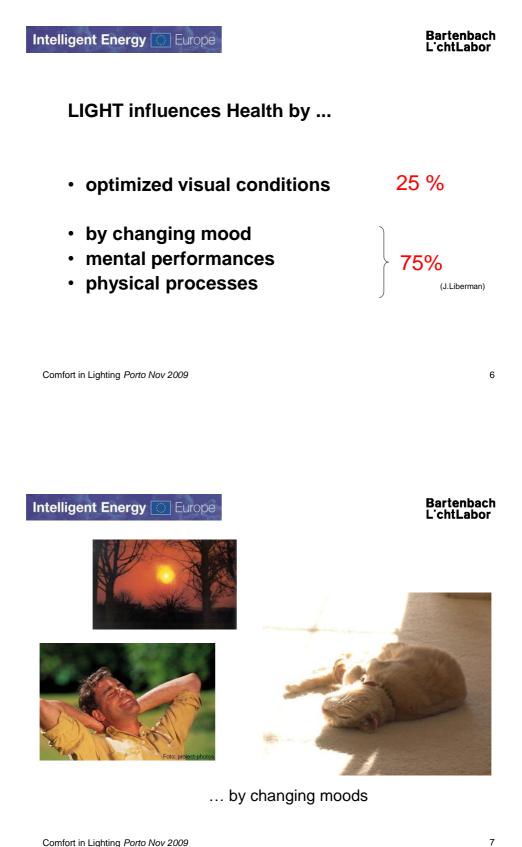
Intelligent Energy 💽 Europe


Workshop Porto Nov. 2009 Commoncense Comfort in Lighting

Comfort in Lighting Porto Nov 2009

Intelligent Energy 💽 Europe	Bartenbach L'chtLabor
What is LIGHT ?	
Light is visible radiation !	

Light is together with air and water a basic and unreplacable *nourishment* of mankind and nature !

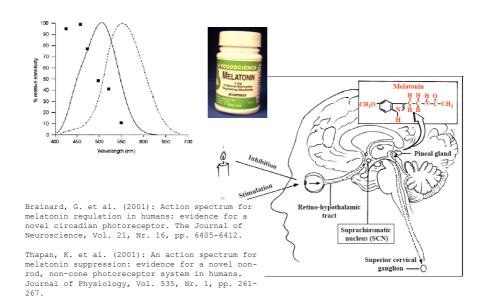

3

Light Therapy

Bartenbach L'chtLabor

Intelligent Energy 🔝 Europe

Bartenbach L'chtLabor


Comfort in Lighting Porto Nov 2009

Intelligent Energy C Europe Bartenbach C C HLabor LIGHT is the most important timer !

Comfort in Lighting Porto Nov 2009

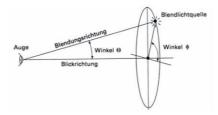
8

Intelligent Energy 💽 Europe

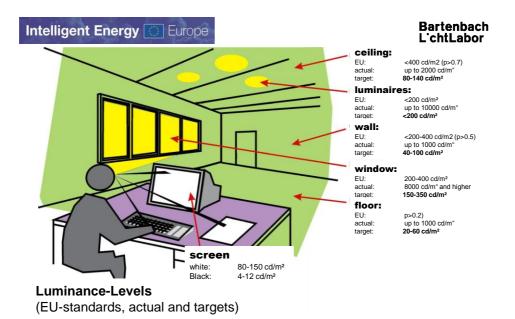
Comfort in Lighting Porto Nov 2009

10

Bartenbach L'chtLabor

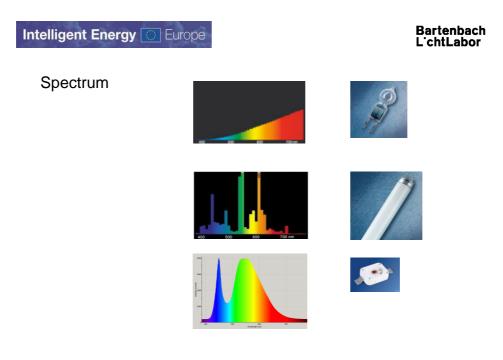

Intelligent Energy 💽 Europe

Glare


$$UGR = 8\log\frac{0.25}{L_b}\sum\frac{L_s^2\omega}{p^2}$$

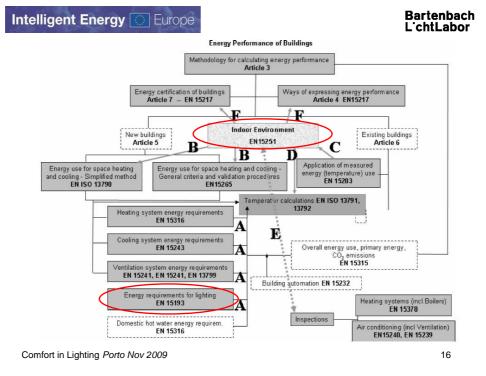
- Ls luminiance of glare source (cd/m²)
- $\omega\,$ the size of glare source (solid angle sr)
- p position in the field of view (positionsindex)
- Lb average luminiance of surroundings (in cd/m²).

not applicable for large (solid angle Ω >0,1 $_{\rm SR}$ $_{\rm or}$ >1,5 m^2) or very small light sources


Commoncense Porto Nov 2009

Commoncense Porto Nov 2009

12

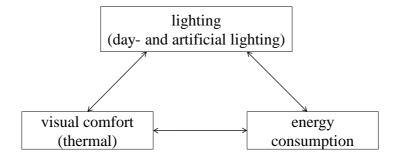

Intelligent Energy 💽 Europe

Bartenbach L'chtLabor

14

Examples of requirements for different room types and tasks according to EN12464

Room type resp. visual task	E _{mean}	UGR	Min. R _a
Office			
floors	100	28	40
writing, reading	500	19	80
technical drawing	750	16	80
Restaurants	-	-	80
Parking garage, way in and out	300	25	20
Health Care			
Surgery Rooms	1000	19	90
Autopsy	5000	-	90

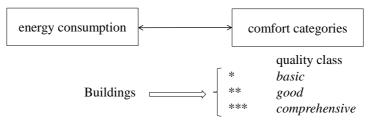

Intelligent Energy 💽 Europe

Bartenbach L'chtLabor

pure Lighting:

EN 12464-1	Light and lighting – Lighting of Workplaces – Part 1: Indoor Workplaces
EN 15193	Energy performance of buildings – Energy requirements for lighting
CIE 69	Methodes for characterizing illuminance meters and luminance meters; performance, characteristics and specifications
overlapping with	Lighting:
prEN 15255 prEN 15265	Thermal performance of buildings – <i>room cooling</i> Thermal performance of buildings – <i>energy for cooling</i>
EN ISO	Ergonomics of the thermal environment
(see also EN152.	51 page 12 diagram 'interaction with other standards')

Intelligent Energy 🔝 Europe


Comfort in Lighting Porto Nov 2009

Intelligent Energy 💽 Europe

18

Bartenbach L'chtLabor

'Energy performance of buildings – Energy requirements for lighting'

Controls (daylight and artificial light) is described by 'dependency factors':

- Daylight dependency factor $F_{D,n}$
- Occupancy dependency factor F_0
- Constant illuminance factor F_C

Intelligent Energy 💽 Europe

Bartenbach L'chtLabor

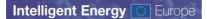
*	**	****
_	1	~
~		
	~	1
		\checkmark
	1	~
	~	~
		~
		V
3 in EN 12464-1	:2002.	
from EN 12464-	-1.	
illuminances and	d therefore higher W	//m².
	from EN 12464-	

Comfort in Lighting Porto Nov 2009

Intelligent Energy 💽 Europe

20

Bartenbach L'chtLabor


Resume:

- Very poor contents regarding lighting !
- Only $\frac{1}{2} + \frac{1}{4} + \frac{1}{4}$ pages = ca. 1 page in the whole standard !?
- Annex D (informative) table extracted from EN12464
- References to EN12464 (lighting standard) and EN15193 (Energy)

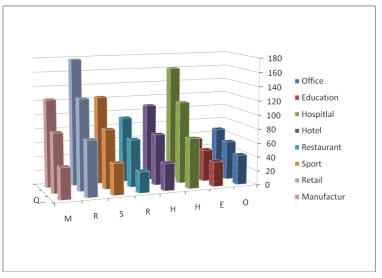
Citation:

'Lighting quality of building is evaluated by measurement of illuminance.' ?

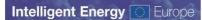
EN15251 EN15193 1

different building types and quality levels. 40 35 30 25 20 15 ■ W/m2 10 5 0 Quality class 1 Quality class 2 Quality class 1 Quality class 2 Quality class 2 Quality class 3 Quality class 3 Quality class 3 Quality class 2 Quality class 3 Quality class 2 Quality class 3 Quality class 3 Quality class 2 Quality class 2 Quality class 3 Quality class 1 Quality class 1 Quality class 1 Quality class 1 Quality class : Office/Education Hospitlal Hotel Restaurant Sport Retail Manufactur

Limits for connected lighting power (in W/m²) according to EN15193 for

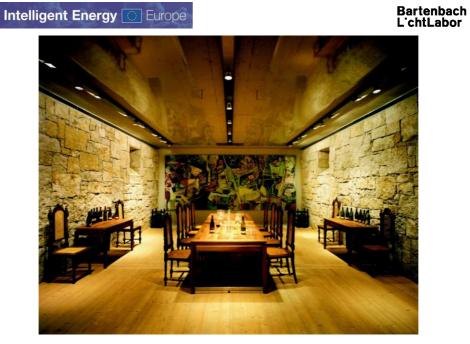

Comfort in Lighting Porto Nov 2009

Intelligent Energy 💽 Europe


22

Limits for energy consumption (in kWh/m²year) according to EN15193 for different building types and quality levels

Comfort in Lighting Porto Nov 2009



Comfort in Lighting Porto Nov 2009

24

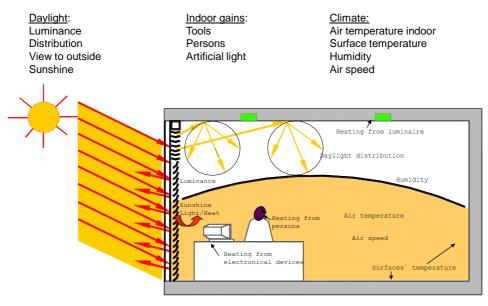
Comfort in Lighting Porto Nov 2009

Intelligent Energy 💽 Europe

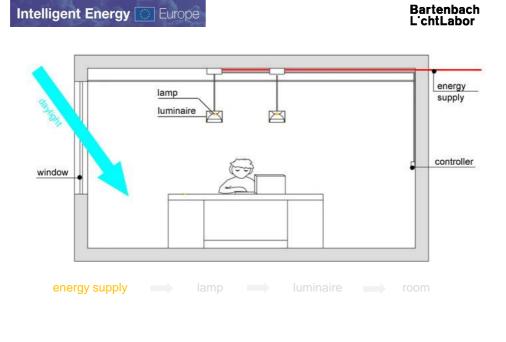
Comfort in Lighting Porto Nov 2009

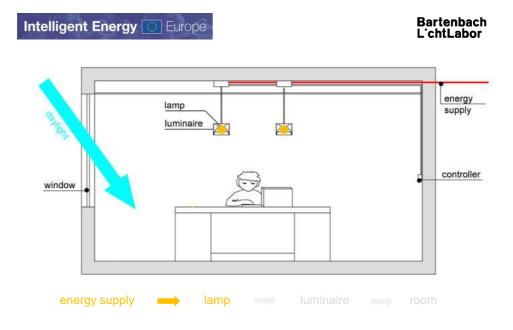
26

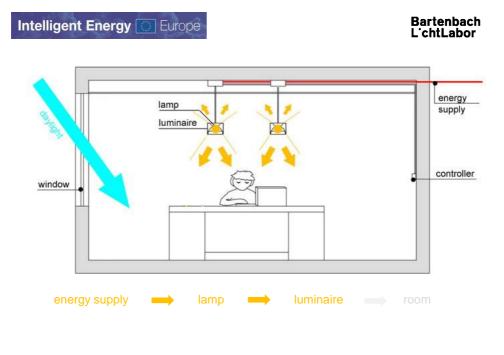
Bartenbach L'chtLabor


Intelligent Energy 💽 Europe

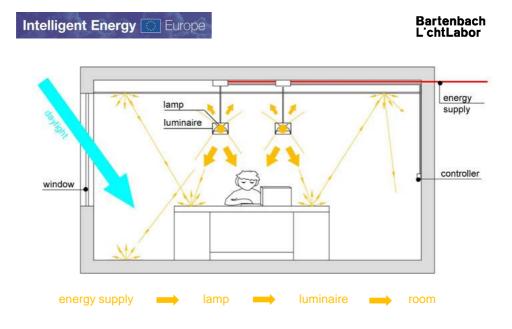
Intelligent Energy 💽 Europe

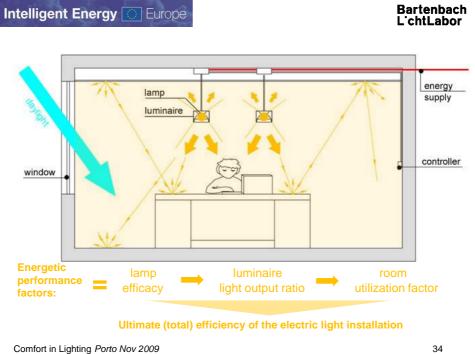

Bartenbach L'chtLabor

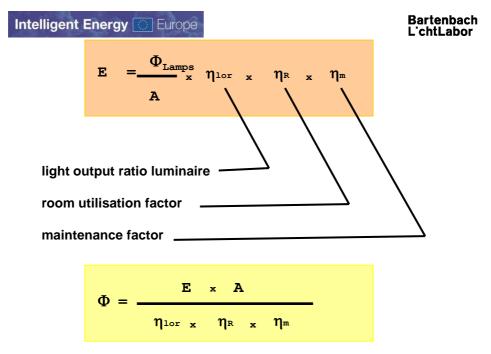

Comfort in Lighting Porto Nov 2009


28

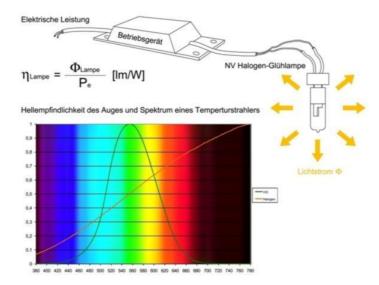
<image>



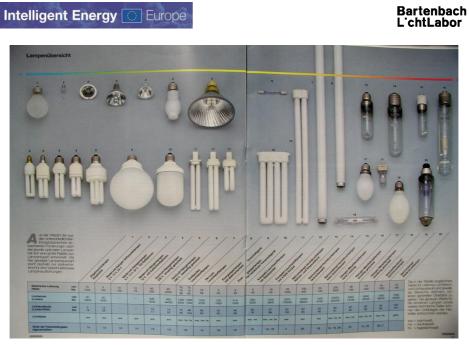

30



32



Comfort in Lighting Porto Nov 2009

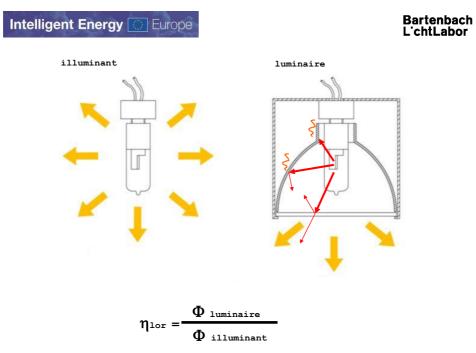

Intelligent Energy 💽 Europe

lamp efficacy (including the ballast):

Comfort in Lighting Porto Nov 2009

36

Comfort in Lighting Porto Nov 2009


39

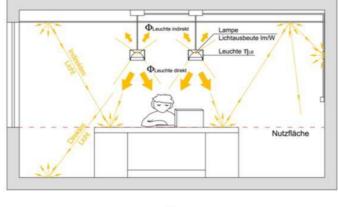
Intelligent Energy 💿 Europe

OLEDs

Comfort in Lighting Porto Nov 2009

41

Intelligent Energy 💽 Europe

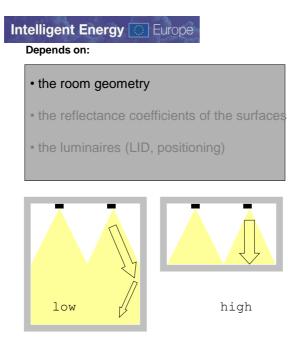

Bartenbach L'chtLabor

Refurbishment of historic "Ritter Lantern", City of Amsterdam, Netherlands

Room Utilization Factor

$$\eta_{\text{Raum}} = \frac{\Phi_{\text{Nutzfläche}}}{\Sigma \Phi_{\text{Leuchten}}}$$

Comfort in Lighting Porto Nov 2009


43

Bartenbach L'chtLabor

Intelligent Energy 💽 Europe

The factor depends on:

- the room geometry
- the reflectance coefficients of the surfaces
- the luminaires (LID, positioning)

Comfort in Lighting Porto Nov 2009

Intelligent Energy C Europe Depends from: • the room geometry • the reflectance coefficients of the surfaces • on the luminaires (LID, positioning)

high low

where is $\eta_{\mbox{\tiny R}}$ higher ?

Comfort in Lighting Porto Nov 2009

45

Bartenbach L'chtLabor

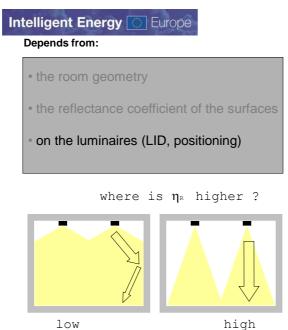
46

Intelligent Energy 💽 Europe

Bartenbach L'chtLabor

$$m{\eta}_{utilization} = f_{direct} + f_{indirect} \Rightarrow f_{indirect} = rac{A_{workplane}}{A_{room}} \cdot rac{m{
ho}_{mean}}{1 - m{
ho}_{mean}}$$

Example: office-room $A_{workplane}/A_{room} = 30\%$


Additional indirect-portion over multiple reflections at the room surfaces ($f_{indirect}$)

 $\rho_{mean} = 0.2 > f_{indirect} = 8\%$ $\rho_{mean} = 0.7 > f_{indirect} = 70\% !!$

Comfort in Lighting Porto Nov 2009

47

Bartenbach L'chtLabor

Intelligent Energy 💽 Europe

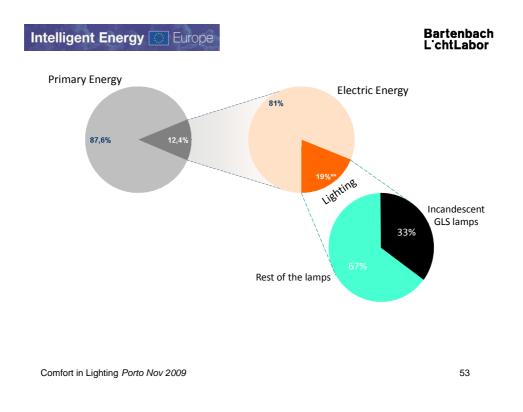
Bartenbach L'chtLabor

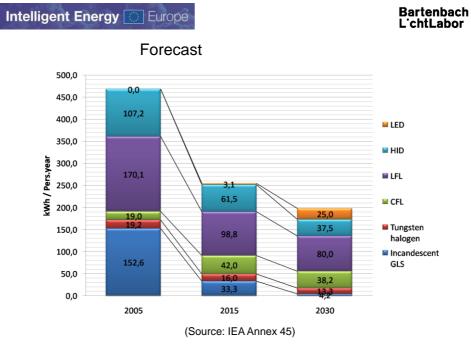
Comfort in Lighting Porto Nov 2009

49

Bartenbach L'chtLabor

Intelligent Energy 💽 Europe




Comfort in Lighting Porto Nov 2009

51

Bartenbach L'chtLabor

Comfort in Lighting Porto Nov 2009

Intelligent Energy 💽 Europe

Comfort in Lighting Porto Nov 2009

55